
Refactoring a Java Code Base to AspectJ: An Illustrative Example
*

Miguel P. Monteiro1, João M. Fernandes2

1Escola Superior de Tecnologia, IP de Castelo Branco, 6000-767 Castelo Branco PORTUGAL

2Departamento de Informática, Universidade do Minho 4710-057 Braga PORTUGAL

*
 Research partially funded by FCT under project SOFTAS (POSI/EIA/60189/2004)

Abstract

This paper describes a refactoring process

transforming a Java code base into an AspectJ

equivalent. The process illustrates 17 aspect-oriented

refactorings covering extraction of implementation

elements to aspects, internal reorganization of

extracted aspects, and extraction of commonalities to

superaspects.

1. Introduction

Our aim is to expand the existing refactoring space

for Aspect-Oriented Programming (AOP) [9], which is

still in its infancy [5, 10, 12]. We use AspectJ [8] as

the current primary representative AOP language. We

base our work on the hypothesis that good-style

object-oriented (OO) code can be approached as bad-

style aspect-oriented (AO) code. Under this

assumption, OO code betrays code smells [3], which

can be removed through AO refactorings. We

undertook refactoring experiments on Java code bases

in order to derive interesting refactorings [12, 13]. In

this paper, we illustrate results derived from

implementations [6] of the Gang-of-Four (GoF) design

patterns [4] in Java and AspectJ.

We present an initial validation effort for the

collection of AO refactorings presented in [13] and

documented in [11, 12], and to illustrate issues that

arise when refactoring Java code bases to AspectJ. We

describe a complete refactoring process using 17 of the

refactorings. The refactoring example targets a Java

implementation of Observer pattern [4], by Eckel [1].

Observer is a simple example of a crosscutting concern

connecting sets of otherwise unrelated classes,

implemented as a small framework.

The example also shows how the capabilities of a

programming language have a profound influence on

the design of programs written in that language, and

even on the very idea of what comprises a good

design. The starting point of the refactoring presented

here is a good design in plain Java, and the final design

is coded in AspectJ, which is backwards compatible to

Java. Even so, the two designs are profoundly

different, something that is compounded by

implementation issues. The original Java

implementation uses the Observable and Observer

types from Java’s java.util API, while the AspectJ

implementation relies on internal collections owned by

aspects. Consequently, the structural changes made

during the refactoring process are very deep.

The refactoring process is broken in the middle into

two alternative paths: (1) one performed solely in

terms of the original code, and (2) another taking

advantage of a reusable aspect presented in [6]. Both

paths end with the same design. Space constraints

prevent us to present the second path in detail, and to

include the ideal number of code listings. We instead

provide an eclipse project with 33 complete code

snapshots. The project is available for download at

www.di.uminho.pt/~jmf/PUBLI/papers/ObserverExample.zip.

Throughout the process description we refer most

snapshots, the same way we would do with code

listings. We use code fragments to illustrate some

details, and changes from the previous code state are

highlighted in bold.

The rest of the paper is structured as follows.

Section 2 provides specific information on the

example. Section 3 describes the refactoring process.

Section 4 provides a short discussion of the refactoring

process and section 5 concludes this paper.

2. Design pattern Observer

The intent of Observer is to “define a one-to-many

dependency between objects so that when one object

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

changes state, all its dependents are notified and

updated automatically” [4]. Observer defines the role

of subject for objects generating events of interest to

objects playing the role of observer. Many

implementations provide subjects with an extra field

for the list of its observers. Observers are added to the

list by an attach operation and are removed from the

list by a detach operation. When a subject gives rise to

an interesting event (usually a change in state) it calls a

notify operation, which in turn calls the update

operation of each registered observer.

Each observer defines its reaction to a notification

in the update operation. What qualifies as an

interesting event is determined by the calls to update

that observers make, so programmers must ensure that

such calls are placed in all desired points. In very large

systems, this may result in thousands of calls, scattered

throughout dozens or hundreds of packages. For this

reason, implementing the pattern in large systems is

error–prone, and switching from one implementation

to another is a hard and tedious task.

2.1. Flower example

The subject in Eckel’s example [1] is a flower,

whose interesting events are its two operations: open

its petals and close them. These are observed by

instances of two unrelated types: bees and humming

birds. When the flower opens its petals, its observers

have breakfast. When the flower closes its petals, its

observers go to sleep. These reactions are represented

by simple messages sent to the console. Each of the

flower operations gives rise to a different observing

relationship, as observers react differently to the two

events and it is possible to support one relationship

without supporting the other. The system also ensures

that observers only react once to each operation. For

instance, if the flower executes the open operation

twice with no close in between, observers only react to

the first open.

2.2. Protocol Observer-Observable

Java’s java.util API provides a ready-made

implementation of the Observer pattern, comprising

interface Observer and class Observable. Observer

classes must implement the Observer interface, which

declares an update method. Subject classes must

inherit from Observable, which provides the logic to

manage the list of subscribed observers. Subject

objects notify their observers of an interesting event by

calling the notifyObservers method. In addition to the

usual problems of code scattering and tangling, this

solution also has the following disadvantages:

Subject classes loose the option of inheriting from

another class, as they already inherit from

java.util.Observable. Observer participants are less

limited because they merely implement the

java.util.Observer interface, but this contributes to

clutter their ‘implements’ clause with an interface

not related to the class’s primary role.

Inheriting from java.util.Observable increases the

memory footprint of each instance. Objects playing

this role must carry the extra state throughout their

entire life cycle, even if they only use it during

certain phases.

Use of inheritance also means that all instances will

carry the extra state, even if only a subset of the

instances participates in observing relationships.

This mechanism does not support multiple separate

observing relationships. If instances of a class play

the subject role in various observing relationships,

their observers will be notified of the events

relating to all of them, and need to run extra logic

to distinguish one kind of event from others.

2.3. Java implementation

Listing 1 presents Flower and listing 2 presents

class Bee (Hummingbird is similar). Listing 3 shows

part of the unit test. This also serves as client code.

Eckel’s design partially circumvents the above

limitations by relying on inner classes to isolate, within

each class, the code related to the pattern. Instead of

directly extending the Observer or Observable types,

each participant encloses an inner class either

extending Observable (subject) or implementing

Observer (observers). This design has the advantage of

freeing subjects to inherit from some class useful to

their implementations other than java.util.Observable.

It also avoids cluttering the observer’s implements

clause with one more interface. This design localizes

within each class the code related to the pattern, but

also produces an even tighter structural relationship

between participants and the roles they play in the

pattern. This places additional hurdles in a refactoring

process aiming to replace the design.

Even Eckel’s clever design cannot achieve

obliviousness [2] from pattern roles. Participant classes

betray the Double Personality smell: [13] each

participant contains code related to two concerns – the

primary concern and the role in the pattern. Any

method of the subject (Flower) performing an

interesting operation must still include code relative to

its role in the pattern. In addition to this tangling, there

is also code scattering: code dealing with the pattern is

not modularized and each participant contains one

inner class for each of the observing relationships.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

There is much duplication. This is particularly

noticeable in the two observers (Bee and

Hummingbird), which use four inner classes between

them. Each class duplicates the code related to the two

observing relationships and each observing

relationship requires a duplication of essentially the

same logic.

public class Flower {
 private boolean isOpen;
 private OpenNotifier oNotify =
 new OpenNotifier();
 private CloseNotifier cNotify =
 new CloseNotifier();
 public Flower() {
 isOpen = false;
 }
 public void open() { // Opens its petals
 System.out.println("Flower open.");
 isOpen = true;
 oNotify.notifyObservers();
 cNotify.open();
 }
 public void close() { // Closes its petals
 System.out.println("Flower close.");
 isOpen = false;
 cNotify.notifyObservers();
 oNotify.close();
 }
 public Observable opening() {
 return oNotify;
 }
 public Observable closing() {
 return cNotify;
 }
 private class OpenNotifier extends Observable{
 private boolean alreadyOpen = false;
 public void notifyObservers() {
 if(isOpen && !alreadyOpen) {
 setChanged();
 super.notifyObservers();
 alreadyOpen = true;
 }
 }
 public void close() {
 alreadyOpen = false;
 }
 }
 private class CloseNotifier extends Observable{
 private boolean alreadyClosed = false;
 public void notifyObservers() {
 if(!isOpen && !alreadyClosed) {
 setChanged();
 super.notifyObservers();
 alreadyClosed = true;
 }
 }
 public void open() {
 alreadyClosed = false;
 }
 }
}

Listing 1: Initial form of the subject class Flower.

The example includes one flower as subject, and

one bee and one bird as observers. Note that each

observing relationship must watch both operations, due

to the requirement that observers only react to the first

occurrence of an operation. Therefore, observers of

open need to be notified of close, in order to determine

if an open is the first to execute. The same applies to

observations of close.

public class Bee {
 private String name;
 private OpenObserver openObsrv =
 new OpenObserver();
 private CloseObserver closeObsrv =
 new CloseObserver();
 public Bee(String nm) {
 name = nm;
 }
 // An inner class for observing openings:
 private class OpenObserver
 implements Observer {
 public void update
 (Observable ob, Object a) {
 System.out.println("Bee " + name
 + "'s breakfast time!");
 }
 }
 // Another inner class for closings:
 private class CloseObserver
 implements Observer{
 public void update
 (Observable ob, Object a) {
 System.out.println("Bee " + name
 + "'s bed time!");
 }
 }
 public Observer openObserver() {
 return openObsrv;
 }
 public Observer closeObserver() {
 return closeObsrv;
 }
}

Listing 2: Initial form of observer class Bee.

public class TestObservedFlower extends TestCase {
 Flower f = new Flower();
 Bee ba = new Bee("A"),
 bb = new Bee("B");
 Hummingbird
 hx = new Hummingbird("X"),
 hy = new Hummingbird("Y");
 public void test() {
 f.opening().addObserver(ba.openObserver());
 f.opening().addObserver(bb.openObserver());
 f.opening().addObserver(hx.openObserver());
 f.opening().addObserver(hy.openObserver());

 f.closing().addObserver(ba.closeObserver());
 f.closing().addObserver(bb.closeObserver());
 f.closing().addObserver(hx.closeObserver());
 f.closing().addObserver(hy.closeObserver());
 // Hummingbird Y decides to sleep in:
 f.opening().deleteObserver(
 hy.openObserver());
 // A change that interests observers:
 f.open();
 f.open(); // It's already open, no change.
 // Bee A doesn't want to go to bed:
 f.closing().deleteObserver(
 ba.closeObserver());
 f.close();
 f.close(); // It's already closed; no change
 f.opening().deleteObservers();
 f.open();
 f.close();
 }

Listing 3: Test method used throughout.

Throughout the example, an adaptation of the

original test provided by Eckel is used. The test is

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

enhanced by two peer aspects: (1) one capturing the

messages sent to the console and collating them in a

string retrievable through a getter method; (2) another

suppressing output to the console when the test runs in

test mode and leaving it in place when it runs from the

static main method. The original test does not have

assertions: we added one based on the collected output.

2.4. AspectJ implementation

AspectJ solution [6] comprises an abstract aspect

dealing with parts common to all cases –

ObserverProtocol – and a concrete subaspect dealing

with case-specific parts. The common parts are (1) the

subject and observer roles, modeled by the inner

(marker) interfaces Subject and Observer; (2) the

maintenance of a mapping from subjects to observers,

implemented with a hash table field owned by the

instances of the aspect (perSubjectObservers); (3) the

update logic, in which changes in the subject trigger

updates in the observers. Changes in subject state are

modelled by abstract pointcut subjectChange.

Reactions to changes are modelled by advice acting on

the joinpoints captured by subjectChange.

Parts specific to individual cases are: (1) assignment

of roles subject and observer to concrete classes,

implemented with ‘declare parents’ clauses;

(2) changes on the subject that are of interest to its

observers, implemented by a concrete definition of the

abstract pointcut subjectChange; (3) logic to update

observers at appropriate points, implemented by the

updateObserver method.

Participant classes in the AspectJ implementation

are completely oblivious to the pattern roles. None of

the disadvantages mentioned in relation to the Java

implementation applies in this case. Participant classes

remain free to inherit from other classes, and instances

do not expend any additional memory space when not

participating in observing relationships. The mapping

between a subject and its observers is maintained by

the aspect itself rather than with inter-type

declarations. The structure managing the mappings is

defined in the abstract superaspect, so each concrete

subaspect owns its own instance of this field.

3. Refactoring sessions

Note that the transformations described next follow

only two of many possible paths. Though the result

should always be similar, it is possible to reach it

through multiple paths, since each step marks a point

from which there are several possible alternatives.

Table 1 shows the refactorings. The two alternative

paths start in the second phase. The first path

comprises three phases, each relating to a composite

refactoring [13] prescribing the use of others:
1. Extract Feature into Aspect: extracts the two

observing relationships into aspects

2. Tidy Up Internal Aspect Structure: improves the

internal structure of the extracted aspects

3. Extract Superaspect: factors out common code from

the aspects to an abstract superaspect.

The second path adds ObserverProtocol early in the

second phase and therefore does not use Extract

Superaspect.

Encapsulate Implements with Declare Parents
Extend Marker Interface with Signature
Extract Feature into Aspect

Extract Inner Class to Standalone

Extract Fragment into Advice
Extract Superaspect
Generalize Target Type with Marker Interface
Inline Class within Aspect
Inline Interface within Aspect
Move Field from Class to Inter-type
Move Method from Class to Inter-type
Push Down Advice
Pull Up Marker Interface
Pull Up Pointcut
Replace Inter-type Field with Aspect Map
Replace Inter-type Method with Aspect Method
Tidy Up Internal Aspect Structure

Table 1: Refactorings used in this paper.

The eclipse project includes code snapshots

presenting the code in various structural forms, always

in a compilable and testable state. These are stored in

the following folder hierarchy:

bruceeckel – contains the code in its original form

(not strictly part of the refactoring process).

initial – contains the code reformatted and with a

functional unit test class.

extractions – contains 10 folders (named step01–

10) showing the code at various stages during the

extraction of two concerns into aspects.

tidyingup1 - contains 11 folders (named step01–11)

illustrating one path to tidy up the aspect’s internal

structure, using the Extract Superaspect refactoring

tidyingup2 – contains 11 folders (named step01–

11) illustrating an alternative path to tidy up the

aspect’s internal structure, using ObserverProtocol.

3.1. Extracting features

First phase begins with extraction of the observing

relationship related to Flower.open. Three inner classes

relate to this concern (see Listings 1-3 and snapshot

initial): Flower.OpenNotifier, Bee.OpenObserver and

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Hummingbird.OpenObserver. We apply Extract Inner

Class into Standalone to Flower.OpenNotifier,

yielding the following standalone class (see also

snapshot extractions.step01):
public class OpenNotifier extends Observable {
 private Flower _enclosing;
 private boolean alreadyOpen = false;
 public OpenNotifier(Flower flower) {
 _enclosing = flower;
 }
 public void notifyObservers() {
 if(_enclosing.isOpen()
 && !this.alreadyOpen) {
 this.setChanged();
 super.notifyObservers();
 this.alreadyOpen = true;
 }
 }
 public void close() {
 this.alreadyOpen = false;
 }
}

This refactoring also entails the prior extraction of

method Flower.isOpen, using Extract Method [3].

public class Flower {
 private boolean isOpen;
 private OpenNotifier oNotify =
 new OpenNotifier(this);
 //...

boolean isOpen() {
 return isOpen;
 }

Next, we would like to do the same with

Bee.OpenObserver and Hummingbird.OpenObserver

but there are two problems. One is that each contains

an action – print a message to the console – that is part

of the enclosing class’s primary functionality. This is

dealt with by applying Extract Method [3] to the code

fragment in each class. On Bee is as follows:

public class Bee {
 //...

void breakfastTime() {
 System.out.println(
 "Bee " + name + "'s breakfast time!");
 }
 // An inner class for observing openings:
 private class OpenObserver
 implements Observer {
 public void update(Observable ob,
 Object a) {
 breakfastTime();
 }
 }

The other problem is that both classes would have

the same name after being turned into standalones.

Since they are almost identical, it is simpler to turn

them into one. However, each class holds a field

referring to its enclosing class, which is of a different

type. Our solution is to use Extract Interface [3] and

use the resulting interface type instead:

public interface BreakfastTaker {
 public void breakfastTime();
}

This in turn forces us to make the breakfastTime

methods public:

public class Bee implements BreakfastTaker {
 //...

public void breakfastTime() {
 //...

public class Hummingbird
implements BreakfastTaker {

 //...
public void breakfastTime() {

 //...

Next, we apply Extract Inner Class into Standalone

(see snapshot extractions.step02). The code is now ripe

for the extraction of the various elements to an aspect.

The blank aspect ObservingOpen is created and we

apply the following refactorings:

Move Field from Class to Inter-type to field

Flower.oNotify. The private access of oNotify is

(temporarily) relaxed to package-protected.

Move Method from Class to Inter-type to method

Flower.opening.

Extract Fragment into Advice to the call to method

Flower.oNotify.notifyObservers.

Extract Fragment into Advice to the call to method

Flower.oNotify.close.

The above refactorings move all code using the

oNotify field to the aspect, so it is now possible to

make it private again. The aspect now has the

following contents (see extractions.step03):

public aspect ObservingOpen {
 private OpenNotifier
 Flower.oNotify = new OpenNotifier(this);
 public Observable Flower.opening() {
 return oNotify;
 }
 pointcut flowerOpen(Flower flower):
 execution(void open()) && this(flower);
 after(Flower flower) returning :
 flowerOpen(flower) {
 flower.oNotify.notifyObservers();
 }
 pointcut flowerClose(Flower flower):
 execution(void close()) && this(flower);
 after(Flower flower): flowerClose(flower) {
 flower.oNotify.close();
 }
}

Flower became clean of code related to the first

observing relationship. The next step is to extract from

observer classes Bee and Hummingbird all their

remaining elements related to this concern. We apply

Move Field from Class to Inter-type to Bee.openObsrv.

This forces us to relax the field access from private to

package-protected. As recommended by that

refactoring, the following ‘declare warning’ is created:

 declare warning:
 get(OpenObserver Bee.openObsrv)
 && !within(ObservingOpen):
"field Bee.openObsrv accessed outside aspect.";

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

The ‘declare warning’ signaled an use outside the

aspect of the field, in the Bee.openObserver method.

This method also belongs to this concern, so we move

it next, using Move Method from Class to Inter-type.

The warnings are gone, so the ‘declare warning’ is

removed and the access to openObsrv field is made

private again. Next, similar refactorings are applied to

Hummingbird. The observers are now devoid of any

code related to the first observation relationship, save

for the implements clause referring to BreakfastTaker

(see extractions.step04).

The next task comprises the extraction of the

second observing relationship, through a similar

sequence of steps. This exposes a significant amount

of duplication between the aspects, which can be

factored afterwards. The following steps are:

Apply Extract Inner Class to Standalone to class

CloseNotifier within Flower.

Create a new blank aspect ObservingClose.

Apply Move Field from Class to Inter-type to field

Flower.cNotify, whose access is temporarily

relaxed from private to package-protected. This

refactoring entails creating a ‘declare warning’

exposing 3 points in Flower still using the field.

Apply Move Method From Class to Inter-type to

Flower.closing, which removes one warning. The

import statements in Flower can now be removed.

Apply Extract Fragment into Advice to the calls to

cNotify.open and cNotify.notifyObservers. This

removes the two remaining warnings, so the field

Flower.cNotify is made private again and the

‘declare warning’ is removed.

From this point on, Flower is clean of any code

related to observing relationships (see

extractions.step07). Next, we deal with the remaining

code in the observer participants, Bee and

Hummingbird. The first thing is to unify both

CloseObserver inner classes within Bee and

Hummingbird, so that Extract Inner Class into

Standalone can be applied to both classes

simultaneously, yielding a single standalone class. This

entails (1) applying Extract Method [3] to create the

bedtimeSleep method in each of them, (2) use Extract

Interface [3] to extract BedtimeSleep. This mirrors the

actions that yielded the breakfastTime method and the

BreakfastTaker interface.

public interface BedtimeSleeper {
 public void bedtimeSleep();
}

Now we can use Extract Inner Class into

Standalone to both CloseObserver inner classes to

produce the following common standalone class:

public class CloseObserver implements Observer{
 private BedtimeSleeper _enclosing;

 public CloseObserver
 (BedtimeSleeper enclosing) {
 _enclosing = enclosing;
 }
 public void update(Observable ob, Object a) {
 _enclosing.bedtimeSleep();
 }
}

We then move all remaining members related to the

extracted concern to the second aspect:

Apply Move Field From Class to Inter-type to

Bee.closeObsrv.

Apply Move Method From Class to Inter-type to

Bee.closeObserver.

Apply Move Field From Class to Inter-type to

Hummingbird.closeObsrv.

Apply Move Method From Class to Inter-type to

Hummingbird.closeObserver.

The import statements in Bee and Hummingbird

can now be removed. The only remaining code in the

participants relating to the observing relationships is

the implements clauses referring to BreakfastTaker and

BedtimeSleeper (see extractions.step08). We now use

Encapsulate Implements with Declare Parents to both

Bee and Hummingbird

public aspect ObservingOpen {
 declare parents: (Bee || Hummingbird)
 implements BreakfastTaker;

public aspect ObservingClose {
 declare parents: (Bee || Hummingbird)
 implements BedtimeSleeper;

Now all participants are completely free of any

code related to extracted concerns (see

extractions.step09).

The refactorings made until now cleaned the

participant’s code but it also created several standalone

classes and interfaces that are used by only the aspects

and provide little functionality. We therefore inline

them so that all code related to observing relationships

is encapsulated in the aspects. This yields code easier

to reason with and to refactor.

We wanted to inline the interfaces first, but we

couldn’t: OpenObserver and CloseObserver depend on

them. Therefore, we use Inline Class within Aspect on

them, as well as on OpenNotifier and CloseNotifier.

Next, we use Inline Interface within Aspect on

BreakfastTaker and BedtimeSleeper. The code related

to both concerns is now completely modularized

within their respective aspects (see extractions.step10

and listing 4).

3.2. Restructuring extracted aspects

As can be attested from listing 4, the internal

structure of the aspects is inadequate, containing much

duplication and several inner classes and interfaces

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

which no longer justify themselves, particularly if we

want to do without the Observer/Observable API from

java.util. In addition, the aspect betrays the Aspect

Laziness smell [13]: the two aspects statically attach

the additional state and behavior to the participant

classes, while in this case a dynamic and unpluggable

composition would be suitable. The next phase is to

improve the internal structure of the aspects.

public aspect ObservingOpen {
 private interface BreakfastTaker {
 public void breakfastTime();
 }
 declare parents: (Bee || Hummingbird)
 implements BreakfastTaker;
 static class OpenNotifier extends Observable {
 private Flower _enclosing;
 private boolean alreadyOpen = false;
 public OpenNotifier(Flower flower) {
 _enclosing = flower;
 }
 public void notifyObservers() {
 if(_enclosing.isOpen()
 && !this.alreadyOpen) {
 this.setChanged();
 super.notifyObservers();
 this.alreadyOpen = true;
 }
 }
 public void close() {
 this.alreadyOpen = false;
 }
 }
 static class OpenObserver implements Observer {
 private BreakfastTaker _enclosing;
 public OpenObserver
 (BreakfastTaker enclosing) {
 _enclosing = enclosing;
 }
 public void update(Observable ob, Object a){
 _enclosing.breakfastTime();
 }
 }
 private OpenNotifier Flower.oNotify =
 new OpenNotifier(this);
 private OpenObserver Hummingbird.openObsrv =
 new OpenObserver(this);
 private OpenObserver Bee.openObsrv =
 new OpenObserver(this);
 public Observable Flower.opening() {
 return oNotify;
 }
 pointcut flowerOpen(Flower flower):
 execution(void open()) && this(flower);
 after(Flower flower) returning :
flowerOpen(flower) {
 flower.oNotify.notifyObservers();
 }
 pointcut flowerClose(Flower flower):
 execution(void close()) && this(flower);
 after(Flower flower): flowerClose(flower) {
 flower.oNotify.close();
 }
 public Observer Bee.openObserver() {
 return openObsrv;
 }
 public java.util.Observer
 Hummingbird.openObserver() {
 return openObsrv;
 }
}

Listing 4: ObservingOpen just after the extraction

Let’s briefly consider options available with

traditional OO. Consider a large system with a concern

whose implementation is scattered throughout many

classes and packages. The right approach to replace the

scattered implementation would be to add a new layer

abstracting its details. This would make the scattered

elements easier to replace, but it would entail the

patient refactoring of the system until the new layer

completely hides all specific details. The refactoring

process would be supported by tests targeting the new

layer. Developers could develop a new implementation

against the new layer’s interface. Developers would

leverage tests they could run against both the old

implementation and the new. As soon as the new

implementation is complete, it becomes possible to

switch modules and rebuild the system with the new

implementation. With large systems, such a process

can take months.

Thanks to the modularization achieved with AOP,

this duplication is now just another code smell that can

be removed with further refactorings [13].

3.3. Tidying up extracted aspects

We use Tidy Up Internal Aspect Structure on each

aspect in turn. Not only this makes their internal

structures better organized, it also makes them more

amenable to later apply Extract Superaspect, further

eliminating duplication. We next show the refactoring

of ObservingOpen. When the process is completed, a

similar one is carried out on ObservingClose. We start

by using Generalize Target Type with Marker

Interface to eliminate duplication in inter-type

declarations resulting from Extract Feature into

Aspect. This entails creating inner marker interfaces

Subject and Observer that represent pattern roles.

public aspect ObservingOpen {
 private interface Subject {}
 private interface Observer {}

 declare parents: Flower implements Subject;
 declare parents:
 (Bee || Hummingbird) implements Observer;

A name conflict arises due to two elements named

Observer, which we resolve by removing the import to

java.util.Observer and making all references use the

full compound name. When applying Generalize

Target Type with Marker Interface to the Flower type,

we replace all references to Flower with Subject,

including within inner class OpenNotifier. Since

interface Subject does not ‘declare method’ isOpen, we

use Extend Marker Interface with Signature on Subject

to extend it with that signature. This in turn forces us

to change method Flower.isOpen from package-

protected to public (see tidyingup1.step01).

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

public aspect ObservingOpen {
 //...
 public abstract boolean Subject.isOpen();
 //...
 static class OpenNotifier
 extends java.util.Observable {
 private Subject _enclosing;
 private boolean alreadyOpen = false;

 public void notifyObservers() {
 if(_enclosing.isOpen()
 && !this.alreadyOpen) {
 this.setChanged();
 super.notifyObservers();
 this.alreadyOpen = true;
 }
 }

We apply Generalize Target Type with Marker

Interface to Bee and Hummingbird, enabling us to

remove BreakfastTaker and use Observer in its place.

We must use Extend Marker Interface with Signature

again, to extend Observer with the case-specific

signature of breakfastTime. The step eliminates some

duplication in the openObserver method, which is

introduced twice, to Bee and Hummingbird. Concrete

participants are now referred only in the ‘declare

parents’ (see tidyingup1.step02).

We add the code related to the new implementation.

When all of it is in place, we can replace the calls in

the client code (i.e. the unit test) to the original

implementation with calls to the new one. What

follows is an elaborated variant of Replace Inter-type

Field with Aspect Map with Replace Inter-type Method

with Aspect Method targeting inner classes instead of

inter-type fields. The step adds a mapping structure,

plus associated logic (see tidyingup1.step03).

We add method notifyObservers, providing

functionality similar to OpenNotifier.notifyObservers.

notifyObservers uses a new boolean field introduced to

Subject, used for the same purposes as OpenNotifier.

private boolean Subject.alreadyOpen = false;
private void notifyObservers(Subject subject) {
 if(subject.isOpen() && !subject.alreadyOpen){
 subject.alreadyOpen = true;
 List observers = getObservers(subject);
 for(ListIterator it =
 observers.listIterator(); it.hasNext();){
 ((Observer)it.next()).breakfastTime();
 }
 }
}

As prescribed in Replace Inter-type Method with

Aspect Method, we add a ‘declare warning’ to expose

all places where the old logic is used. The ‘declare

warning’ targets method Subject.opening, the accessor

method for the instance of inner class OpenNotifier

(see tidyingup1.step04).

declare warning:
 call(java.util.Observable opening()):
 "opening() called here.";

Compiling again exposes six warnings, all placed in

the unit test. We replace the original calls with calls to

aspect logic:

 f.opening().addObserver(ba.openObserver());
 f.opening().addObserver(bb.openObserver());
 f.opening().addObserver(hx.openObserver());
 f.opening().addObserver(hy.openObserver());

 ObservingOpen.aspectOf().addObserver(f, ba);
 ObservingOpen.aspectOf().addObserver(f, bb);
 ObservingOpen.aspectOf().addObserver(f, hx);
 ObservingOpen.aspectOf().addObserver(f, hy);

The unit test now fails, due to two implementations

traversing the list of observers in opposite orders. The

order of notification is not relevant, so if we reverse

the order with which observers are subscribed we do

not really change behaviour.

public aspect ObservingOpen {
 private interface Subject {}
 private interface Observer {}

 public abstract boolean Subject.isOpen();
 public abstract void Observer.breakfastTime();
 private boolean Subject.alreadyOpen = false;

 private WeakHashMap subject2ObserversMap =
 new WeakHashMap();
 private List getObservers(Subject subject) {
 List observers =
 (List)subject2ObserversMap.get(subject);
 if(observers == null) {
 observers = new ArrayList();
 subject2ObserversMap.put
 (subject, observers);
 }
 return observers;
 }
 public void addObserver
 (Subject subject, Observer observer) {
 List observers = getObservers(subject);
 if(!observers.contains(observer))
 observers.add(observer);
 subject2ObserversMap.put
 (subject, observers);
 }
 public void removeObserver(Subject subject,
 Observer observer) {
 getObservers(subject).remove(observer);
 }
 public void clearObservers(Subject subject) {
 getObservers(subject).clear();
 }
 private void notifyObservers(Subject subject) {
 //...
 }
 pointcut flowerOpen(Subject subject):
 execution(void open()) && this(subject);
 after(Subject subject) returning :
 flowerOpen(subject) {
 notifyObservers(subject);
 }
 pointcut flowerClose(Subject subject):
 execution(void close()) && this(subject);
 after(Subject subject): flowerClose(subject) {
 subject.alreadyOpen = false;
 }
 declare parents: Flower implements Subject;
 declare parents:
 (Bee || Hummingbird) implements Observer;
}

Listing 5: ObservingOpen aspect after tidying up.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

We perform the change (see tidyingup1.step05) and

the test now passes. After deleting code related to the

original implementation, ObservingOpen is as shown

in listing 5 (see also tidyingup1.step06).

Improving the internal structure of ObservingClose

requires steps similar to those prescribed by Tidy Up

Internal Aspect Structure, comprising the use of:

Removal of imports of java.util.Observable and

java.util.Observer. Compound names are used

instead.

Use of Generalize Target Type with Marker

Interface requiring prior creation of private inner

interfaces Observer and Subject.

Applying Generalize Target with Marker Interface

to Flower: references to Flower are replaced by

Subject. Extend Marker Interface with Signature is

used to introduce method isOpen to Subject.

Applying Generalize Target with Marker Interface

to Bee and Hummingbird, which are replaced by

Observer. BedtimeSleeper is eliminated, along with

the corresponding ‘declare parents’. Extend Marker

Interface with Signature is used again to introduce

method bedtimeSleep to Observer.

Use Replace Inter-type Field with Aspect Map with

Replace Inter-type Method with Aspect Method to

add a new implementation to ObservingClose.

Following Replace Inter-type Method with Aspect

Method, a ‘declare warning’ is added to expose

calls to method closing.

 declare warning:
 call(java.util.Observable closing()):
 "closing() called here.";

Following the points exposed by the declare

warning, the calls in the test are replaced. Again,

we reverse the order in which observers are

registered. We remove the declare warning and

compile: the test runs successfully.

ObservingClose is now as shown in snapshot

tidyingup1.step07.

3.4. Extracting a superaspect

Taken individually, the refactored aspects are better

formed. Taken together, they betray Duplicated Code

[3]. We eliminate the duplication by using Extract

Superaspect to create a superaspect and pull up the

common logic to it. This entails the following steps

(see tidyingup1.step10):

Create blank abstract aspect

ObservingRelationships.

Aspects ObservingOpen and ObservingClose are

made to extend ObservingRelationships.

Pull Up Marker Interface is used on Subject and

Observer in both aspects, moving them to

ObservingRelationships. Their access is relaxed

from private to protected.

Pull Up Field [3] is used on fields

subject2ObserversMap in both aspects.

Pull Up Method [3] is used on methods

getObservers, addObserver, removeObserver and

clearObservers, in both aspects.

We would like to use Pull Up Method [3] on

method notifyObservers as well, but the method

depends on many case-specific members. Thus, we

merely place an abstract declaration of notifyObservers

in the superaspect. Pointcuts flowerOpen and

flowerClose are also case-specific and we refrain from

introducing further abstract declarations. This is one of

the advantages of refactoring: decisions are not set in

stone. One can always change its mind later and

refactor. The extracted aspect is as shown in listing 6

(see also tidyingup1.step11).

public abstract aspect ObservingRelationships {
 protected interface Subject {}
 protected interface Observer {}

 protected WeakHashMap subject2ObserversMap =
 new WeakHashMap();
 protected List getObservers(Subject subject){
 //...
 }
 public void addObserver
 (Subject subject, Observer observer) {
 //...
 }
 public void removeObserver(Subject subject,
 Observer observer){
 getObservers(subject).remove(observer);
 }
 public void clearObservers(Subject subject) {
 getObservers(subject).clear();
 }
 protected abstract void
 notifyObservers(Subject subject);
}

Listing 6: Part of the extracted superaspect

3.5. Alternative refactoring path

Previous sections show how to derive an abstract

aspect from existing code, but an aspect providing that

functionality was available already [6]. The eclipse

project therefore includes an alternative path reusing

ObserverProtocol (see the 11 tidyingup2 snapshots). It

starts just after completion of the extraction process

(end of section 3.1) and involves adding only case-

specific parts, because ObserverProtocol already

contains the general ones.

ObserverProtocol was presented as “reusable” [6],

but we were forced to perform invasive changes (that

is why ObserverProtocol was moved from its original

package). ObserverProtocol models the events

triggering the observer reactions with a single pointcut,

but this case requires two. In addition, notification of

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

registered observers is based on a test (whether it is the

first occurrence). If it succeeds, observers are notified.

The test relies on field OpenNotifier.alreadyOpen. We

could bind it to Subject as an inter-type declaration,

but the point in the code where the test should be

placed is within ObserverProtocol, in the advice acting

on the subjectChange pointcut:

after(Subject s): subjectChange(s) {
 Iterator iter = getObservers(s).iterator();
 while (iter.hasNext()) {
 updateObserver(s,((Observer)iter.next()));
 }
}

This further forces us to invasively adapt

ObserverProtocol. Subaspects cannot override advice

inherited from superaspects, so we use Push Down

Advice to place the advice in the subaspects, after

which they are adapted. In addition, ObserverProtocol

does not provide the ability to clear all observers that

subscribed to a given subject. We therefore add such a

method to ObserverProtocol.

4. Discussion

The refactoring process presented in this paper

shows that extractions based on inter-type declarations

do not change the original design, but merely

modularize it. OO is a decentralized model that

induces decentralized designs such as the initial Java

implementation. Even after a decentralized design is

modularized within an aspect, it is still a decentralized

design. Once modularized, such a design may need to

be changed, if not downright replaced. However, we

must start by extracting it to an aspect, because many

improvements can be performed only when all code is

localized within a single module.

The refactoring example also shows how hard it is

to obtain reusable modules, even with AOP. The

abstract aspect for pattern Observer [6] had to undergo

invasive changes just to be used in the simple example

by Eckel [1].

5. Conclusion

This paper makes the following contributions:

Presents a practical example of a refactoring

process that goes beyond the extraction of aspects

and covers the subsequent tidying up of the

extracted aspects, including the internal

restructurings and factoring out common code to a

superaspect.

Includes an eclipse project containing 33 complete

snapshots, available as an online supplement. This

project further documents the refactoring process.

Comprises an introduction to the collection of

refactorings presented in [13] and documented in

[11], playing a similar role to chapter 1 of [3].

The examples presented in this paper complement

the code examples included in the description of

the refactorings [11].

6. References

[1] Eckel, B., Thinking in Patterns, revision 0.9. Book in

progress, May, 2003. http://64.78.49.204/ IPatterns-0.9.zip

[2] Filman, R. E., Friedman, D. P., Aspect-Oriented

Programming is Quantification and Obliviousness, workshop

on Advanced Separation of Concerns, OOPSLA 2000,

Minneapolis, Oct/2000.

[3] Fowler M., Beck, K., Opdyke, W. Roberts, D.,

Refactoring – Improving the Design of Existing Code.

Addison Wesley 2000.

[4] Gamma, E.; Helm, R., Johnson, R., Vlissides, J., Design

Patterns, Elements of Reusable Object-Oriented Software,

Addison Wesley, 1995.

[5] Hanenberg, S., Oberschulte, C., Unland, R., Refactoring

of Aspect-Oriented Software, Net.ObjectDays 2003, Erfurt,

Germany, Sep/2003.

[6] Hannemann, J., Kiczales, G., Design Pattern

Implementation in Java and AspectJ, OOPSLA 2002, Seatle,

USA, Nov/2002.

[7] Iwamoto, M., Zhao, J., Refactoring Aspect-Oriented

Programs, 4th AOSD Modeling With UML Workshop,

UML'2003, San Francisco, USA, Oct/2003.

[8] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,

Palm, J., Griswold, W. G., An Overview of AspectJ, ECOOP

2001, Budapest, Hungary, Jun/2001.

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C., Loingtier, J., Irwin, J., Aspect-Oriented

Programming, ECOOP 1997, Finland, Jun/1997.

[10] Laddad, R., Aspect-Oriented Refactoring, parts 1 and 2,

The Server Side, 2003. www.theserverside.com/

[11] Monteiro, M. P., Catalogue of Refactorings for AspectJ,

Technical Report UM-DI-GECSD-200401, Departmento de

Informática, Universidade do Minho, Aug/2004.

[12] Monteiro, M. P., Fernandes, J. M., Object-to-Aspect

Refactorings for Feature Extraction, Industry track paper at

AOSD'2004, Lancaster, UK, Mar/2004.

[13] Monteiro, M. P., Fernandes, J. M., Towards a Catalogue

of Aspect-Oriented Refactorings, AOSD’2005, Chicago,

USA, Mar/2005.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

