
A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 214 – 258, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Catalogue of Refactorings
and Code Smells for AspectJ

Miguel P. Monteiro1 and João M. Fernandes2

1 Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco,
Avenida do Empresário, 6000-767, Castelo Branco, Portugal

mmonteiro@di.uminho.pt
2 Departamento de Informática, Universidade do Minho, Campus de Gualtar,

4710-057 Braga, Portugal
jmf@di.uminho.pt

Abstract. In this paper, we contribute to the characterisation of a programming
style specific to aspect-oriented programming. For this purpose, we present a
collection of refactorings for aspect-oriented source code, comprising refactor-
ings to enable extraction to aspects of crosscutting concerns from object-
oriented legacy code, the subsequent tidying up of the extracted aspects and
factoring out of common code from similar aspects to superaspects. The second
group of refactorings is documented in detail. In addition, we propose some
new aspect-oriented code smells, including one smell that is specific to aspect
modules. We also propose a reinterpretation of some of the traditional object-
oriented code smells in the light of aspect-orientation, to detect the presence of
crosscutting concerns.

1 Introduction

Refactoring [10, 13, 31] and aspect-oriented programming (AOP) [23] are two tech-
niques that contribute to dealing with the problems of continuous evolution of soft-
ware. Refactoring processes enable the improvement of the internal structure of source
code without changing a system’s external behaviour, thus facilitating its evolution in
line with changes in environments and requirements. AOP enables the modularisation
of crosscutting concerns (CCCs), thus diminishing the potential impact of changes
to the code related to a given concern on code not related to that concern.

AOP’s steady progress from a “bleeding edge” research field to mainstream tech-
nology [33] brings forward the problem of how to deal with large number of object-
oriented (OO) legacy code bases. Experience with refactoring of OO software in the
latest half-decade suggests that refactoring techniques have the potential to bring the
concepts and mechanisms of aspect-orientation to existing OO frameworks and
applications.

1.1 Some Challenges of Refactoring Aspect-Oriented Systems

We believe there are three main hurdles that should be addressed so that refactoring
techniques can be effectively used in AOP software. The first hurdle is the present

Towards a Catalogue of Refactorings and Code Smells for AspectJ 215

lack of a fully developed idea of “good” AOP style. This is an important issue, for a
clear notion of style is a fundamental prerequisite for the use of refactoring. Notions
of good style enable programmers to see where they are heading when refactoring
their code. For instance, Fowler et al. [10] advocated a specific notion of style for OO
code through a catalogue of 22 code smells, compounded by a catalogue of 72 refac-
torings through which those smells can be removed from existing code. These cata-
logues proved very useful in bringing the concepts of refactoring and good OO style
to a wider audience and in providing programmers with guidelines on when to refactor
and how best to refactor. Refactoring and notions of good style are key concepts of
extreme programming [1], which regards a system’s source code as primarily a com-
munication mechanism between people, rather than computers.

A second hurdle – both a cause and a consequence of the first – is the present lack
of an AOP equivalent of such catalogues. Our work is based on the assumption that
AOP would equally benefit from AOP-specific catalogues of smells and refactorings,
helping programmers to detect situations in the source code that could be improved
with aspects, as well as guiding them through the transformation processes.

A third hurdle is the absence of tool support for AOP constructs and mechanisms
in integrated development environments (IDEs). The catalogues presented by Fowler
et al. [10] provided a basis on which developers could rely to build tool support for
OO refactoring; similar catalogues for AOP are likely to bring similar benefits to tool
developers. Tool developers will not be able to provide adequate support to refactor-
ing operations unless they first have a clear idea of AOP style, and consequently of
which specific refactorings are worthy of their development efforts.

1.2 On the Need for an AOP-Specific Notion of Style

The notion of style in a programming language expresses the coding practices that
yield code that is easier to maintain and evolve. Whenever a programming language
provides alternative ways to achieve some result, the way that causes the least prob-
lems to present and future programmers should be considered the one in the best style.
Throughout the various stages of development of programming languages, many ideas
of style appeared due to the advent of new, superior mechanisms. We mention three
examples:

1. Dijkstra’s famous dictum that the “Go-to statement [should be] considered harm-
ful” [7] stemmed from the availability of control structures, namely loops.

2. Fowler et al. [10] considered the use of the “switch” statement a code smell, due
to the availability of polymorphism and dynamic binding.

3. Orleans suggested in [32] that the “if” statement be considered harmful in the
context of languages using elaborate forms of predicate dispatch.

All these considerations suggest that the appropriate notion of style for a given lan-
guage strongly depends on what can be achieved with that language. In this light, the
suitable style of AspectJ [22, 26] cannot be the same as for Java. AspectJ enables
programmers to perform compositions that are impossible with Java and to avoid
negative qualities such as code scattering and code tangling. This suggests that many

M.P. Monteiro and J.M. Fernandes 216

of traditional OO solutions resulting in those negative qualities should now be consid-
ered bad style. This includes OO implementations of many design patterns [16].

The compositional power itself of AspectJ can be cause for problems. AspectJ of-
fers multiple ways to achieve various effects and compositions. For instance, imple-
mentation of mixins [2] can be achieved both through marker interfaces and through
inner static aspects placed within interfaces. Likewise, nonsingleton aspect associa-
tions provide alternatives to solutions obtained with default singleton aspects. AspectJ
programmers are sometimes faced with so many choices that it becomes hard to de-
cide on the design most appropriate to a particular situation. There is a need to further
study the consequences and implications of each solution in order to make choices
clear. We believe that catalogues of code smells and refactorings [10] are an effective
way to present this knowledge to programmers.

1.3 Contributions

In this paper, we expand the existing refactoring space for AOP and thus contribute to
the characterisation of an AOP style. We present a collection of refactorings for AOP
source code. The refactorings were developed to be performed manually, and for this
reason we describe them with a style similar to that of [10]. We complement the refac-
torings with descriptions of AOP code smells [10], which the refactorings are sup-
posed to remove. In addition, we review the traditional OO code smells in the light of
AOP and propose a reinterpretation of a few traditional OO smells as indicators of the
presence of CCCs.

The subject language we use is AspectJ [22, 26] whose backward compatibility
with Java opens the way for refactoring existing Java applications by introducing AOP
constructs. The task of assessing the extent to which our results can be applied to
different aspect-oriented languages is left to future work.

This paper is a revised and extended version of a paper presented at AOSD 2005
[30]. The main additional contribution relative to the other paper is the detailed
documentation of a group of refactorings. This paper also provides more information
on how refactorings and code smells were derived and updated and revised sections
on related and future work.

1.4 Issues Not Addressed

Our focus in this paper is on creating a catalogue of refactorings that can enable the
development of tool support rather than on the implementation of the support. We
analyze the effect of our refactorings qualitatively because our focus is on understand-
ing the breadth of refactorings needed to transform OO code into well-styled AO
code, rather than on a formal description of each refactoring, which is left as future
work [3]. To further clarify the context of this paper, we next mention several related
subjects that we do not cover.

No tool support. Developing tools that automate standard transformations of source
code is related to the subject covered in this paper, but it is not the same. Even when
provided with appropriate refactoring tools, developers still need to have a proper
notion of style to decide when code should be refactored and to be able to choose the

Towards a Catalogue of Refactorings and Code Smells for AspectJ 217

specific refactoring appropriate for each situation. It is this knowledge that we aim to
expand. Nevertheless, we believe this paper can be helpful to developers of tool sup-
port for aspect-oriented refactorings by suggesting refactorings that may be worthy of
their development efforts. Therefore, this paper indirectly contributes to the develop-
ment of future tools.

No metrics. We do not attempt to formally measure and quantify the benefits in code
of the proposed refactorings. Work on metrics for the complexity of aspect-oriented
source code can be found in [12, 38, 39].

No formalism. We do not attempt to provide a formal, mathematical basis for the
refactorings. Cole and Borba worked in this field, and in [3] they state their interest in
extending their work to cover our refactorings.

1.5 Outline

The rest of this paper is structured as follows. In Sect. 2, we describe the approach we
took to develop the collection of refactorings. In Sect. 3, we present an overview of
the refactorings, which are documented in Sect. 4. In Sect. 5, we review some of the
traditional smells in the light of AOP and propose three novel such smells. In Sect. 6,
we present a code example illustrating the presence of some smells and results of
applying the refactorings that remove those smells. In Sect. 7, we survey related work,
and in Sect. 8 we consider future directions. In Sect. 9, we summarise the paper.

2 The Approach

We took the approach of performing refactoring experiments on code bases, as a vehi-
cle for gaining the necessary insights. The selected case studies were code bases in
Java and/or AspectJ with the appropriate structural characteristics. We approached
Java code as bad-style or “smelly” AspectJ code, and looked for the kinds of refactor-
ings that would be effective in removing the smells. The selected case studies were
systems likely to include CCCs or code bases that promised to yield interesting in-
sights.

The first experiment comprised the extraction of a CCC from a workflow frame-
work to an aspect, yielding refactorings extract feature into aspect, extract fragment
into advice, move field from class to intertype, move method from class to intertype
(Table 1), as well as experience that was invaluable for the subsequent case study.
Despite yielding some positive results, we do not consider the extraction we undertook
to be a good example of the use of AspectJ. The extraction we undertook was really
an attempt to decompose the system according to use cases [19] or features [20] (for
the purposes of this paper we regard the two concepts as equivalent). The extracted
aspect is a monolithic module that uses the mechanisms of AspectJ to compose its
internal elements to the appropriate points of the primary system. Though the ex-
tracted aspect as a whole is crosscutting, each intertype declaration has a single target
type and each pointcut captures a single joinpoint. We concluded that the feature we
extracted does not comprise a good example of the sort of CCC that AspectJ can

M.P. Monteiro and J.M. Fernandes 218

advantageously modularise. AspectJ is appropriate for cases with many duplicated
fragments that can be replaced by one or a few pointcuts plus advice acting on the
captured joinpoints, thus yielding significant savings in lines of code. Since the ex-
tracted CCC is an instance of Interpreter, we compared its code with the AspectJ im-
plementation of Interpreter proposed by Hannemann and Kiczales [16]. Unlike several
of the examples from the collection from [16], the implementation of Interpreter com-
prises a single concrete aspect (i.e., it does not extend a reusable abstract aspect).
Hannemann and Kiczales placed a few comments at the beginning of the aspect source
file, remarking in the end that Interpreter “does not lend itself nicely to aspectifica-
tion”. The aspect we extracted is simply a more complex instance with similar prob-
lems. For more information regarding the relevant characteristics of the framework,
the extraction experiment and the results derived from it, the reader is referred to [28]
and [27].

The second case study was the collection of implementations (version 1.1) in both
Java and AspectJ of the 23 Gang-of-Four (GoF) design patterns [11], presented by
Hannemann and Kiczales [16]. The 23 GoF patterns illustrate a variety of design and
structural issues that would be hard to find in a single code base (except in very large
and complex systems). The GoF patterns effectively comprise a microcosm of many
possible systems. They provided us with a rich source of insights, without the need to
analyse large code bases or learn domain-specific concepts. The implementations
presented by Hannemann and Kiczales [16] can be counted among the currently avail-
able examples of good AOP style and design, presenting a clear picture of the desir-
able internal structure of aspects. Many of the findings presented in this paper stem
from our study of these examples, compounded with studies of Java implementations
of the same patterns by other authors [5, 8] which further enriched the patterns’ poten-
tial as providers of insights.

Our approach to the GoF implementations was to pinpoint the refactorings that
would be needed to transform the Java implementations into the AspectJ implementa-
tions. This comprised an iterative process, in which each Java code example was sub-
ject to multiple refactoring sessions aiming to yield the corresponding AspectJ ver-
sion. The experience gained from each session was used to refine and enrich the de-
scriptions of the code transformations being used. The descriptions of the refactorings
presented in this paper emerged gradually through this process. Care was taken to only
develop descriptions of generally applicable transformations, i.e., refactorings that can
be applied to multiple, unrelated cases. During this process, various refactoring candi-
dates were discarded because they turned out to be too case-specific.

In the subsequent phase, we tested and refined the refactorings thus obtained on the
implementations of other, structurally similar patterns, or in different Java implemen-
tations of the same patterns [5, 8]. The code examples presented at the end of each
description found in this paper originate from those test sessions, as well as the refac-
toring process described in detail in [29].1 The latter also serves as a first validation
effort.

1 [29] is complemented with an eclipse project containing 33 complete code snapshots, avail-

able at www.di.uminho.pt/~jmf/PUBLI/papers/ObserverExample.zip.

Towards a Catalogue of Refactorings and Code Smells for AspectJ 219

Throughout our work on the mechanics of the refactorings, we took care to choose
the safest path. As the refactorings are intended to be performed manually, it is impor-
tant that each refactoring step be small, in order to ensure an easy backtracking and to
maximise safety. In a few cases, this led us to decompose the refactoring under study
into several smaller steps.

After the experiments were carried out and the refactoring descriptions were stable,
we analysed the results in order to characterise the smells that the refactorings were
supposed to remove. The novel smells presented in Sects. 5.2 – 5.4 are distillations of
these ideas. In addition, we analysed existing, traditional OO smells [10, 21, 37,] to
assess whether some of these smells could also be used as indicative of the presence of
CCCs (see Sect. 5.1).

The refactorings described in this paper are to some extent specific to the character-
istics of the languages used – Java and AspectJ. Our approach has the limitation that
insights obtained to derive refactorings and code smells directly depend on the charac-
teristics of the code bases used as case studies, and are only as good as the insights
obtained from them. If a given characteristic or mechanism is not used in the subject
code base, the experiments are not likely to yield insights related to that characteristic
or mechanism. For instance, none of the code bases we used includes elaborate uses of
exceptions. For this reason, our work did not yield any refactorings related to excep-
tions or exception handling. Further work on more case studies is needed to overcome
these limitations. We elaborate on this subject in Sect. 8.

All refactorings presented in this paper were applied in at least one code example,
with the exception of most of the simple push down refactorings from Table 3, which
were derived for completeness. push down advice is used in the refactoring process
described in [29].

3 Overview of the Refactorings

This section presents an overview of the refactorings. All descriptions use a format
and level of detail similar to the one used by Fowler et al. [10] (Kerievsky took the
same approach in [21]). The format includes (1) name, (2) typical situation,
(3) recommended action, (4) motivation stating the situations when applying the
refactoring is desirable, (5) a detailed mechanics section and (6) code examples.
Tables 1–3 present the refactorings, mentioning the first three elements of the format.
Section 4 presents complete descriptions of the refactorings from Table 2. Complete
descriptions of refactorings from Tables 1–3 can also be found in [27].

The mechanics do not attempt to cover all possible situations that can potentially
arise in source code. For instance, they do not account for uses of reflection. Likewise,
they do not deal with the fragile pointcut problem [24], which is caused by the fact
that almost all refactorings can potentially break existing aspects, particularly point-
cuts (in [28, 29] we call it the fragile base code problem). We believe human pro-
grammers will be able to thoroughly deal with this problem only when provided with a
new generation of tools, specifically designed to account for the presence of aspects.

M.P. Monteiro and J.M. Fernandes 220

Table 1. Refactorings for extraction of crosscutting concerns

Name of the
refactoring

Typical situation Recommended action

Change
abstract class
to interface

An abstract class prevents sub-
classes from inheriting from
another class

Turn the abstract class into an
interface and change its rela-
tionship with subclasses from
inheritance to implementation

Extract feature
into aspect

Code related to a feature is
scattered across multiple meth-
ods and classes, tangled with
unrelated code

Extract to an aspect all imple-
mentation elements related to
the feature

Extract
fragment into
advice

Part of a method is related to a
concern whose code is being
moved to an aspect

Create a pointcut capturing the
appropriate joinpoint and con-
text and move the code frag-
ment to an advice based on the
pointcut

Extract inner
class to
stand-alone

An inner class relates to a con-
cern being extracted into an
aspect

Eliminate dependencies from
the enclosing class and turn the
inner class into a stand-alone
class

Inline class
within aspect

A small stand-alone class is
used only within an aspect

Move the class to within the
aspect

Inline interface
within aspect

One or several interfaces are
used only by an aspect

Move the interfaces to within
the aspect

Move field from
class to
intertype

A field relates to a concern
other than the primary concern
of its owner class

Move the field from the class to
the aspect as an intertype decla-
ration

Move method
from class to
intertype

A method belongs to a concern
other than the primary concern
of its owner class

Move the method into the as-
pect that encapsulates the sec-
ondary concern as an intertype
declaration

Replace imple-
ments with
declare
parents

Classes implement an interface
related to a secondary concern.
Class code implementing the
interface is used only when the
secondary concern is included
in the system build

Replace the implements in the
class with a equivalent declare
parents in the aspect

Split abstract
class into
aspect and
interface

Classes are prevented from
using inheritance because they
inherit from an abstract class
defining several concrete mem-
bers

Move all concrete members
from the abstract class to an
aspect. You can then turn the
abstract class into an interface

Towards a Catalogue of Refactorings and Code Smells for AspectJ 221

Table 2. Refactorings for restructuring the internals of aspects

Name of the
refactoring

Typical situation Recommended action

Extend marker
interface with
signature

An inner interface models a role
used within the aspect. You
would like the aspect to call a
method specific to a type that
implements the interface but that
is not declared by it

Add an intertype abstract decla-
ration of the case-specific
method signature to the inter-
face

Generalise
target type
with marker
interface

An aspect refers to case-specific
concrete types, preventing it from
being reusable

Replace the references to spe-
cific types with a marker inter-
face and make the specific
types implement the marker
interface

Introduce
aspect protec-
tion

You would like an intertype
member to be visible within the
declaring aspect and all its subas-
pects, but not outside the aspect
inheritance chain

Declare the intertype member
as public and place a declare
error preventing its use outside
the aspect inheritance chain

Replace inter-
type field with
aspect map

An aspect statically introduces
additional state to a set of classes,
when a more dynamic or flexible
link between state and targets
would be desirable.

Replace the intertype declara-
tions with a structure owned by
the aspect that performs a map
between the target objects and
the additional state

Replace inter-
type method
with aspect
method

An aspect introduces additional
methods to a class or interface,
when a more dynamic and flexi-
ble composition would be desir-
able

Replace the intertype method
with an aspect method that gets
the target object as an extra
parameter

Tidy up
internal
aspect struc-
ture

The internal structure of an aspect
resulting from the extraction of a
crosscutting concern is sub-
optimal

Tidy up the internal structure of
the aspect by removing dupli-
cated intertype declarations and
dependencies on case-specific
target types

However, we also believe it is possible to keep this problem under control, provided
adequate practices are followed, including programming AspectJ’s constructs with a
prudent and appropriate style, such as that proposed by Laddad [25]. This is particu-
larly important with pointcuts, which should be made in a style stressing intent rather
than a specific case (e.g., expressions using wildcards). This way, pointcuts can ex-
press a general policy and may be robust enough to not be affected by minor modifica-
tions in the target code, such as the removal or addition of a new class or method.
Another good practice is to place the aspects close to the code they affect whenever

M.P. Monteiro and J.M. Fernandes 222

Table 3. Refactorings to deal with generalisation

Name of the
refactoring

Typical situation Recommended action

Extract
superaspect

Two or more aspects contain
similar code and functionality

Move the common features to a
superaspect

Pull up
advice

All subaspects use the same ad-
vice acting on a pointcut declared
in the superaspect

Move the advice to the su-
peraspect

Pull up de-
clare parents

All subaspects use the same de-
clare parents

Move the declare parents to the
superaspect

Pull up
intertype
declaration

An intertype declaration would be
best placed in the superaspect

Move the intertype declaration
to the superaspect

Pull up
marker
interface

All subaspects use a marker inter-
face to model the same role

Move the marker interfaces to
the superaspect

Pull up
pointcut

All subaspects declare identical
pointcuts

Move the pointcuts to the su-
peraspect

Push down
advice

A piece of advice is used by only
some subaspects, or each subas-
pect requires different advice
code

Move the advice to the subas-
pects that use it

Push down
declare par-
ents

A declare parents in a superaspect
is not relevant for all subaspects

Move the declare parents to the
subaspects where it is relevant

Push down
intertype
declaration

An intertype declaration would be
best placed in a subaspect

Move the intertype declaration
to the subaspect where it is
relevant

Push down
marker
interface

A marker interface declared
within a superaspect models a
role used only in some subaspects

Move the marker interface to
those subaspects

Push down
pointcut

A pointcut in the superaspect is
not used by some subaspects

Move the pointcut to the subas-
pects that use the pointcut

possible, to increase the likelihood that all team members be aware of the aspects
potentially affected by refactorings. This often entails placing the aspect in the same
package, or even within the same source file as the target class (as inner or peer
aspects).

All refactorings from Tables 1–3 assume AspectJ as the subject language. How-
ever, the refactorings from Table 1 are a special case in that the starting points of all
refactorings from that group are in plain Java. This is not a specifically intended

Towards a Catalogue of Refactorings and Code Smells for AspectJ 223

restriction, it just follows that all refactorings deal with extractions of the various
elements of a CCC. CCCs are expected to reside in plain Java bases but not in AspectJ
code, and therefore the existence of aspects in the code base is not taken into account
in the mechanics. Actually, the code bases targeted by the refactorings from Table 1
can include aspects (namely a Java base that is undergoing the extraction of multiple
aspects). However, we assume that already existing aspects do not interfere with the
constructs manipulated during the extraction process.

The traditional OO refactorings can be used in AspectJ code as well. We did not
detect any refactoring from [10] targeting an OO construct that could not be applied to
the same construct within aspects. For instance, in the mechanics of Extend Marker
Interface with Signature we prescribe the use of Extract Method ([10], p. 110) inside
aspects.

3.1 Grouping the Refactorings

The collection is structured in groups of refactorings with similar purposes, as is done
in [10]. The adopted grouping also reflects a strategy likely to be followed in many
refactoring processes. This establishes that prior to anything else, all elements related
to a CCC should be moved to a single module (following extract feature into aspect2).
Only afterwards should we start improving the underlying structure of the resulting
aspects (following tidy up internal aspect structure), because such tasks are consid-
erably easier to perform after the associated implementation is modularised. In case
duplication is detected among different but related aspects, we extract the commonal-
ities to a (possibly reusable) superaspect (using extract superaspect). This strategy
leads to the following grouping: (1) extraction of CCCs, (2) improvement of the inter-
nal structure of an aspect and (3) generalisation of aspects. The sequence of code
transformations described in [29] also fits naturally with this grouping.

The three refactorings mentioned above are composite refactorings that provide the
entry points to someone approaching the catalogue. Rather than prescribe specific
actions on the source code, as is the case of those documented in [10], they provide a
framework for the other refactorings from the same group, specifying the situations
when they should be used and when they should not. They are also useful in providing
a broader view of a refactoring process.

3.2 Refactorings for Extracting Features to Aspects

We expect the refactorings from this group (Table 1) to comprise the starting point for
the majority of refactoring processes targeting OO legacy code. Extract feature into
aspect pinpoints procedures for extracting scattered elements of a CCC into a single
module [28]. We suggest using move field from class to intertype to move state to the
aspect. Behaviour can be moved using move method from class to intertype and ex-
tract fragment into advice. Moving an inner class to an aspect is done in two stages:
first using extract inner class to stand-alone, to obtain a stand-alone class from the
inner class, and next using inline class within aspect to turn the resulting class into an

2 In the context of these refactorings, we use the term “feature” to mean a CCC of the kind that

can be effectively modularised by an AOP language such as AspectJ.

M.P. Monteiro and J.M. Fernandes 224

inner class within the aspect. We did not see a justification for defining a refactoring
equivalent to extract inner class to stand-alone for interfaces, as interfaces are not
generally used within classes. Interfaces are inlined into aspects using inline interface
within aspect, after which they can be turned into marker interfaces. To complete the
modularisation of the code related to the interface, we propose replace implements
with declare parents for inlining the “implements” clause of implementing classes.

Split abstract class into aspect and interface enables the extraction of definitions
from an abstract class to an aspect, opening the way to using change abstract class to
interface to turn the abstract class into an interface. This way, subclasses of the ab-
stract class become free to inherit from some other class. Together, the pair effectively
extracts a mixin [2] from the original abstract class. The pair was derived from the
analysis on the group of the GoF patterns that Hannemann and Kiczales related to
multiple inheritance (Sect. 4.2.4 of [16]) and can be used to transform the Java im-
plementations of those patterns into the corresponding AspectJ implementations.

3.3 Restructuring the Internals of Aspects

The refactorings from this group (Table 2) deal with the task of improving the internal
structure of an aspect after all elements from a CCC were moved into it, using the
refactorings presented in Sect. 3.2 (Table 1). Tidy up internal aspect structure pro-
vides the general framework for improving the internal structure of extracted aspects.
The mechanics prescribe at the start the use of generalise target type with marker
interface, which entails replacing references to case-specific types with marker inter-
faces representing the roles played by the participants. Generalise target type with
marker interface removes the duplication caused by multiple intertype declarations of
the same member. In straightforward cases, it is enough to attain (un)pluggability.

When using generalise target type with marker interface we may sometimes find
that a single call to a case-specific method prevents a code fragment from being reus-
able. For such cases, extend marker interface with signature separates the generically
applicable code from case-specific code, by extending marker interface with the
method’s signature.

Replace intertype field with aspect map and replace intertype method with aspect
method prescribe how to replace intertype state and behaviour with a mapping struc-
ture providing the same functionality in a more dynamic way, and amenable to being
controlled by client objects. These two refactorings can also deal with hurdles that
arise when we try to move duplicated intertype declarations along aspect hierarchies
(Sect. 3.4).

The motivation for introduce aspect protection stems from the impossibility of us-
ing the protected access in intertype members. This refactoring prescribes how to
preserve this access through declare error clauses.

Split abstract class into aspect and interface and change abstract class to interface
deal with the extraction of inner classes to aspects. The former removes dependencies
of the inner class on the enclosing class and turns into a stand-alone class. The latter
inlines the class within the aspect.

Towards a Catalogue of Refactorings and Code Smells for AspectJ 225

3.4 Dealing with Generalisation

The refactorings from this group (Table 3) deal with the extraction of common code to
superaspects, with extract superaspect providing the general framework. All the re-
maining refactorings in this group deal with moving members up and down the inheri-
tance hierarchies of aspects. New refactorings for moving traditional OO members
such as fields and methods were not created, as the issues and mechanics are similar to
those documented in [10]. In [29] we show how the reusable aspect presented in [16]
can be extracted from similar aspects.

Pull up intertype declaration and push down intertype declaration have a very re-
stricted scope of applicability, only to simple cases not involving duplication. They
are almost antirefactorings – one motivation for including them in the collection is to
better document some issues and warn against attempts to treat intertype declarations
as if they were like other members. The hurdles arise because duplicated intertype
declarations of fields cannot generally be moved between superaspects and subas-
pects: such movements change the number of instances of intertype fields and their
relation to aspect instances. It is important to keep in mind that (1) the visibility
scopes of multiple intertype declarations of the same member cannot overlap and that
(2) target objects (i.e., instances of classes affected by the intertype declaration) have
one separate instance of the intertype member for each subaspect. If duplicated
intertype declarations are factored out to a single declaration in a superaspect, target
objects will have just one instance of the introduced member. In most cases, dealing
with duplicated intertype declarations entails the prior replacement of the introduced
fields with some mapping logic that maintains the association between target objects
and the additional state and behaviour (using replace intertype field with aspect map
and replace intertype method with aspect method).

The remaining refactorings from this group deal with pulling up and pushing down
aspect-specific constructs, including pointcuts, advice and declare parents clauses.
Inner interfaces are also covered due to their widespread use as marker interfaces.

3.5 Refactorings for Plain Java

Two pairs of refactorings presented in the previous sections were initially conceived
as single refactorings but were later split into the present pairs because this way
seemed to have a more appropriate granularity:

 extract inner class to stand-alone and inline interface within aspect (Sect. 3.2)
 split abstract class into aspect and interface and change abstract class to

interface (Sect. 3.3)

In both cases, one of the resulting refactorings deals only with plain Java con-
structs: extract inner class to stand-alone and change abstract class to interface,
though this was not specifically intended. We believe the motivation for these particu-
lar plain Java refactorings arises only or mostly in the context of aspects. For these
reasons they are included in their respective groups.

M.P. Monteiro and J.M. Fernandes 226

4 Refactorings for Tidying Up Extracted Aspects

This section documents the refactorings from Table 2. Complete descriptions of all
refactorings from Tables 1–3 can be found in [27].

4.1 Extend Marker Interface with Signature

Typical situation. An inner interface models a role used within the aspect. You would
like the aspect to call a method specific to a type that implements the interface but that
is not declared by it.

Recommended action. Add an intertype abstract declaration of the case-specific
method signature to the interface.

Motivation. Sometimes you would like to temporarily resolve a dependence on a
case-specific part because that would enable you to do some tidying up of the as-
pect’s internals, after which you would be in a better position to deal with the de-
pendence. Extend marker interface with signature can be used as a stopgap in such
situations to temporarily resolve dependences to a type-specific method. One case
in which this situation arises often is during the use of generalise target type with
marker interface.

An alternative solution to these problems would be to resort to downcasts. How-
ever, downcasts create dependencies to the target type of the cast: the specific type
will need to be included in the aspect’s “import” section, the type’s binary file will
have to be available when performing a build, etc. Extend marker interface with sig-
nature can be preferable in some situations because it avoids such dependencies. The
dependence it creates is restricted to a method signature only, not to specific types.
For these reasons, this refactoring is worth using in simple cases.

Preconditions. The signature must be public in order to be acceptable to the compiler.
In addition, this solution is feasible only if all the types made to implement the marker
interface export the signature.

Mechanics.

 If the method is not public, change it to public.
 Create in the aspect an intertype abstract declaration of the method’s signa-

ture targeting the marker interface that will be used in place of the specific
type.

 Compile and test.

Example. The ExampleAspect aspect uses the Role marker interface. Some instruc-
tions using Role resort to a downcast to specific type SpecificType, to resolve the call
to the doSomething method, which is specific to this type. By using extend marker
interface with signature, we eliminate this dependence to SpecificType. Provided this
is the only use of SpecificType within ExampleAspect, the import clause itself can be
removed, as shown below.

Towards a Catalogue of Refactorings and Code Smells for AspectJ 227

import ...SpecificType;

public aspect ExampleAspect {
 private interface Role { }
 ... action(Role obj) {
 //...
 ((SpecificType)obj).doSomething()

import ...SpecificType;

public aspect ExampleAspect {
 private interface Role { }
 public abstract void Role.doSomething();
 //...
 obj.doSomething()

4.2 Generalise Target Type with Marker Interface

Typical situation. An aspect refers to case-specific concrete types, preventing it from
being reusable.

Recommended action. Replace the references to specific types with a marker inter-
face and make the specific types implement the marker interface.

Motivation. This refactoring contributes to reduce the coupling between an aspect
and its target code bases. It can also be used to expose and eliminate much duplication
that could not be eliminated if the code kept referring to specific types. It can also be
useful when we want to apply extract superaspect to aspects providing similar func-
tionality, because it contributes to rationalise its internal structures.

Several situations can prevent extract superaspect from being applied to a set of
similar aspects. The aspects can contain code specific to concrete classes in the midst
of generally applicable code. If a general marker interface could be used instead of the
specific types, use generalise target type with marker interface. The resulting marker
interfaces may be candidates for pulling up to a superaspect.

Mechanics.

 Create a marker interface representing the role played by the target classes.
Create the “declare parents” to associate the concrete classes to the role.

 Replace the references to the class with references to the marker interface. In
cases when the aspect introduces the same field or method to more than one
class, remove the duplication by replacing the various introductions with a sin-
gle introduction to the interface.

 Sometimes the replacement cannot be made in method bodies because parts of
the code depend on elements specific to a concrete class. In such cases, con-
sider using extract method ([10], p. 110) to separate the parts covered by the
role interface from the parts specific to particular classes. This may be an indi-
cation that in the future the aspect should be split into a generally applicable
abstract superaspect and one or several specific concrete subaspects, using ex-
tract superaspect.

M.P. Monteiro and J.M. Fernandes 228

 Compile and test.
 When all method introductions refer to the interface, it is possible to remove

the declarations of operations (methods) within the interface (if the interface is
a inner interface, nested within the aspect, the related operations are defined
within the aspect anyway, so removing the declarations from the interface will
result in simpler code). If, however, the interface is kept stand-alone, leave the
declarations in place. This way the code will be easier to understand.

Example: Simple Replacements. In the following example, GUIColleague is an
interface representing a role. The aspect Mediator assigns the GUIColleague role to
the Button class, but some parts of the code still specifically refer to Button instead of
GUIColleague. We want to make all code to depend only on the interface (see below).

public aspect Mediator {
 declare parents: Button implements GUIColleague;
 declare parents: Label implements GUIMediator;
 GUIMediator Button._mediator;
 public void Button.setMediator(GUIMediator mediator) {
 this._mediator = mediator;
 }
 pointcut buttonClicked(Button button):
 execution(public void clicked()) && this(button);
 after(Button button): buttonClicked(button) {
 button._mediator.colleagueChanged(button);
 }
 //...
}

public aspect Mediator {
 declare parents: Button implements GUIColleague;
 declare parents: Label implements GUIMediator;
 GUIMediator GUIColleague._mediator;
 public void GUIColleague.setMediator(GUIMediator mediator) {
 this._mediator = mediator;
 }
 pointcut buttonClicked(GUIColleague button):
 execution(public void clicked()) && this(button);
 after(GUIColleague button): buttonClicked(button) {
 button._mediator.colleagueChanged(button);
 }
 //...
}

Naturally, the names of some variables (such as button) should now be renamed to
reflect their more general context.

Example: Eliminating Duplication. This example is based on the Observer pattern
([11], p. 293). The ObservingOpen aspect encapsulates an observing relationship that
was extracted from the participant classes. ObservingOpen introduces some fields and
methods into several classes playing the Observer role (in this case Bee and Humming-
bird). The classes are the only differing things among the introductions. By applying
generalise target type with marker interface, we create the Subject marker interface and
remove the duplication.

Towards a Catalogue of Refactorings and Code Smells for AspectJ 229

public aspect ObservingOpen ... {
 //...
 private OpenObserver Hummingbird.openObsrv =
 new OpenObserver(this);
 private OpenObserver Bee.openObsrv = new OpenObserver(this);

 public java.util.Observer Bee.openObserver() {
 return openObsrv;
 }
 public java.util.Observer Hummingbird.openObserver() {
 return openObsrv;
 }
}

public aspect ObservingOpen ... {
 //...
 private interface Subject { }
 declare parents: (Bee || Hummingbird) implements Subject;
 private OpenObserver Subject.openObsrv = new OpenOb-
server(this);

 public java.util.Observer Subject.openObserver() {
 return openObsrv;
 }
}

4.3 Introduce Aspect Protection

Typical situation. You would like an intertype member to be visible in an aspect and
all its subaspects, but not outside the aspect inheritance chain.

Recommended action. Declare the intertype member as public and place a “declare
error” preventing its use outside the aspect inheritance chain.

Motivation. AspectJ does not allow the protected access on intertype members, so
whenever we would like to extend its access to subaspects we must classify the mem-
ber as public. In some cases, it is desirable to have some form of access protection
preventing the use of the member outside aspect code. The “declare error” mechanism
enables us to emulate that protection.

Mechanics.

 Add a “declare warning” in the aspect enclosing the intertype member, speci-
fying the intended restriction on its use.

 Compile and test.
 For each warning generated by the compiler, perform the refactorings neces-

sary to move the use of the member to the authorised modules of the system.
 When there are no more warnings, change the “declare warning” to “declare

error”.

Example: Protecting an Intertype Field. Consider an abstract superaspect General-
Policy declaring intertype the field _sensitiveData. We want to restrict use of the field
to aspect and its subaspects.

M.P. Monteiro and J.M. Fernandes 230

abstract aspect GeneralPolicy {
 protected interface Participant {}
 public Data Participant._sensitiveData;
 //...
}

aspect ConcretePolicy extends GeneralPolicy {
 //code using Participant._sensitiveData
}

We can add in the superaspect the following “declare warning”:

abstract aspect GeneralPolicy {
 protected interface Participant {}
 public Data Participant._sensitiveData;
 declare warning:
 (set(public Data Participant+._sensitiveData) ||
 get(public Data Participant+._sensitiveData))
 && !within(GeneralPolicy+):
 "field _sensitiveData is aspect protected. Not visible
here.";
 //...
}

Next, we deal with all points in the system, giving rise to warnings. After all warn-
ings are gone, we change the “declare warning” to “declare error”.

Example: Protecting an Intertype Method. Suppose the same abstract aspect as in
the previous example also includes method processSensitiveData, which we also
would like to protect:

abstract aspect GeneralPolicy {
 protected interface Participant {}
 public Data Participant._sensitiveData;
 public void processSensitiveData() {
 //code using Participant._sensitiveData
 }
 //...
}

We create the following “declare warning”:

abstract aspect GeneralPolicy {
 protected interface Participant {}
 public Data Participant._sensitiveData;
 public void processSensitiveData() {
 //code using caspule._sensitiveData
 }
 declare warning:
 call(void processSensitiveData())
 && !within(GeneralPolicy+):
 "method processSensitiveData is aspect protected. Not visible
here.";
 //...
}

Towards a Catalogue of Refactorings and Code Smells for AspectJ 231

Likewise, the “declare warning” should be changed to “declare error” when all the
warnings are gone.

Example: Protecting Intertype Method from Access Outside Inheritance Class
and Aspect Inheritance Chains. What if we want to allow the access to a member in
the host class, in addition to the aspect and their descendents? In the above example
all that is needed is one more within to the above “declare error”:

declare error:
 call(void processSensitiveData())
 && !within(Participant+)
 && !within(GeneralPolicy+):
 "Call to processSensitiveData() outside Participant and General
Policy chains.";

4.4 Replace Intertype Field with Aspect Map

Typical situation. An aspect statically introduces additional state to a set of classes,
when a more dynamic or flexible link between state and targets would be desirable.

Recommended action. Replace the intertype declarations with a structure owned by
the aspect that performs a map between the target objects and the additional state.

Motivation. An intertype declaration is a static mechanism. It affects all instances of
the target class, throughout their entire life cycles. For some problems, this is exactly
right, but for others something more flexible would be preferable. In some cases only
a subset of all instances of a class needs the extra state and behaviour, or they need it
only in a specific phase of their life cycles. Sometimes the same instance simultane-
ously needs multiple instances of the extra state and behaviour. Sometimes the appli-
cation only knows at run time which instances need the extra state and behaviour.
Intertype declarations do not provide the necessary flexibility in these cases.

An intertype declaration is itself a kind of mapping, usually from a class to a field
or method. However, we cannot control the moments when it applies, when it ceases
to apply, and the precise set of objects to which it applies. Whenever this kind of
flexibility is required and the existing solution relies on introductions, use replace
intertype field with aspect map to replace the introductions with a suitable mapping.

This refactoring is also useful in a different situation. Sometimes we have several
aspects performing similar actions on similar data, and these include intertype declara-
tions. Such duplication should be removed by pulling the common parts to a superas-
pect. Here arises another problem. Target objects have separate instances of the addi-
tional state for each subaspect, but if the code is pulled up to the superaspect, there
will be a single instance of the introduced state common to all subaspects. A similar
problem would arise if we tried to replace an instance field with a static field. Such
pulls will almost certainly not be behaviour-preserving. In most cases, an intertype
declaration cannot be pulled up to a superaspect as is. The pulls usually require the
prior replacement of intertype state with aspect state.

As it happens, the kind of replacements that solve the first problem can solve the
second problem as well. Unlike with intertype declarations, there is a separate instance
of the state declared in the superaspect in each active subaspect. In most cases, solving

M.P. Monteiro and J.M. Fernandes 232

the problem merely entails selecting a suitable structure to replace the intertype fields,
and update the associated logic accordingly.

To ease the replacement of the original intertype state with the new mapping struc-
ture, you should first isolate it behind a small layer within the aspect, to protect the
rest of the aspect code from being exposed to it. In the simplest case, all that has to be
done is to ensure that the aspect is provided with accessor methods encapsulating the
intertype fields. Only those methods will need to be changed when the structure is
replaced. In the case of preparing intertype declarations to be pulled up, replace
intertype field with aspect map must be applied to each of subaspects in turn. Next,
use pull up field ([10], p. 320) and pull up method ([10], p. 322) to pull the state and
its associated logic to the common superaspect.

Preconditions. Ensure that the fields in the various aspects do indeed provide equiva-
lent interfaces and functionality.

Mechanics.

 Use encapsulate field ([10], p. 206) on the introduced field. Unlike traditional
accessor methods, create aspect methods, receiving the target object as argu-
ment.

 Add to the aspect a mapping structure capable of supporting the equivalent
mapping functionality. Add accessors similar to the ones created in the previ-
ous step, retrieving the introduced fields from the mapping structure. Ideally,
these map-based accessors should have the same signatures and names as those
created in the previous step. Add any additional management methods (i.e., for
insertion, removal, etc.) that may also be required.

 If the aspect has intertype methods using the intertype field, use replace inter-
type method with aspect method to create aspect versions of those methods,
based on the new mapping structure.

 Compile and test.
 Replace each call to the accessors created in the first step with the map-based

accessors. Compile and test when all replacements are done.
 Remove the accessor methods created in the first step. Compile and test.
 Remove the intertype field and related code. Compile and test.

Example: Replacing an Intertype Field with an Aspect Map. The following exam-
ple presents fragments of an aspect implementing an instance of the Mediator pattern
([11], p. 273), adapted from a Java implementation by Cooper [5]. In this example,
there is a mediator object (of type Mediator) acting as the hub of communication be-
tween various colleagues. The colleagues are instances of ClearButton and Move
Button, both subclasses of javax.swing.JButton, and KidList, which is a subclass of
javax.swing.JScrollPane, implementing a listener interface from the javax.swing.event
API. This example declares the Colleague role as a marker interface and assigns it to
the three colleague participant types. The aspect indirectly introduces in each col-
league a reference to the mediator, by way of the marker interface.

This implementation is unsuitable because it introduces the additional state and be-
haviour to all instances of the participant classes, independently of whether all of them

Towards a Catalogue of Refactorings and Code Smells for AspectJ 233

need it or not. By replacing this implementation with one based on a map, we elimi-
nate this inflexibility.

public aspect Mediating ...
 private interface Colleague {}
 private Mediator Colleague.mediator;

 declare parents:
 (ClearButton || MoveButton || KidList) implements Colleague;

 pointcut clearButtonExecute(ClearButton clearButton): ...
 after(ClearButton clearButton):clearButtonExecute(clearButton){
 clearButton.mediator.clear();
 }

 pointcut moveButtonExecute(MoveButton moveButton): ...
 after(MoveButton moveButton): moveButtonExecute(moveButton) {
 moveButton.mediator.move();
 }

 pointcut kidListChanged(KidList kidList): ...
 after(KidList kidList) returning: kidListChanged(kidList) {
 kidList.mediator.select();
 }

As a first step, we perform a refactoring similar to encapsulate field ([10], p. 206)
to produce a temporary etter method for the intertype field. The same etter can be
used in all different target types. It cannot be given exactly the same name as the map-
based etter, so we add a zero to avoid compiler errors.

public aspect Mediating ...
 private Mediator getMediator0(Colleague colleague) {
 return colleague.mediator;
 }
 pointcut ...
 after(ClearButton clearButton):clearButtonExecute(clearButton) {
 getMediator0(clearButton).clear();
 }
 pointcut ...
 after(MoveButton moveButton): moveButtonExecute(moveButton) {
 getMediator0(moveButton).move();
 }
 pointcut ...
 after(KidList kidList) returning: kidListChanged(kidList) {
 getMediator0(kidList).select();
 }

Now that all accesses to the intertype field are done through this temporary etter,
the intertype nature of the mediator field is effectively encapsulated. Next, we add a
suitable data structure to map the target objects to the mediator field. A hash table is a
good choice for these cases. The introduced field was private to the aspect, so the
etters are private as well. The access mode of the map-based setter can be more prob-

lematic. Note that the map-based setter is responsible for associating the target object
with the mediator field, using the newly added mapping structure. It does not

s s

s

s

s

M.P. Monteiro and J.M. Fernandes 234

have a correspondent statement in the original version of the code, but we must find
an appropriate point of the program to place it. The access mode of the map-based
setter depends on where the field is used in the system: private if it is used only within
the aspect, nonprivate otherwise. In this example, we assume a public access.

import java.util.WeakHashMap;

public aspect Mediating ...
 WeakHashMap colleague2mediatorMap = new WeakHashMap();

 private Mediator getMediator(Colleague colleague) {
 return (Mediator)colleague2mediatorMap.get(colleague);
 }
 public void setMediator(Colleague colleague, Mediator mediator) {
 colleague2mediatorMap.put(colleague, mediator);
 }
 private Mediator getMediator0(Colleague colleague) {
 return colleague.mediator;
 }

We must now decide on the places where to put the calls to the map-based setters.
The places where the objects containing the field are created could be used as a basis,
though in some cases it may be preferable to place the calls elsewhere. After all, that
is precisely one of the advantages of replacing a static mapping with a dynamic one:
we have more choices. Outside the aspect, the calls to the final setter should be some-
thing like this:

 Mediating.aspectOf().setMediator(clearButton, mediator);

Inside advice within the aspect, the same call can be expressed in a simpler way:

 setMediator(clearButton, mediator);

We insert the calls to the map-based etter and make the calls to the temporary et-
ter refer to the map-based etter. After compiling and testing again, we can delete the
original declaration and the temporary etter. Now the aspect’s code looks like this:

public aspect Mediating ...
 private Mediator Colleague.mediator;
 declare parents: (ClearButton || MoveButton || KidList)
 implements Colleague;

 WeakHashMap colleague2mediatorMap = new WeakHashMap();

 private Mediator getMediator(Colleague colleague) {
 return (Mediator)colleague2mediatorMap.get(colleague);
 }
 public void setMediator(Colleague colleague, Mediator mediator) {
 colleague2mediatorMap.put(colleague, mediator);
 }

 private Mediator getMediator0(Colleague colleague) {
 return colleague.mediator;

s s
s

s

Towards a Catalogue of Refactorings and Code Smells for AspectJ 235

 }
 pointcut clearButtonExecute(ClearButton clearButton): ...
 after(ClearButton clearButton): clearButtonExecute(clearButton) {
 getMediator(clearButton).clear();
 }
 pointcut moveButtonExecute(MoveButton moveButton): ...
 after(MoveButton moveButton): moveButtonExecute(moveButton) {
 getMediator(moveButton).move();
 }
 pointcut kidListChanged(KidList kidList): ...
 after(KidList kidList) returning: kidListChanged(kidList) {
 getMediator(kidList).select();
 }

Example: Making an Implementation of Observer Amenable for the Extraction
of a Superaspect. This second example is an implementation of Observer ([11],
p. 293). This implementation was extracted into an aspect from the example by Coo-
per [5], using extract feature into aspect. This example is a bit more complex than the
previous one, because it includes intertype methods that use the intertype field. These
intertype methods must be replaced using replace intertype method with aspect
method. We assume the scenario in which the system has other, similar implementa-
tions of the pattern and we would like to factor out the common elements by pulling
them up to a superaspect. These implementations rely on the introduction of a
java.util.Vector field to the subject participant, which is among the elements we would
like to pull up, along with its associated logic.

The present implementation does not lend itself to be pulled up to the superaspect,
for the same reasons as in the previous example: It was designed assuming there
would be only one instance of the pattern for each subject. That is, the vector cannot
support multiple observing relationships for the same object. To solve this problem,
we will replace the intertype vector with a more suitable hash table owned by the
aspect, which will manage the mappings between subjects and the list (i.e., a
java.util.Vector object) of its observers. We will use replace intertype method with
aspect method to replace the original logic using the vector with aspect logic using the
hash table.

Cooper’s example includes a Watch2LSubject object as subject and two types of ob-
servers, which are instances of ListFrameObserver and ColorFrameObserver (both sub-
classes of javax.swing.JFrame). The Watch2LSubject object includes three radio but-
tons, one for each of the colours red, green and blue. Whenever a different radio button
is selected, the ColorFrameObserver instances change their background colour accord-
ingly, and the ListFrameObserver adds the name of the selected colour to its list.

The refactored aspect uses two inner interfaces (they were inlined to within the Ob-
serving aspect during the refactoring process) to represent the roles of subject and
observer. It introduces the java.util.Vector field to the objects playing the role of sub-
ject, which holds the subject’s registered observers. The aspect also introduces two
methods to the subjects: addObserver(Observer), which is used to register a new ob-
server for the subject, and notifyObservers(JRadioButton), through which subjects
notify all their registered observers of a change in the selected colour. That notifica-
tion is carried out through the sendNotify method, which is declared in the Observer

M.P. Monteiro and J.M. Fernandes 236

inner interface. The sendNotify method receives a string representing the new colour
as parameter. The aspect also introduces the implementation of sendNotify for each
concrete observer type.

public aspect Observing ...
 private interface Subject {}
 interface Observer {
 /** notify the Observers that a change has taken place */
 public void sendNotify(String s);
 }
 declare parents: Watch2LSubject implements Subject;
 declare parents: (ListFrameObserver || ColorFrameObserver)
 implements Observer;

 private Vector Subject._observingFramesList = new Vector();

 public void Subject.addObserver(Observer obs) {
 // adds observer to list in Vector
 _observingFramesList.addElement(obs);
 }
 /* sends text of selected button to all observers */
 private void Subject.notifyObservers(JRadioButton rad) {
 String sColor = rad.getText();
 for (int i = 0; i < _observingFramesList.size(); i++) {
 ((Observer) (_observingFramesList.elementAt(i))).
 sendNotify(sColor);
 }
 }

 public void ListFrameObserver.sendNotify(String s) {
 _listData.addElement(s);
 }
 public void ColorFrameObserver.sendNotify(String str) {
 changeColor(str);
 }

The aspect also includes a pointcut and corresponding advice to trigger the ade-
quate behaviour when the subject changes the selected colour:

pointcut watchStateChange(Watch2LSubject watch,ItemEvent event) :...
after(Watch2LSubject watch, ItemEvent event):
 watchStateChange(watch, event) {
 if(event.getStateChange() == ItemEvent.SELECTED)
 watch.notifyObservers((JRadioButton) event.getSource());
}

The mechanics prescribe the use of Encapsulate Field ([10], p. 206) on the existing
field. In this particular case, we must instead create a new field as the mapping struc-
ture (we will create the accessor methods for the structure as soon as there is a need to
do so).

import java.util.WeakHashMap;
...
public aspect Observing ...
 //...
 WeakHashMap _subject2Observers = new WeakHashMap();

Towards a Catalogue of Refactorings and Code Smells for AspectJ 237

Next, we use replace intertype method with aspect method to replace the addOb-
server and notifyObservers intertype methods with aspect versions using the new
mapping structure. See the example section of replace intertype method with aspect
method (Sect. 4.5) for more details of this step.

The new implementation is now in place and working. There was no need to add
accessors to the mapping structure, as it is already encapsulated by addObserver and
notifyObservers. These two aspect methods comprise a small layer hiding the struc-
ture. We can now delete the old implementation, after which the aspect looks like this:

public aspect Observing ...
 private interface Subject {}
 interface Observer {
 /** notify the Observers that a change has taken place */
 public void sendNotify(String s);
 }
 declare parents: Watch2LSubject implements Subject;
 declare parents: (ListFrameObserver || ColorFrameObserver)
 implements Observer;

 private Vector Subject._observingFramesList = new Vector();

 public void Subject.addObserver(Observer obs) {
 // adds observer to list in Vector
 _observingFramesList.addElement(obs);
 }
 /* sends text of selected button to all observers */
 private void Subject.notifyObservers(JRadioButton rad) {
 String sColor = rad.getText();
 for (int i = 0; i < _observingFramesList.size(); i++) {
 ((Observer) (_observingFramesList.elementAt(i))).
 sendNotify(sColor);
 }
 }

 WeakHashMap _subject2Observers = new WeakHashMap();

 public void addObserver(Subject subject, Observer observer) {
 Vector observers;
 Object obj = _subject2Observers.get(subject);
 if(obj == null)
 observers = new Vector();
 else observers = (Vector) obj;
 observers.add(observer);
 _subject2Observers.put(subject, observers);
 }
 public void
 notifyObservers(Subject subject, JRadioButton radioButton) {
 String sColor = radioButton.getText();
 Vector observersList =
 (Vector)_subject2Observers.get(subject);
 for (int i = 0; i < observersList.size(); i++) {
 ((Observer) (observesList.elementAt(i))).
 sendNotify(sColor);
 }
 }

M.P. Monteiro and J.M. Fernandes 238

 public void ListFrameObserver.sendNotify(String s) {
 _listData.addElement(s);
 }
 /* Observer is notified of change here */
 public void ColorFrameObserver.sendNotify(String str) {
 changeColor(str);
 }

 pointcut watchStateChange(Watch2LSubject watch,ItemEvent event):
 ...
 after(Watch2LSubject watch, ItemEvent event):
 watchStateChange(watch, event) {
 if(event.getStateChange() == ItemEvent.SELECTED)
 notifyObservers(watch, (JRadioButton) event.getSource());
 }
}

4.5 Replace Intertype Method with Aspect Method

Typical situation. An aspect introduces additional methods to a class or interface,
when a more dynamic and flexible composition would be desirable.

Recommended action. Replace the intertype method with an aspect method that gets
the target object as an extra parameter.

Motivation. This refactoring was designed to be a follow-up to replace intertype field
with aspect map. That refactoring deals with intertype fields and the present refactor-
ing deals with the (intertype) methods that use those fields.

The present refactoring is made possible by the fact that a method introduced to a
class can always be replaced by a similar aspect method receiving an instance of the
target class as an additional argument, which will use the target object as a key.

public class Capsule {
 private int _value;
 public Capsule(int value) {
 _value = value;
 }
public aspect Additional {
 public void Capsule.doSomethingMore() {
 System.out.println("Doing something more with " + this);
 }
 Capsule capsule = new Capsule(7);
 capsule.doSomethingMore();

public class Capsule {
 private int _value;
 public Capsule(int value) {
 _value = value;
 }
public aspect Additional {
 public void doSomethingMore(Capsule capsule) {
 System.out.println("Doing something more with " + capsule);
 }
 Capsule capsule = new Capsule(7);
 Additional.aspectOf().doSomethingMore(capsule);

Towards a Catalogue of Refactorings and Code Smells for AspectJ 239

Replacements of this kind should not be made in the general case, and that is why
we prescribe using this refactoring only in the context of replace intertype field with
aspect map. This refactoring is equally useful to deal with both situations covered by
the other refactoring: (1) replacing intertype declarations with a dynamic mechanism
and (2) preparing intertype state duplicated in various aspects to be factored out to a
common superaspect. This refactoring transforms existing intertype methods into
aspect methods based on the map that was created when applying replace intertype
field with aspect map.

Mechanics.

 Create in the aspect a copy of the intertype method, with the same name and
signature. Insert, in the beginning of the aspect method’s parameter list, an ad-
ditional parameter whose type is the original target of the intertype declaration.

 Replace each reference to “this” with the new parameter. Change all self-calls
and references to fields to refer to the new first parameter.

 Compile and test.
 Change the body of the intertype method so that it calls the aspect method, if

there are no further dependences preventing you.
 Add a “declare warning” exposing all calls to the intertype method:

declare warning:
 (call(<type> <host class>.someMethod(<arguments>)):
 "method <host class>.someMethod() is called here.";

 Following the warnings, replace each call to the intertype method with a call to
the aspect method. Compile and test after each change.

 When there are no more warnings, delete the “declare warning” and the inter-
type method (when covering the mechanics of several refactorings from [10],
Fowler considers the situation when the existing method is part of the interface
and cannot be changed; Fowler recommends that in such cases the old method
be left in place and marked as deprecated).

 Compile and test.

Example. This example is part of the second example for replace intertype field with
aspect map. In it, an aspect introduces the following methods to the Subject marker
interface:

 public void Subject.addObserver(Observer obs) {
 _observingFramesList.addElement(obs);
 }
 private void Subject.notifyObservers(JRadioButton rad) {
 String sColor = rad.getText();
 for (int i = 0; i < _observingFramesList.size(); i++) {
 ((Observer) (_observingFramesList.elementAt(i))).
 sendNotify(sColor);
 }
 }

M.P. Monteiro and J.M. Fernandes 240

As an example of client code, the following subject and observers are created and
registered, through calls to the Subject.addObserver method:

 Watch2LSubject subject = new Watch2LSubject();
 //Observing.aspectOf().setSubject(subject);

 ColorFrameObserver cframeObs1 = new ColorFrameObserver();
 ColorFrameObserver cframeObs2 = new ColorFrameObserver();
 ColorFrameObserver cframeObs3 = new ColorFrameObserver();
 ListFrameObserver lframeObs = new ListFrameObserver();

 subject.addObserver(cframeObs1);
 subject.addObserver(cframeObs2);
 subject.addObserver(cframeObs3);
 subject.addObserver(lframeObs);

The aspect itself also includes an advice calling the other method, Sub-
ject.notifyObservers:

 after(Watch2LSubject watch, ItemEvent event):
 watchStateChange(watch, event) {
 if(event.getStateChange() == ItemEvent.SELECTED)
 watch.notifyObservers((JRadioButton) event.getSource());
 }

This functionality should be replaced by aspect methods based on a hash table
owned by the aspect: the aspect field _subject2Observers, which uses subject objects
as keys, and vectors of observers as values:

 WeakHashMap _subject2Observers = new WeakHashMap();

As a first step, we create the following two aspect methods, with the same names:

 public void addObserver(Subject subject, Observer observer) {
 Vector observers;
 Object obj = _subject2Observers.get(subject);
 if(obj == null) observers = new Vector();
 else observers = (Vector) obj;
 observers.add(observer);
 _subject2Observers.put(subject, observers);
 }
 public void
 notifyObservers(Subject subject, JRadioButton radioButton) {
 String sColor = radioButton.getText();
 Vector observersList =
 (Vector)_subject2Observers.get(subject);
 for (int i = 0; i < observersList.size(); i++) {
 ((Observer) (observersList.elementAt(i))).
 sendNotify(sColor);
 }
 }

Towards a Catalogue of Refactorings and Code Smells for AspectJ 241

We cannot replace the body of the intertype methods with calls to the new ones at
this point. We must first replace the calls to the addObserver method, which register
the observers to their subjects. Otherwise, the tests would fail. We therefore perform
the next step as prescribed, adding “declare warning” clauses that will expose all calls
to these methods:

declare warning: call(void Subject.addObserver(Observer)):
 "Method Subject.addObserver(Observer) is called here.";
declare warning: call(void Subject.notifyObservers(JRadioButton)):
 "Method Subject.notifyObservers(JRadioButton) is called here.";

We compile, resulting in a series of warnings locating the calls to the old methods.
After replacing each of them with calls to the aspect methods, we compile again. All
warnings disappeared, and we test. We remove the “declare warning” clauses. Now
the client code calling addObservers looks like this:

 Watch2LSubject watch2LFrame = new Watch2LSubject();

 ColorFrameObserver cframeObs1 = new ColorFrameObserver();
 ColorFrameObserver cframeObs2 = new ColorFrameObserver();
 ColorFrameObserver cframeObs3 = new ColorFrameObserver();
 ListFrameObserver lframeObs = new ListFrameObserver();

 subject.addObserver(cframeObs1);
 subject.addObserver(cframeObs2);
 subject.addObserver(cframeObs3);
 subject.addObserver(lframeObs);

 Observing.aspectOf().addObserver(watch2LFrame, cframeObs1);
 Observing.aspectOf().addObserver(watch2LFrame, cframeObs2);
 Observing.aspectOf().addObserver(watch2LFrame, cframeObs3);
 Observing.aspectOf().addObserver(watch2LFrame, lframeObs);

The call to notifyObservers now takes the form:

 after(Watch2LSubject watch, ItemEvent event):
 watchStateChange(watch, event) {
 if(event.getStateChange() == ItemEvent.SELECTED)
 notifyObservers(watch, (JRadioButton) event.getSource());
 }

4.6 Tidy Up Internal Aspect Structure

Typical situation. The internal structure of an aspect resulting from the extraction of
a CCC is suboptimal, being based on static compositions and betraying duplication.

Recommended action. Tidy up the internal structure of the aspect by removing dupli-
cated intertype declarations and dependencies on case-specific target types.

Motivation. This refactoring serves as the general framework indicating when to use
the remaining refactorings from the same group,3 and in what situations.

3 Each refactoring from the group is not necessarily referred to directly.

M.P. Monteiro and J.M. Fernandes 242

AOP adds a new type of situation in which code duplication can arise (i.e., is ex-
posed). Refactoring an object-oriented (OO) code base to aspects entails extracting
concerns and features whose very crosscutting nature gives rise to duplication that is
hard or impossible to avoid when using traditional OO mechanisms. A typical situa-
tion is a system containing repeated implementations of the same functionality scat-
tered in multiple classes. Simply extracting those code snippets into an aspect does not
guarantee, by itself, removal of this duplication. It merely moves the duplicated code
into aspects. In some cases, the duplication becomes obvious only when it is placed in
a single module. Therefore, extracting the crosscutting code is only the first part of the
job. Next, duplication within the aspect must be removed and its internal structure
improved.

Intertype declarations make it very easy to move members from classes to aspects
without impact on client code, and aspects resulting from extractions are likely to use
them. However, in some cases, we would like the aspect to introduce the additional
state and behaviour on an object-by-object basis, and intertype declarations are not
flexible enough to achieve that. This entails the replacement of these introductions
with different logic.

Mechanics.

 If the code assigns roles to participant classes, see if the aspect code uses
marker interfaces to represent those roles instead of referring directly to case-
specific classes. If it is not the case, use generalise target type with marker
interface.

 If parts of the code make explicit references to specific classes that cannot be
generalised, separate the specific parts from the generally applicable ones by
using extract method ([10], p. 110). You should do this if the aspect contains
enough generally applicable logic to be worth extracting to a reusable abstract
superaspect.

 Inspect the intertype declarations looking for cases in which the extra state and
behaviour is needed only at specific times, or is needed by only a subset of the
instances of the target classes, or may be needed in multiple instances simulta-
neously. In such cases, consider using replace intertype field with aspect map
to deal with the introduced state, and replace intertype method with aspect
method to deal with the behaviour based on that state.

Example. The refactoring process described in [29] includes a thorough example of
this composite refactoring.

5 Code Smells

Code smells are the way proposed by Beck and Fowler (Chap. 3 of [10]) to diagnose
problems in existing code that could be removed through refactorings. Code smells do
not aim to provide precise criteria for when refactorings are overdue. Instead, code
smells suggest symptoms that may be indicative of something wrong in the code. Pro-
grammers are required to develop their own sense of style and to decide when a symp-

Towards a Catalogue of Refactorings and Code Smells for AspectJ 243

tom indeed warrants a change. Decisions also depend on the specific aims of the pro-
grammer and the specific state and structure of the code on which she is working.

5.1 OO Smells in Light of AOP

We analysed the code smells presented in [10, 21, 37] and propose that some be used
as symptoms of the presence of CCCs. This particularly applies to divergent change
([10], p. 79) and shotgun surgery ([10], p. 80). According to Fowler et al., “Shotgun
surgery is one change that alters many classes” (i.e., a symptom of code scattering)
and “Divergent change is one class that suffers many kinds of changes” (i.e., a symp-
tom of code tangling). Wake [37] mentions configuration information, logging and
persistence as possible causes to the shotgun surgery smell, all of which can be
counted among the favourite examples for the use of AOP.

Kerievsky [21] proposes a variant of shotgun surgery that he calls solution sprawl.
Kerievsky states ([21], p. 43) that “you become aware of this smell when adding or
updating a system feature causes you to make changes to many different pieces of
code”. The difference between the two smells is the way they are sensed – “we be-
come aware of solution sprawl by observing it, while we detect shogun surgery by
doing it”. Both variants are equally promising as indicators of CCCs.

We think it is useful to extend the above definitions to cover methods as well as
classes, to account for class-wide aspects that cut across the methods of a single class.
We propose the extract feature into aspect refactoring (Table 1 and Sect. 3.2) as a
general framework for the modularisation of concerns detected through these smells.

5.2 The Double Personality Code Smell

The double personality smell can be found in classes that play multiple roles. Ideally,
each class should play a single role, meaning that it contains only one, coherent set of
responsibilities. This often is not possible in OO frameworks and applications.

Examples of double personality can be found in the OO implementations of design
patterns [11] that include what Hannemann and Kiczales call superimposed roles –
roles assigned by the pattern to classes that have functionality and responsibility out-
side the pattern [16]. Examples are chain of responsibility ([11], p. 223), which super-
imposes the Handler role to some of the participant classes, and observer ([11],
p. 293), which superimposes the Subject and Observer roles.

One symptom that can help to detect double personality in Java source code is im-
plementation of interfaces. Interfaces are a popular way to model roles in Java – e.g.,
the motivation for extract interface ([10], p. 341). When a class implements an inter-
face modelling a role that does not relate to the class’s primary concern, the class
smells of double personality.

When double personality is detected in one class, we suggest that developers ana-
lyse the code base to see if it applies to just that class. Again, looking to the interfaces
may help: if multiple classes implement the interface, this means the secondary con-
cern is crosscutting (it cuts across multiple classes).

If a single class is affected, or if the code of the secondary role is restricted to the
implementation of the interface, the solution is to extract the secondary role to a mixin

M.P. Monteiro and J.M. Fernandes 244

[2]. There are several ways to do this. Laddad’s extract interface implementation [25]
suggests placing the secondary concern inside an inner aspect enclosed within the
interface modelling the superimposed role. If the programmer strives for total oblivi-
ousness [9] of the secondary role, she can use replace implements with declare
parents (Table 1). As an alternative to extract interface implementation [25], we pro-
pose split abstract class into aspect and interface (Table 1), which completely encap-
sulates the secondary concern into an aspect, including the “implements” clause.
When the related code is more complex than a simple implementation of an interface,
we suggest using extract feature into aspect (Table 1) to move all the related code to
an aspect (see also Sect. 3.2).

5.3 Abstract Classes as a Code Smell

The AspectJ composition mechanisms that enable the emulation of mixins [2] also
enable the separation of definitions (i.e., implementation code) from declarations in
abstract classes, opening the way to turn the classes into interfaces. Hannemann and
Kiczales take this approach in implementing five of the GoF design patterns in As-
pectJ [16]. This separation has the advantage that classes become free to inherit from
some other class and interfaces can still be provided with a default implementation.
This suggests that abstract classes should be considered a code smell in some situa-
tions – e.g., whenever we would like a class to inherit from some other class, but the
class already inherits from an abstract class that contains implementation elements.
Two of the refactorings presented here (Table 1) remove that smell. Split abstract
class into aspect and interface can be used to extract the concrete members of an
abstract class into an aspect, and resulting pure abstract class can be turned into an
interface using change abstract class to interface.

5.4 The Aspect Laziness Code Smell

The aspect laziness smell applies to aspects that do not carry the full weight of their
responsibilities and instead pass the burden to classes, in the form of intertype declara-
tions. We detect this smell in aspects that resort to the mechanism of intertype declara-
tions to add state and behaviour to a class when something more dynamic and/or
flexible would be desirable. Intertype declarations are static mechanisms that apply to
all instances of the target class, throughout their entire life cycle. Its use should be
considered a smell in some situations. We detect aspect laziness in uses of intertype
declarations for solving problems whose requirements have one or several of the fol-
lowing characteristics:

 The additional state and/or behaviour are needed by only a subset of the in-
stances of the target classes.

 The additional state and/or behaviour are needed only during certain specific
phases in the execution of the program.

 Instances of the target classes (may) require multiple instances of that state and
behaviour simultaneously.

Towards a Catalogue of Refactorings and Code Smells for AspectJ 245

In such cases, intertype declarations are not dynamic or flexible enough. It is pref-
erable for the aspect itself to hold the additional state and behaviour and program-
matically associate the additional state to the individual target objects. We propose
replace intertype field with aspect map and replace intertype method with aspect
method (Table 2) to replace the existing design with a mapping logic that provides the
same functionality more flexibly.

6 Illustrative Example

In this section, we present a code example to illustrate some of the smells and the
results of many of the refactorings. The example is based on an implementation of the
Observer pattern ([11], p. 293) by Eckel [8]. In [29], we describe in detail a refactor-
ing process that starts with Eckel’s implementation and ends with the AspectJ imple-
mentation proposed by Hannemann and Kiczales [16]. The process uses 17 of the
refactorings presented in this paper, shown in Table 4.

Table 4. Refactorings used in the illustrating example

Encapsulate implements
with declare parents

Move field
from class to intertype

Extend marker interface with signature Move method
from class to intertype

Extract feature into aspect Push down advice
Extract inner class to stand-alone Pull up marker interface
Extract fragment into advice Pull up pointcut
Extract superaspect Replace intertype field

with aspect map
Generalize target type
with marker interface

Replace intertype method
with aspect method

Inline class within aspect Tidy up internal aspect structure
Inline interface within aspect

The intent of Observer is to “define a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified and updated auto-
matically” [11]. The example includes two observers, one of which is class Bee,
shown in Fig. 1 with the primary concern shaded (the other observer class, Humming-
bird, is similar). Figure 2 shows the class Flower, which plays the role of Subject
(shaded code relates to the primary concern). Each of Flower’s two operations, open
and close the petals, originates one observing relationship.

Eckel’s implementation uses the Observer/Observable protocol from Java’s stan-
dard java.util API, which requires Subject participant to inherit from java.util.Ob-
servable. Eckel’s design manages to partially isolate the two observing relationships

M.P. Monteiro and J.M. Fernandes 246

01 public class Bee {
02 private String name;
03 private OpenObserver openObsrv = new OpenObserver();
04 private CloseObserver closeObsrv = new CloseObserver();
05
06 public Bee(String nm) { name = nm; }
07 private class OpenObserver implements Observer {
08 public void update(Observable ob, Object a) {
09 System.out.println("Bee "+name +"'s breakfast time!");
10 }
11 }
12 private class CloseObserver implements Observer{
13 public void update(Observable ob, Object a) {
14 System.out.println("Bee " + name + "'s bed time!");
15 }
16 }
17 public Observer openObserver() {
18 return openObsrv;
19 }
20 public Observer closeObserver() {
21 return closeObsrv;
22 }
23 }

Fig. 1. Bee class as observer in the implementation of the observer pattern from [8]

by defining, for each relationship, an inner class inside each participant. Thus, Flower
defines two inner classes (Fig. 2, lines 25–37 and 38–50, respectively) that inherit
from java.util.Observable. The classes within Flower use two inherited methods:
(1) setChanged (used in lines 29 and 42), which marks a subject as having been
changed, and (2) notifyObservers, which notifies all its observers if subject was
changed. Though notifyObservers is overridden (lines 27–33 and 40–46), its function-
ality is reused (in lines 30 and 43).

Each observer likewise encloses one inner class implementing java.util.Observer
for each observing relationship (Fig. 1, lines 7–11 and 12–16, respectively). As pre-
scribed by the interface, each inner class defines an update method (lines 8–10 and
13–15). All participants in the pattern betray strong doses of double personality.

The example shows that OO does not cope well with concerns affecting multiple
objects and classes, forcing programmers to produce decentralised designs for CCCs,
when they would rather centralise the concern’s implementation within some module.
Such designs lead to duplicated code in every class playing some role in the concern.

OO programmers trying to cope with code scattering and tangling often resort to in-
terfaces and/or inner classes to ameliorate the effects. These constructs improve both
the interface and internal structure of classes: interface types help to better organise
the interactions of a class with other classes, and inner classes help to better structure
the internals of a class, namely to separate the code related to the class’s primary
concern from unrelated code. We believe the limitations in the compositions achiev-
able with OO provide one of the motivations to use inner classes and interfaces. Inde-
pendent authors reached the same conclusion regarding interfaces [35].

Towards a Catalogue of Refactorings and Code Smells for AspectJ 247

01 public class Flower {
02 private boolean isOpen;
03 private OpenNotifier oNotify = new OpenNotifier();
04 private CloseNotifier cNotify = new CloseNotifier();
05
06 public Flower() { isOpen = false; }
07 public void open() { // Opens its petals
08 System.out.println("Flower open.");
09 isOpen = true;
10 oNotify.notifyObservers();
11 cNotify.open();
12 }
13 public void close() { // Closes its petals
14 System.out.println("Flower close.");
15 isOpen = false;
16 cNotify.notifyObservers();
17 oNotify.close();
18 }
19 public Observable opening() {
20 return oNotify;
21 }
22 public Observable closing() {
23 return cNotify;
24 }
25 private class OpenNotifier extends Observable {
26 private boolean alreadyOpen = false;
27 public void notifyObservers() {
28 if(isOpen && !alreadyOpen) {
29 setChanged();
30 super.notifyObservers();
31 alreadyOpen = true;
32 }
33 }
34 public void close() {
35 alreadyOpen = false;
36 }
37 }
38 private class CloseNotifier extends Observable {
39 private boolean alreadyClosed = false;
40 public void notifyObservers() {
41 if(!isOpen && !alreadyClosed) {
42 setChanged();
43 super.notifyObservers();
44 alreadyClosed = true;
45 }
46 }
47 public void open() {
48 alreadyClosed = false;
49 }
50 }
51 }

Fig. 2. Flower class as subject in the implementation of the observer pattern from [8]

Figure 3 shows the participants from Figs. 1 and 2, after each of the two observing
relationships was extracted to its own aspect, using the refactorings from Table 1.
During the extraction of both observing relationships [29] the isOpen field (Fig. 3, line
4) was encapsulated, yielding two new methods for the Flower class: isOpen

M.P. Monteiro and J.M. Fernandes 248

(lines 7–9) and setIsOpen (lines 10–12). The code for the reaction of the observers
when they are notified of open and close events was likewise extracted to methods
breakfastTime (lines 28–30) and bedtimeSleep (lines 31–33) respectively.

01 public class Flower {
02 private boolean _isOpen;
03
04 public Flower() {
05 _isOpen = false;
06 }
07 boolean isOpen() {
08 return _isOpen;
09 }
10 private void setIsOpen(boolean newValue) {
11 _isOpen = newValue;
12 }
13 public void open() { // Opens its petals
14 System.out.println("Flower open.");
15 setIsOpen(true);
16 }
17 public void close() { // Closes its petals
18 System.out.println("Flower close.");
19 setIsOpen(false);
20 }
21 }
22 public class Bee {
23 private String name;
24
25 public Bee(String nm) {
26 name = nm;
27 }
28 public void breakfastTime() {
29 System.out.println("Bee " + name + "'s breakfast time!");
30 }
31 public void bedtimeSleep() {
32 System.out.println("Bee " + name + "'s bed time!");
33 }
34 }

Fig. 3. Code of Flower and Bee after extracting the observing relationships to an aspect

Figure 4 shows part of the aspect related to observing the open operation. The other
aspect (not shown), related to the observation of close, is similar. We can see from
Figs. 3 and 4 that the code for implementing the Observer pattern is no longer spread
across the participant classes. However, the structure of the aspect resulting from the
extraction still hardly resembles the one presented in [16], as ideally would be the
case. The internal structure of the extracted aspect (Fig. 4) still reflects the original,
decentralised design. The aspect betrays duplicated code ([10], p. 76), as it introduces
identical fields (Fig. 4, lines 9 and 10–11) and methods (lines 16–18 and 19–21) to the
two observer participants. The duplication was always present, but now that the code
is modularised, it is clearly exposed. After modularisation, the original design is no
longer justified and the inner classes comprise a needlessly complicated structure. The

Towards a Catalogue of Refactorings and Code Smells for AspectJ 249

01 public aspect ObservingOpen {
02 static class OpenNotifier extends Observable {
03 //...
04 }
05 static class OpenObserver implements Observer {
06 //...
07 }
08 private OpenNotifier Flower.oNotify = new OpenNotifier(this);
09 private OpenObserver Bee.openObsrv = new OpenObserver(this);
10 private OpenObserver
11 Hummingbird.openObsrv = new OpenObserver(this);
12
13 public Observable Flower.opening() {
14 return oNotify;
15 }
16 public Observer Bee.openObserver() {
17 return openObsrv;
18 }
19 public Observer Hummingbird.openObserver() {
20 return openObsrv;
21 }
22 pointcut flowerOpen(Flower flower):
23 execution(void open()) && this(flower);
24 after(Flower flower) returning : flowerOpen(flower) {
25 flower.oNotify.notifyObservers();
26 }
27 pointcut flowerClose(Flower flower):
28 execution(void close()) && this(flower);
29 after(Flower flower): flowerClose(flower) {
30 flower.oNotify.close();
31 }
32 }

Fig. 4. Part of the extracted aspect ObservingOpen modularising observations of Flower’s open
operation

code also betrays aspect laziness. In this example, it is desirable to select the individ-
ual objects participating in the observing relationships and the moments when these
become effective, but the present structure does not enable this.

Hannemann and Kiczales mention four modularity properties [16] for their imple-
mentation of the Observer pattern: locality, reusability, composition transparency and
(un)pluggability. Just after the extraction, the aspect (Fig. 4) has only the first and last
of these properties. Figure 5 shows a refactored aspect whose structure is close to that
presented in [16].

The static nature of intertype declarations can lead to the aspect laziness smell. At
the very least, the extracted aspect will need a tidying up. In some cases, including the
present one, it requires a complete redesign. Intertype declarations are one of the rea-
sons why the structure of aspects resulting from extraction processes is often unsuit-
able. Intertype declarations are usually transparent to client code (to our knowledge,
only code using AspectJ’s “within” pointcut designator can be affected by extraction
refactorings based on intertype declarations) and therefore make it simple to move
members from classes to aspects. However, only the source code is modularised: the
intertype members still belong to their respective target classes at the binary and run-
time levels.

M.P. Monteiro and J.M. Fernandes 250

public aspect ObservingOpen {
 private interface Subject {}
 private interface Observer {}
 public abstract boolean Subject.isOpen();
 private boolean Subject.alreadyOpen = false;
 public abstract void Observer.breakfastTime();

 private WeakHashMap subject2ObserversMap = new WeakHashMap();
 private List getObservers(Subject subject) {
 List observers = (List)subject2ObserversMap.get(subject);
 if(observers == null) {
 observers = new ArrayList();
 subject2ObserversMap.put(subject, observers);
 }
 return observers;
 }
 public void addObserver(Subject subject, Observer observer){
 List observers = getObservers(subject);
 if(!observers.contains(observer))
 observers.add(observer);
 subject2ObserversMap.put(subject, observers);
 }
 public void removeObserver(Subject subject,Observer observer){
 getObservers(subject).remove(observer);
 }
 public void clearObservers(Subject subject) {
 getObservers(subject).clear();
 }
 private void notifyObservers(Subject subject) {
 if(subject.isOpen() && !subject.alreadyOpen) {
 subject.alreadyOpen = true;
 List observers = getObservers(subject);
 for(ListIterator it=observers.listIterator();
 it.hasNext();) {
 ((Observer)it.next()).breakfastTime();
 }
 }
 }
 pointcut flowerOpen(Subject subject):
 execution(void open()) && this(subject);
 after(Subject subject) returning : flowerOpen(subject) {
 notifyObservers(subject);
 }
 pointcut flowerClose(Subject subject):
 execution(void close()) && this(subject);
 after(Subject subject): flowerClose(subject) {
 subject.alreadyOpen = false;
 }
 declare parents: Flower implements Subject;
 declare parents: (Bee || Hummingbird) implements Observer;
}

Fig. 5. Aspect ObservingOpen after being tidied up

The transformations prescribed by tidy up internal aspect structure (Table 2 and
Sect. 3.3) can transform the ObservingOpen aspect from Fig. 4 to the one shown in
Fig. 5. In this example, we use the same implementation as in the reusable aspect for
the Observer pattern [16], based on a weak hash map. The abstract declarations of
methods isOpen and breakfastTime (Fig. 5) result from using extend marker interface

Towards a Catalogue of Refactorings and Code Smells for AspectJ 251

with signature, which was needed to separate generically applicable code from case-
specific code.

7 Related Work

Deursen et al. [6] give a brief overview of the state of art in the area of aspect mining
and refactoring. Though their main concern seems to be tools for the automatic detec-
tion of aspects, they also mention several open questions about refactoring to aspects,
including “how can existing code smells be used to identify candidate aspects?” and
“how can the introduction of aspects be described in terms of a catalogue of new
refactorings?” In this paper, we contribute to answering both questions.

Iwamoto and Zhao announced in [18] their intention to build a catalogue of AOP
refactorings. They present a catalogue of 24 refactorings, but the information provided
about them is limited to the names of the refactorings. The refactorings we describe in
this paper and in [27] include a description of the situations where the refactoring
applies, mention of preconditions, detailed mechanics and code examples.

Several authors [15, 18, 24, 36, 38] call into attention the fragile pointcut problem
(not always naming it this way), in some cases illustrating it with some code examples.
The authors conclude that existing OO refactorings [10] cannot be applied to code
bases with aspects. In [25], Laddad provides a few guidelines to ameliorate the prob-
lem, including suggestions on how to design and evolve pointcuts. Laddad prescribes
several guidelines to ensure AOP refactorings for concern extraction are applied in a
safe way. These involve the creation of a first version of the pointcut, based on a case-
by-case enumeration of the interesting joinpoints, followed by its replacement with a
semantically more meaningful pointcut, based on wildcards. Laddad also proposes a
mechanism based on AspectJ’s declare error mechanism to verify whether two differ-
ent pointcut expressions capture exactly the same set of joinpoints. In addition,
Laddad recommends that aspects start being developed with a restricted scope, often
affecting the methods of a single class, in order to make it simpler to test their impact
on the base code. Only afterwards should the scope of the aspect widen, when its
functionality is already tested with the restricted case. Considering that at present there
is no adequate tool support for AOP refactorings, and that aspects can potentially
impact a large number of joinpoints across an entire system, procedures such as these
are essential to any refactoring process targeting nontrivial systems.

Hanenberg et al. [15] propose aspect-aware refactorings – refactorings that take
into account the presence of aspects and preserve behaviour by updating any pointcuts
that may be affected by the transformation – and propose a set of enabling conditions
to preserve the observable behaviour. By the author’s admission, these conditions
must be automatically verified by an aspect-aware tool, as the manual verification is
an exhausting task, even in small systems. Hanenberg et al. announce a tool providing
a subset of the functionality they deem desirable.

In [14] and [34] Griswold, Sullivan and other authors propose a novel approach
based on information-hiding interfaces for CCCs. Their approach entails hiding the
implementation details (i.e., joinpoints) of code base behind crosscut programming
interfaces (XPIs) [14] against which aspects are written. The XPIs prevent direct

M.P. Monteiro and J.M. Fernandes 252

dependencies of aspects on the code bases they advise and enforce design rules [34]
that constrain the base code developers to honour the contract expressed through
XPIs. Thus, this approach promises to decouple base code from aspect code in a more
symmetric way and to solve the fragile pointcut problem. In [34], the authors discuss
a comparative study they undertook of three implementations of a real software sys-
tem, developed independently of the analysis. The authors refactored the system to
both a version that conforms to the rules they propose and the more traditional
nonsymmetric AOP approach that relies on obliviousness. The study suggests that the
new approach brings benefits relative to the other two. To our knowledge, [14] is the
first work attempting to provide clear rules on how to design base code for ease of
advising. Though it is not expressed in terms of refactorings and code smells, the
approach proposed in [14] and [34] contributes to developing a new style appropriate
for AOP.

Hanenberg et al. [15] propose three AOP refactorings – extract advice, extract in-
troduction and separate pointcut. Their extract advice corresponds to our extract
fragment into advice (Table 1). Our collection of refactorings goes deeper in explor-
ing the refactoring space; in this paper and in [27] we provide more detail and tackle
issues such as the tidying up of the internal structure of aspects resulting from extrac-
tion processes. We do not subscribe the recommendation, in their extract advice refac-
toring, to use “around” advice in the general case. We think that in cases where either
“before” or “after” advice can be used, these should be used in preference to
“around”, because it makes the scope of the advice easier to perceive at a first look at
the code. In addition, the “around” advice is also more powerful than is often needed.
In the case of code using it without a strict need for it, we envision refactorings such
as change around advice to before and change around advice to after returning.
Their proposed extract introduction refactoring corresponds to our move field from
class to intertype and move method from class to intertype (Table 1) refactorings,
which provide more detail. Separate pointcut relates to evolution of pointcuts and has
no correspondence in our collection. This refactoring argues that, just as it is benefi-
cial to organise our systems using small methods with meaningful names, we should
do the same with pointcuts. Hanenberg et al. do not elaborate on code smells, but we
can infer from separate pointcut that anonymous pointcuts should be a code smell.

In [25], Laddad presents a collection of refactorings [25] tailored to practitioners
working in industry, particularly developers of J2EE applications. The refactorings
vary widely in both level and scope of applicability, including generally applicable
refactorings like extract interface implementation, extract method calls and replace
override with advice, but also concern-specific refactorings such as extract concur-
rency control and extract contract enforcement. In addition, some refactorings belong
to the category of “refactoring to patterns” as presented by Kerievsky [21] – extract
worker object creation and replace argument trickle by wormhole. These two refac-
torings are based on two of the design patterns presented by Laddad in [26] – worker
object creation ([26], p. 247) and wormhole ([26], p. 256) respectively. The extract
exception handling refactoring as presented in [25] goes towards a variant implemen-
tation of the exception introduction pattern ([26], p. 260).

Laddad’s refactorings and ours cover different areas of the AOP refactoring space,
providing different and complementing contributions to filling that space. Some of

Towards a Catalogue of Refactorings and Code Smells for AspectJ 253

Laddad’s refactorings are presented with only a mention of their name and a brief
motivating paragraph. We believe the refactorings would benefit if presented in the
same format as used by Fowler et al. [10] and Kerievsky [21], and which we use as
well [27, 28]. A mechanics section would be particularly beneficial, having proved
very useful as a checklist and to lead developers through the safest sequences of steps,
in preference to riskier or less convenient ones. The important step-by-step guidelines
proposed by Laddad for creating a new aspect and subsequently evolving it are in-
cluded in the code example illustrating the use of extract method calls, but not in
several other refactorings to which they also apply (Laddad places some reminders). A
mechanics section would make that part process clearer, and would clarify the rela-
tions between refactorings. In addition, several refactorings (namely the problem-
specific ones) can be decomposed into simpler, lower-level steps, always an important
thing with refactoring.

Laddad does not pinpoint the code smells that his refactorings are supposed to re-
move. We think that the material presented by Laddad has the potential to throw new
light on existing OO code smells or to yield new ones. For instance, his extract
method calls and replace argument trickle by wormhole refactorings respectively
suggest the scattered method calls and argument trickle smells. Further research is
required to discover latent smells and assess their feasibility and applicability.

Tonella and Ceccato [35] base their work on the assumption that interfaces are of-
ten (not always) related to concerns other than the one pertaining to the system’s main
decomposition. This is an interface implementation smell, though the authors do not
name it this way. They provide specific guidelines for when an interface implementa-
tion is a symptom of a latent aspect and present a tool for mining and extracting as-
pects based on these criteria, and report on experimental results. These extractions are
also covered by the refactorings we present in Table 1 and document in [27]. The
authors also point out various issues that can arise in a typical extraction of an inter-
face implementation into an aspect. Our refactorings prescribe procedures to deal with
all these issues.

In [17], Hannemann et al. propose that refactoring support for AOP be divided into
three categories: aspect-aware OO refactorings (the concept proposed by Hanenberg
et al.), aspect-oriented refactorings (i.e., refactorings that specifically target AOP
constructs, such as those presented in this paper) and refactorings of crosscutting
concerns, i.e., refactorings in which the scattered elements comprising a target CCC
and their individual transformations are considered together, instead of handling each
element separately. The latter category can only be carried out with the support of a
suitable tool. The focus of [17] is to present one such tool. Some of Laddad’s refactor-
ings [25], such as extract method calls, extract concurrency control and extract con-
tract enforcement, would be refactorings of CCCs if had some suitable tool support.
Such refactorings tend to be concern-specific: these contrasts with ours, which aim to
be applicable to multiple concerns, like those documented by Fowler et al. [10].

Like us, Hannemann et al. [17] use the Observer pattern ([11], p. 293) as a basis for
an illustrating example. They provide the outline for a refactoring process comprising
the extraction from a code base of a general implementation of Observer. The outline
is much less detailed than the one we present in [29], which focuses on a specific Java
implementation of Observer by Eckel. The outcome of their illustrating refactoring is

M.P. Monteiro and J.M. Fernandes 254

the AspectJ implementation [16] of Observer, which we also use in Sect. 6 and in
[29]. Not surprisingly, there are similarities between some refactorings presented here
and various refactorings that Hannemann et al. report using in their work:

 Their add internal interface is subsumed by our generalise target type with
marker interface (Table 2 and Sect. 4.2).

 Their replace object method with aspect method is similar to our replace
 intertype method with aspect method (Table 2 and Sect. 4.5).

 Their replace method call with pointcut and advice corresponds to our extract
fragment into advice (Table 1), the code fragment being a method call.

 Their replace method with intertype method declaration and replace field with
intertype field declaration corresponds to ours move method from class to
intertype and move field from class to intertype (Table 1), respectively.

In [3], Cole and Borba propose programming laws from which refactorings for As-
pectJ can be derived. The authors focus on the use of their laws to derive existing
refactorings such as those proposed in [15, 18, 25], and describe two case studies in
which the laws were tested, comprising the extraction of concurrency control and
distribution, respectively. Many, though not all, of the laws relate to the extraction of
CCCs to aspects, and therefore there is some overlap between the refactorings they
derive and our own extraction refactorings (Sect. 3.2). However, their focus is on
providing proofs that the transformations are behaviour-preserving, while we focus on
covering new ground in the refactoring space. Nevertheless, the authors remark that
extraction procedure for the second case study is generalisable, because its implemen-
tation of distribution is commonly used, and claim that it is possible to derive a con-
cern-specific extract distribution refactoring. No details are given, though.

To our knowledge, no work besides ours deals with the potentially bad internal
structure of aspects resulting from extraction processes. With the exception of the
work by Tonella and Ceccato [35], we do not have knowledge of any other work cov-
ering the issue of AOP code smells.

8 Future Work

8.1 Maturing the Refactorings

There is scope for maturing the refactorings presented here. It is important to test the
refactorings with more case studies, particularly larger and more complex ones. More
complex refactoring experiments may expose problems and situations that should be
taken into account in the preconditions and mechanics sections. Refactoring experi-
ment targeting other languages should be performed to assess the validity of the refac-
torings beyond the Java/AspectJ space.

8.2 Expanding the Refactoring Space

Covering Other Language Characteristics. The refactorings we present here result
from the two specific case studies, and do not use every available aspect construct, nor
do they explore every possible combination. New research should cover the remaining

Towards a Catalogue of Refactorings and Code Smells for AspectJ 255

aspect constructs, as well as the interactions between them and with existing Java
constructs. We next mention two subjects.

 Nonsingleton Aspect Association: Our work so far concentrated on singleton
aspects. In future, we expect to cover other kinds of aspect association in
order to obtain a clearer idea of the advantages and disadvantages of
nonsingleton aspects, e.g., when should they be preferred and what
refactorings should be used to transform singleton aspects.

 Pointcuts: At present, refactorings and code smells specifically targeting
pointcuts are still a largely unexplored area. AspectJ’s pointcut protocol
comprises a rich language for quantification [9] and is likely to yield an
equally rich pattern language for refactoring pointcut expressions, as well as
their interaction with advice. Further research is needed on the adequate use
of pointcut designators (e.g., pointcut smells), and how best to evolve
pointcut expressions.

Opposite Refactorings. We do not provide opposites for the presented refactorings,
preferring to focus on extending the reach of the existing collection of refactorings.
However, opposites are important to enable developers to backtrack, whenever they
find out they took a wrong turn. In IDEs and refactoring tools, the opposite of a refac-
torings correspond to the “undo” of that refactoring. In addition, opposites are often
useful in their own right (e.g., pull up vs. push down refactorings).

Dealing with Published Interfaces. In this paper, we cover the restructuring of as-
pect code resulting from the extraction of CCCs, taking advantage of the newfound
modularisation. It is also worth studying the impact of such extractions on the remain-
ing code base and what actions would be desirable (e.g., post-extraction refactorings).

Restructuring the Remaining Base Code. In this paper, we cover the restructuring
of aspect code resulting from the extraction of CCCs, taking advantage of the new-
found modularisation. It is also worth studying the impact of such extractions on the
remaining code base and what actions would be desirable (e.g., post-extraction refac-
torings). The XPI concept proposed by Griswold et al. [14] and associated design
rules proposed by Sullivan et al. [34] provide new opportunities to expand and evolve
the current refactoring space for AOP.

8.3 Other Code Smells

We believe many AOP smells wait to be discovered. For instance, use of privileged
aspects is a candidate: The rationale for avoiding them is the same as for avoiding the
use of public data. As Colyer and Clement remark in [4], aspect privilege confers the
general privilege to see any private state anywhere, while one often wishes to express
privilege with respect to a single class or a restricted set of classes. Presently, this is
not possible with AspectJ. Unfortunately, privileged aspect may be unavoidable in
cases affecting multiple packages and in which the aspect needs access to nonpublic
(e.g., protected and package-protected) data. Refactoring the affected code bases to
expose the nonpublic data is one alternative. We need to study use cases of privileged

M.P. Monteiro and J.M. Fernandes 256

aspects to assess whether common patterns can be found, and pinpoint refactorings
that tackle this issue.

9 Summary

In this paper, we argue that collections of refactorings and code smells can be an ef-
fective way to express notions of style for AOP source code. We propose AOP-
specific code smells, both for detecting CCCs in existing OO code and for improving
the structure of extracted aspects – double personality, abstract classes and aspect
laziness. We review existing OO code smells in the light of AOP. Divergent Change
can be a sign of code tangling, and both shotgun surgery and solution sprawl can be
signs of code scattering.

Simply moving the members relating to a CCC does not yield a well-formed aspect.
Extracted aspects expose problems caused by crosscutting, including duplicated code
([10], p. 76). Aspect laziness relates to the static nature of intertype declarations. We
can take advantage of the newfound modularity to tidy up the aspect’s internal
structure with further refactorings.

We present a collection of AOP refactorings, which can remove these smells from
source code, comprising the following groups:

 Ten refactorings to remove the smells related to CCCs from existing OO
code. Besides covering common members such as fields and methods, these
refactorings also deal with inner classes and interfaces. These refactorings
are fully documented in [27].

 Six refactorings to remove problems found in extracted aspects, including
duplicated code and aspect laziness. These refactorings are described in
detail in this paper.

 Eleven refactorings to deal with the generalisation of aspects, i.e., the
extraction of common code to superaspects. These refactorings are fully
documented in [27].

We discuss some of the many future directions in the hunt for new AOP refactorings
and code smells, taking as a basis the contributions of this paper and related work.

References

[1] Beck K. Extreme programming explained: Embrace change. Addison-Wesley, Reading,
MA, USA, 2000

[2] Bracha G. and Cook W. Mixin-based inheritance. In: ECOOP/OOPSLA1990: Proceed-
ings of Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions and European Conference on Object-Oriented Programming, ACM, pp. 303–311,
1990

[3] Cole L. and Borba P. Deriving refactorings for AspectJ. In: AOSD 2005: Proceedings of
the 4th International Conference on Aspect-Oriented Software Development, ACM, pp.
123–134, 2005

Towards a Catalogue of Refactorings and Code Smells for AspectJ 257

[4] Colyer A. and Clement A. Large-scale AOSD for middleware. In: AOSD 2004: Proceed-
ings of the 3rd International Conference on Aspect-Oriented Software Development,
ACM, pp. 56–65, 2004

[5] Cooper J. Java design patterns: A tutorial. Addison-Wesley, Reading, MA, USA, 2000.
Also availabe at www.patterndepot.com/put/8/DesignJava.PDF

[6] Deursen A.v., Marin M., and Moonen L. Aspect mining and refactoring. In: REFACE03:
Workshop on REFactoring: Achievements, Challenges, Effects, Waterloo, Canada, 2003

[7] Dijkstra E. Go-to statement considered harmful, Communications of the ACM,
11(3):147–148, 1968

[8] Eckel B. Thinking in Patterns, revision 0.9. book in progress, 2003. Available at http://
www.pythoncriticalmass.com/downloads/TIPatterns-0.9.zip

[9] Filman R.E. and Friedman D.P. Aspect-oriented programming is quantification and
obliviousness. In: Workshop on Advanced Separation of Concerns at OOPSLA 2000,
Minneapolis, 2000

[10] Fowler M. et al. Refactoring – Improving the design of existing code, Addison-Wesley,
Reading, MA, USA, 2000.

[11] Gamma E., Helm R., Johnson R., Vlissides J. Design patterns. Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, Reading, MA, USA, 1995

[12] Garcia A., Sant’Anna C., Figueiredo E., Kulesza U., Lucena C., and Staa A. Modulariz-
ing design patterns with aspects: A quantitative study. In: AOSD 2005: Proceedings of
the 4th International Conference on Aspect-Oriented Software Development, ACM, pp.
3–14, 2005

[13] Griswold W.G. Program restructuring as an aid to software maintenance. PhD Thesis,
University of Washington, USA, 1991

[14] Griswold W.G., Sullivan K.J., Song Y., Cai Y., Shonle M., Tewari N., Rajan H. Modular
software design with crosscutting interfaces. IEEE Software, Special Issue on Aspect-
Oriented Programming, pp. 51–60, 2006

[15] Hanenberg S., Oberschulte C., Unland R. Refactoring of aspect-oriented software,
net.objectdays 2003, Erfurt, Germany, 2003

[16] Hannemann J. and Kiczales G. Design pattern implementation in Java and AspectJ. In:
OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ACM, pp. 161–173, 2002

[17] Hannemann J., Murphy G., and Kiczales G. Role-based refactoring of crosscutting con-
cerns. In: AOSD 2005: Proceedings of the 4th International Conference on Aspect-
Oriented Software Development, ACM, pp. 135–146, 2005

[18] Iwamoto M. and Zhao J. Refactoring aspect-oriented programs. In: 4th AOSD Modelling
With UML Workshop at UML’2003, San Francisco, USA, 2003

[19] Jacobson I., Christerson M., Jonsson P., Övergaard G. Object-oriented software engineer-
ing: A use case driven approach, Addison-Wesley, Reading, MA, USA, 1992

[20] Kang K.C., Cohen S.G., Hess J.A., Novak W.E., Peterson A. Feature-oriented domain
analysis feasibility study, SEI, Technical Report CMU/SEI-90-TR-21, 1990

[21] Kerievsky J. Refactoring to patterns. Addison-Wesley, Reading, MA, USA, 2004
[22] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., and Griswold W.G. An over-

view of AspectJ. In: ECOOP 2001: Proceedings of the 15th European Conference on
Object-Oriented Programming, LNCS vol. 2072, Springer, pp. 327–353, 2001

[23] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J., and Irwin J.
Aspect-oriented programming. In: ECOOP’97: Proceedings of the 11th European Con-
ference on Object-Oriented Programming, LNCS vol. 1241, Springer, pp. 220–242, 1997

M.P. Monteiro and J.M. Fernandes 258

[24] Koppen C. and Störzer M. PCDiff: Attacking the fragile pointcut problem. In: EIWAS
2004: Interactive Workshop on Aspects in Software, Berlin, Germany, 2004

[25] Laddad R. Aspect-oriented refactoring, parts 1 and 2. The Server Side, 2003. www.
theserverside.com/

[26] Laddad R. AspectJ in action – practical aspect-oriented programming, Manning, Green-
wich, CT, USA, 2003

[27] Monteiro M.P. Refactorings to evolve object-oriented systems with aspect-oriented con-
cepts. Ph.D. Thesis, Universidade do Minho, Portugal, 2005

[28] Monteiro M.P. and Fernandes J.M. Object-to-aspect refactorings for feature extraction.
In: AOSD 2004: Industry Track Paper at the 3rd International Conference on Aspect-
Oriented Software Development, Lancaster, UK, 2004

[29] Monteiro M.P. and Fernandes J.M. Refactoring a java code base to AspectJ – An
illustrative example. In: ICSM 2005: Proceedings of the IEEE International Conference
on Software Maintenance 2005, Budapest, Hungary, 2005

[30] Monteiro M.P. and Fernandes J.M. Towards a catalogue of aspect-oriented refactorings.
In: AOSD 2005: Proceedings of the 4th International Conference on Aspect-Oriented
Software Development, ACM, pp. 111–122, 2005

[31] Opdyke W.F. Refactoring object-oriented frameworks. Ph.D. Thesis, University of Illi-
nois at Urbana-Champaign, USA, 1992

[32] Orleans D. Separating behavioral concerns with predicate dispatch, or, if statement con-
sidered harmful. In: Workshop on Advanced Separation of Concerns in Object-Oriented
Systems at OOPSLA 2001, Tampa Bay, USA, 2001

[33] Sabbah D. Aspects – From promise to reality. In: AOSD 2004: Proceedings of the 3rd In-
ternational Conference on Aspect-Oriented Software Development, ACM, pp. 1–2, 2004

[34] Sullivan K.J., Griswold W.G., Song Y., Cai Y., Shonle M., Tewari N., and Rajan H.
Information hiding interfaces for aspect-oriented design. In: ESEC/FSE 2005: Proceed-
ings of the Joint 10th European Software Engineering Conference and 13th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ACM, pp. 166–175,
2005

[35] Tonella P. and Ceccato M. Migrating interface implementation to aspects. In: ICSM’04:
Proceedings of 20th IEEE International Conference on Software Maintenance, IEEE
Computer Society, Chicago, USA, pp. 220–229, 2004

[36] Tourwé T., Brichau J., and Gybels K. On the existence of the AOSD-Evolution paradox.
In: Workshop on Software-Engineering Properties of Languages for Aspect Technologies
at AOSD 2003, Boston, USA, 2003

[37] Wake W. Refactoring workbook, Addison-Wesley, Reading, MA, USA, 2004
[38] Zhang C. and Jacobsen H.-A. Quantifying aspects in middleware platforms. In: AOSD

2003: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development, ACM, Boston, USA, pp. 130–139, 2003

[39] Zhao J. Towards a metrics suite for aspect-oriented software. Technical-Report, SE-2002-
136-25, Information Processing Society of Japan (IPSJ), 2002

	Introduction
	Some Challenges of Refactoring Aspect-Oriented Systems
	On the Need for an AOP-Specific Notion of Style
	Contributions
	Issues Not Addressed
	Outline

	The Approach
	Overview of the Refactorings
	Grouping the Refactorings
	Refactorings for Extracting Features to Aspects
	Restructuring the Internals of Aspects
	Dealing with Generalisation
	Refactorings for Plain Java

	Refactorings for Tidying Up Extracted Aspects
	Extend Marker Interface with Signature
	Generalise Target Type with Marker Interface
	Introduce Aspect Protection
	Replace Intertype Field with Aspect Map
	Replace Intertype Method with Aspect Method
	Tidy Up Internal Aspect Structure

	Code Smells
	OO Smells in Light of AOP
	The $Double Personality$ Code Smell
	Abstract Classes as a Code Smell
	The $Aspect Laziness$ Code Smell

	Illustrative Example
	Related Work
	Future Work
	Maturing the Refactorings
	Expanding the Refactoring Space
	Other Code Smells

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

