
Pluggable Grid Services
João Luís Sobral

Centro de Ciências e Tecnologias da Computação, Departamento de Informática,

Universidade do Minho, Braga, Portugal

Abstract— This paper introduces a new concept of pluggable grid

service, that provides seamless access to computational grids,

based on aspect-oriented techniques. Pluggable grid services

avoid explicit calls to grid services in scientific codes, localize

grid-specific concerns into well defined modules and can be

(un)plugged from scientific codes. Domain specific code becomes

oblivious of grid issues, allowing scientists to concentrate on

domain specific issues, and to manage grid issues by composing

grid-specific modules. This paper presents a collection of

pluggable grid services that illustrates the idea and shows how

pluggable grid services can grid-enable a skeleton framework.

I. INTRODUCTION

Computational grids provide unparallel computational

power to scientists, making it possible to perform larger and

more complex simulations and experiments. However, current

grid services require a considerable up-front investment to

understand and to use a grid application programming

interface. Moreover, to enable applications to run on

computational grids, scientists lose control of the overall

structure of their code and execution of their code becomes

dependent of a grid infrastructure (or a ghost local grid). For

instance, when using MPICH-G [1] programmers must

parallelize their application, splitting application data among

MPI process and to use send and receive primitives to

exchange data among processes. The main control flow is now

MPI-based, which poses limitations to understanding and

evolving grid-enabled codes. These limitations contribute to a

shortage of real grid users, as converting applications to run

on computational grids requires multiple and non-reversible

changes to the original domain specific code.

Aspect-oriented programming [2] (AOP) was proposed to

address crosscutting concerns in systems software. AOP

makes it possible to localize into well defined modules

concerns that are not effectively modularized with other

programming techniques. Concerns modularized with AOP

techniques include security [3], persistence [4], distribution

[5], concurrency [6], parallelization [7] and profiling [8].

This paper explores the use of AOP techniques to support

pluggable grid services (PGS). The idea is three-fold:

(i) Modularity of grid concerns: to use AOP techniques

to localize grid concerns into well defined modules.

(ii) Pluggability of grid services: to provide means to

grid-enable scientific applications with less changes to

the source code than current approaches.

(iii) Unpluggability of grid services: to support the

development of grid enabled applications that can run

when grid-specific modules are not included in the

build.

The goal of pluggable grid services is not to provide a new

grid middleware, but to leverage the usage of current grid

infra-structure, providing a seamless access to grid resources.

This paper starts by an overview of AOP techniques.

Section III presents the concept of pluggable grid service and

outlines the current Java-based implementation. Section IV

illustrates the use of pluggable grid services by showing how

these services were used to transform a Java skeleton

framework into a grid-enabled framework. Sections V and VI

discuss the approach and related work, respectively. Section

VII concludes the paper.

II. OVERVIEW OF ASPECT-ORIENTED CONCEPTS

AOP was proposed to help to modularize the so-called

crosscutting concerns in software systems. Crosscutting

concerns are system behaviours that are not effectively

modularized with other programming techniques. The

implementation of crosscutting concerns leads to code

tangling - the code that implements the concern is mixed with

other application functionality - and scattering - the code that

implements the concern is distributed by several modules.

Suppose, for instance, that the programmer wants to add a

logging mechanism to an object oriented application, to print

the name of each method executed. Using traditional

mechanisms it needs to include a print (or a call to a logging

API) on every method implementation, resulting in tangling

and scattering of the logging concern. AOP techniques make it

possible to attach this behaviour with a single statement like

the following (an aspect coded in pseudo-AspectJ [9]):

aspect logging {
 around execution(* *.*(..)) { // on every method execution
 print(thisJoinPoint().methodName()) // print method name
 proceed() // execute original method
} }

The aspect complier will generate code to call the print

statement on every method execution (e.g., by including the

print statement on each method implementation). This

compilation process in called weaving to emphasize the fact

that this behaviour is attached to multiple execution points.

Execution points where it is possible to attach additional

functionality are called join points. By attaching behaviour to

a set of join points a module (i.e., aspect) can change the

dynamic behaviour of the base system. Most AOP languages

also provide means to change the static structure of

applications, by modifying the type hierarchy, for instance by

inserting a method into a class or by adding a super-class to an

existing class.

Quantification and obliviousness [10] were recently

proposed as two main distinguishing features of AOP.

Quantification allows an aspect to intercept many, non-local,

application execution points and to attach aspect-related

behaviour at those points (e.g., in the above example to print

the method name). AOP languages usually provide a rich set

of options to select a subset of available join points, namely,

based on the target object type, method name, type and

number of parameters. In the presented example the logging

facility could be restrict to methods with no return type (i.e.,

returning a void type), by using execution(void *.*(..)).

Obliviousness is the ability to apply aspects to some base

code that was not explicitly prepared for that purpose. In the

above example the logging aspect does not require any special

cooperation from the original source code writer. This way,

the original code can be oblivious of the behaviour introduced

by the aspect. A consequence of obliviousness is that the

original code can run without the additional behaviour. This

work refers to this characteristic as pluggability (a term not

coined among the AOP community) to reinforce the idea that

the original system does not depend on the specific features

implemented by aspects, as this behaviour can be attached and

detached from the remainder program behaviour.

III. PLUGGABLE GRID SERVICES

The goal of pluggable grid services it to allow scientists to

run scientific applications into their desktops and to

transparently access to grid resources, when requested. The

idea is to plug accesses to grid services into certain application

execution points using pluggable modules, instead of inserting

calls to a grid application programming interface. These grid

services can, at any time, be unplugged from scientific codes.

Table I illustrates the concept of pluggable grid service.

The domain specific code is a ray tracer application (code at

the left). The pluggable service (remote execution) redirects

the execution of render methods to a remote resource. The

main point is that the remote execution concern is localized

into its own module; it can be plugged into the base scientific

code without changing the source code and it can be easily

removed from the build (i.e., unplugged). Pluggable services

can also be used through code annotations, by introducing the

annotation @remoteExec before the render method definition.

Annotations are an intermediate approach since they can be

ignored (i.e., the functionally they attach can be unplugged),

however, they require changes to the source code and they

lead to non-localized grid concerns.

TABLE I

EXAMPLE OF A PLUGGABLE SERVICE

Scientific code Remote execution module

class RayTracer {

 void render(/*…*/) {

 ...

 }

}

RemoteExec<RayTracer,”render”>

Pluggable grid services rely on AOP techniques to generate

a new type-compatible class from a domain specific class,

where the additional functionality is attached into certain

execution points (this set of join points is called a pointcut).

For instance, a class may become a remote class by changing

the class implementation, intercepting object creations and

method call statements in the original code to redirect their

execution to the remote resource [5].

The collection of pluggable grid services currently includes

services for remote object creation and remote method calls,

method execution scheduling, granularity control and fail-over

execution. Table II summarizes currently supported grid

services.

TABLE II
PLUGGABLE GRID SERVICES

Service Description

GridSeparate

<Class T, Pointcut P>

Class T becomes grid enabled (can be

created on a remote grid resource)

Separate

<Class T, Pointcut P>

Class T becomes cluster enabled (can

be created on a local cluster node)

Schedule

<Class T, Pointcut P>

Schedules method execution in

available resources

GrainControl

<Class T, Pointcut P>

Task coalescing in calls P of class T

FailOver

<Class T, Pointcut P>
Failover execution on methods P of

class T

A. Grid Separate

The separate service was inspired in the separate keyword

from Eiffel [11] that specifies that a class can be placed on a

remote resource. The GridSeparate service transforms a

domain specific class T into a grid enabled class. When this

service is plugged into a domain specific class, instances of

that class are created into remote resources and method calls

specified by pointcut P (a pattern expression that specifies a

set of method calls) are redirected to that remote instance.

Currently two underlying protocols are supported to

implement remote objects: Remote Method Invocation based

(RMI) and Job Submission based (JS).

The RMI based protocol, transforms a class into a RMI

class. It can be used to instantiate remote classes into local

area nodes and to communicate with these instances through

the standard RMI protocol. It uses a standard ssh command to

start a daemon on each available local resource. This daemon

accepts remote (intra-cluster) requests for object creations and

remote method calls.

The JS protocol transforms a class into a stand-alone

application that can be deployed on a remote grid resource.

This application is instantiated using a grid service (e.g., a

Globus GRAM service), receives requests through files that

are staged-in and saves its results into files that are staged-out

to the client machine.

Both RMI and JS services place an object factory into each

remote resource to instantiate domain specific classes. After

this factory has been created, object creations in the domain

specific code are redirected to the remote resource, by

intercepting new statements. Method calls to these instances

are redirected to the remote instance; either by means of

standard RMI mechanisms or through grid file stage-in and

stage-out mechanisms.

Both services require that each class becoming grid enabled

should follow the standard rules applied to RMI enabled

classes, namely, accesses to static or shared variables are not

allowed.

The separate service requires access to a list of available

resources to instantiate separate classes and the definition of a

policy to select one particular resource from the list. The

separate service provides default implementations (e.g.,

round-robin selection) than can be adapted to an

application/middleware specific case, for instance to use an

external grid service to find available resources.

The important point about the separate service is that it is a

(un)pluggable service and that changes to its implementation

do not require changes in the domain specific code.

B. Schedule

The goal of the scheduler service is to select the best

resource for each task execution. It acts upon a set of object

instances to adapt the load distribution according to the

available processing power and the computational

requirements of each task.

The Schedule service applies a load-balancing mechanism

to all instances of class T and to method calls specified by

pointcut P. The load-balancing mechanism selects the instance

with the shortest execution time to perform the next method

execution. Method calls to a scheduled method are delayed

until a class instance is available for execution.

The Schedule service can be composed with the Separate

service, scheduling method executions among remote objects

to balance the load. In that case, it may be of interest to

employ multiple schedulers in an application. For instance, a

scheduling level can perform intra-cluster scheduling whereas

another level can schedule method executions among clusters,

replacing the traditional rule of a grid meta-scheduler.

Current scheduler implementation is based on Java

executors. Whenever a scheduled method call is performed

the call is encapsulated into a command pattern [12] and it is

placed into a shared work queue. A set of working threads

(one for each remote object instance) retrieve tasks from the

work queue and send these tasks for remote execution.

Whenever a task completes execution, a new task is retrieved

from the queue and sent to the remote object instance. Since

the workload is distributed on demand there is no need to

measure the workload of remote compute resources.

Application-specific schedulers can be implemented by

extending the provided scheduler service, for instance, to take

advantage of compile-time estimations of execution time.

C. Grain Control

The grain control service has two goals: to decide if a

resource should be used for task execution and to combine

fine-grained tasks into coarse-grain tasks. The idea is to

provide fine-grained tasks (sometimes called

over-decomposition [13]) that are coalesced at run-time to

match resource availability.

The GrainControl service applies a granularity control

mechanism to all instances of class T and to method calls

specified by pointcut P. For each remote object instance, this

service computes the minimum number of tasks that should be

combined into a single request for an efficient resource usage.

It is based on a 1 to 10 ratio heuristic (i.e., communication

costs should be less than 1/10 of computation costs). The

grain control service may decide to not to use a resource due

to a too high communication overhead.

The grain control service relies on run-time profiling that

collects the time spent on each remote task execution. It is

based on a probing phase that gathers the computational

power and communication costs for each remote resource. A

static function can be supplied to provide an estimate of the

method complexity, which can be useful when no profiling

information is yet available.

Implementation of the grain control service is based on the

composite pattern [12]. Each method call is transformed into a

command that is inserted into a composite of tasks that are

sent as a single unit for remote execution.

The GrainControl service can be combined with both

Separate and Schedule services. It is also possible to combine

multiple grain-control services into a single application. For

instance, it is possible to have a grain-control service for

intra-cluster instances and another service for inter-cluster

grain control.

D. Fail Over Service

The fail over service can be used to address faulty

resources. It provides a time-out mechanism that may

re-execute a task into the same or into another grid resource.

The FailOver service applies a fault tolerance mechanism

to all instances of class T and to method calls specified by

pointcut P. Whenever a time-out occurs, a mechanism similar

to the scheduler selects an available resource for task

re-execution. This time-out is computed by using run-time

profiling data, but it can also be supplied by the programmer.

The fail over service can be combined with grain-size

control to re-execute a set of coalesced tasks.

public aspect Separate<Class T, Pointcut P> {

 main() { // main function. registers server in RMI
 T rt = new T(); // creates a new instance of T
 … // register instance in name server
 … // wait for shutdown
 … // un-register instance in RMI name server
 }

 around execution (T.new) {
 … // get a reference to the remote instance;
 }

 around execution (P) {
 … // delegate execution to the remote instance
 }

}

Fig. 1 – Outline of the implementation of the Separate service

E. Implementation Outline

The current implementation is based on a source code to

source code generator that generates AspectJ. Generating

AspectJ avoids modifying the original source code and

reduces the amount of the generated code when compared

with similar Java-based tools.

The Separate service relies on AspectJ AOP features to

change the type hierarchy and to attach additional

functionality to certain execution points. Fig. 1 presents the

AspectJ pseudo-code of Separate<Class T, Pointcut P>

service implementation in Java RMI (for clarity, exception

handling code and remote factory code are not included).

The generated code introduces a new main method, which

creates an instance of class T and registers this instance into

the RMI name server. This instance will serve incoming RMI

requests, until a shutdown order is received. The around

execution(T.new) statement redirects creations of objects of

type T to a remote resource (it also creates a local fake object

and saves the association among local fakes and remote

instances into a local hash map, code not shown in the figure).

The around execution(P) redirects method calls specified by

pointcut P to the remote instance. In addition to the generated

AspectJ code, the implementation also relies on scripts to

perform command line requests to remotely execute java code

(e.g. jar files).

The GridSeparate service is implemented in a similar

manner. However, there are two main differences:

1. Communication with the remote object instance is

performed by means of file stage-in and stage-out that

contain method execution requests and replies.

2. Object instantiation is performed by submitting a task

to a remote grid resource, instead of local creating the

executable using the remote secure shell.

The Schedule service implementation keeps track of all

created instances of the target class (also based on the T.new

join point but it does not creates new instances). On each

method call it selects one target remote instance or it places

the request into a work queue.

F. Annotations

Annotations provide an alternative way to plug grid

services into specific element types, e.g. methods or classes

(see Fig. 2).

@ClassAnnotation
public class <class_name> {
 //...
 @MethodAnnotation
 public void method_name() { … }
}

Fig. 2 – Annotation elements

The collection of grid services can also be used with

annotations (see Table 3). Each implementation (presented in

the previous section) supports both the traditional and

annotation based style of using grid services. AspectJ enables

the use of single implementations for both styles.

TABLE III

PLUGGABLE GRID SERVICES ANNOTATIONS

Service Annotation Target type

[Grid]Separate @[Grid]Separate Class

Schedule @Schedule(…) Method

GrainControl @GrainControl(…) Method

FailOver @FailOver(…) Method

IV. GRID ENABLED JASKEL APPLICATIONS

This section shows how the proposed pluggable grid

services were used to transform a Java-based skeleton

framework into a grid enabled framework. The resulting

framework allows the transparent execution of skeleton

applications on local machines and/or on computational grids.

A. JaSkel Overview

The JaSkel framework [14] is based on a set of abstract

Java classes that encapsulate pre-set parallelization strategies.

To develop an application the programmer selects the classes

that best match the application parallelization structure and

fills the framework hooks with domain specific functionality.

The framework takes care of all aspects of parallel execution,

including starting parallel activities, splitting the work into

parallel tasks and joining the results.

Fig. 3 illustrates a simple JaSkel farming application. Lines

01-06 declare a MyWorker class that implements the domain

specific code. The compute method receives a task to process

and returns the processed task. Lines 07-16 define a MyFarm

class that creates several workers and includes the split and

join methods to split the original tasks into independent pieces

of work and to join the processed pieces of work. Lines 18-23

create a task and a MyFarm instance, start the farm activity

and gather the results using the getResult method. In this code

the number of workers can be provided by the programmer or

selected by the framework.

01 public class MyWorker extends Compute {
02 …
03 public Object compute(Object input) {
04 return /* processed input */;
05 }
06 }
07 public class MyFarm extends Farm {
08 …
09 public MyFarm(Object task) {
10 super(task); // save task into local structure
11 for(int i=0; i<myNumberOfWorkers; i++)
12 /* … */ = new MyWorker();
13 }
14 Collection split(Object initialTask) { … } // split
15 Object join(Collection partialResults) { … } // join
16 }
17
18 // main function
19 Task task = … // task to compute
20 MyFarm farmer = new MyFarm(tasks);
21 farmer.eval(); // starts the farming process
22 Object o = farmer.getResult(); // get results

Fig. 3 A sample JaSkel task farm

The Farm eval method creates several workers, splits the

initial task using the supplied split method, sends a piece of

work to each worker and joins the processed pieces of work

using the supplied join method.

Using the built-in Farm skeleton it is possible to take

advantage of multi-core and/or multiprocessor machines, as it

spawns one thread per each worker, performing concurrent

compute calls.

B. Grid Enabled Skeletons

Pluggable grid services allow the transparent execution of

JaSkel applications on cluster and/or grid platforms. The

GridSeparate service can be applied to the MyWorker class to

transparently introduce remotely executed workers, using the

following statement:

GridSeparate<MyWorker,”compute”>

The previous statement indicates that all instances of

MyWorker class can be created and executed on a remote grid

resource and that method calls to the compute method should

be redirected to that remote instance. As an alternative, it is

possible to specify that instances of the MyWorker class are

distributed across local nodes, using the Separate service.

Selecting the faster resource for a particular task can be

addressed using the Schedule service. For this purpose the

number of provided tasks (computed by the split method)

should be much larger than the number of workers to attain a

good load distribution [15]. The scheduler service implements

a demand-driven scheme, where faster resources receive more

tasks to process. This service can be applied to this example

by the following statement:

Schedule<MyWorker,”compute”>

This statement binds the Schedule service to compute calls

of class MyWorker. Calls to this method will be delayed until

one remote instance is ready to execute the compute call,

leading to a demand driven task allocation among available

resources.

Selecting the ideal number of resources to use for a

particular application can be addressed by the GrainControl

service. This service uses profiling data to compute the

minimum size of each task and it can even decide that a

particular resource can not be effectively used by an

application. This service can be useful in cases where the

available resources are much larger than the computational

requirements of the application.

The FailOver service can be plugged into the previous

application in a similar manner

C. Multi-level Skeletons

This section uses a multi-level skeleton application to

illustrate the use of multiple Separate and Schedule services

into a single application. The case study (see Fig. 4) of a

multi-level skeleton is a meta-farm that creates several farms

from Fig. 3. A meta-farm is composed of multiple farms, and

each farm has its own workers.

01 public class MetaFarm extends Farm {
02 …
03 public MetaFarm(Object task) {
04 super(task); // save task into local structure
05 for(int i=0; i<myNumberOfFarms; i++)
06 /* … */ = new MyFarm();
07 }
08 Collection split(Object initialTask) { … } // meta-farm split
09 Object join(Collection partialResults) { … } // meta-farm join
10 }
11
12 // main function
13 Task task = … // task to compute
14 MetaFarm farmer = new MetaFarm(tasks);
15 farmer.eval(); // starts the farming process
16 Object o = farmer.getResult(); // get results
17

Fig. 4 A JaSkel meta-farm

The idea of a meta-farm is to deploy a farm on each grid

resource and to use the scheduler service to perform the load

balancing among farms.

Using pluggable services it is possible to deploy each

MyFarm on a grid cluster and to deploy MyWorker instancies

into local cluster nodes. This is accomplished by the following

statements:

GridSeparate<MyFarm,”compute”>
Separate<MyWorker,”compute”>

Multiple scheduler services can be applied in a similar

manner using the statements:

Schedule<MyFarm,”compute”>
Schedule<MyWorker,”compute”>

One scheduling level (MyFarm scheduler) is deployed on

each local cluster and a meta-scheduler balances the load

among clusters (i.e., among MyFarm instancies)

D. Pluggable Grid Services Performance

This section aims to evaluate the performance benefits of

pluggable grid services, by comparing the performance of a

base JaSkel application and grid enabled versions.

Performance results presented in this section were collected

using two clusters at the Universidade do Minho campus.

Each cluster consists of a 5-nodes, dual processor machines

(Xeon 3.2 GHz). Single node tests were performed on a Mac

Pro Xeon 5130 (with two dual core processors). Single and

multi-cluster results are based on pluggable grid services

described in section III.

The PGS approach enables the use of a single code base to

run an application on a multi-core machine, on a cluster and

on a federation of clusters. Depending on the target platform,

the programmer just plugs the required service(s).

Fig. 5 compares the execution times of the base JaSkel code

and the same base source code with attached pluggable

services (Separate services). The application is the Java

Grande Forum parallel ray tracer (image size of 4000) [16].

0

400

800

1200

1600

2000

0 4 8 12 16 20

Parallel Tasks

T
im
e
 (
s
)

JaSkel

JaSkel + Separate

JaSkel + GridSeparate

Fig. 5 Separate Grid Services Performance

As it is expected, the base JaSkel application can not take

advantage of more than 4 parallel tasks, as it relies on shared

memory mechanisms. Using the Separate service, JaSkel

skeletons can be distributed across the nodes of a local cluster.

The GridSeparate service distributes tasks among the two

clusters, enabling the application to take advantage of more

parallel tasks. The Separate service imposes an additional

overhead when using a small number of nodes, due to the

introduction of a communication middleware (e.g., Java RMI).

Performance penalty of this service is less than 5%, when

compared with the manual introduction of communication

primitives into JaSkel skeletons (results not presented here).

The next benchmark evaluates the schedule service. Fig. 6

compares the execution times of the same application (running

on two clusters, by means of the GridSeparate service), but

now there is an imbalance among tasks (the partition of the

image to render is made block-wise instead of cyclic, as in the

JGF implementation). In this imbalanced version the number

of tasks is four times more than the number of remote

resources.

0

400

800

1200

1600

2000

0 4 8 12 16 20

Remote resources

T
im
e
 (
s
)

JaSkel imbalanced

JaSkel imbal. + Schedule

JaSkel balanced

Fig. 6 Scheduler Service Performance

These results show that the scheduler service was able to

address the application load imbalances, avoiding execution

penalties. This service provides execution times close to the

balanced version (5% overhead, on average). Using the

schedule service the original application could be relived from

the code to provide equally sized tasks. Moreover, the

scheduler service can also address the use of heterogeneous

remote resources.

The last test evaluates the effectiveness of the grain size

control service. Fig. 7. compares execution times of the ray

tracer of a smaller image size (1000x1000), when no grain

control is performed, when the grain-size is manually tuned

and when the Grain-control service is used.

0

30

60

90

120

150

0 4 8 12 16 20

Remote resources

T
im
e
 (
s
)

JaSkel f ine-grain

JaSkel + Grain-control

JaSkel man-tuned

Fig. 7 Grain-control Service Performance

When no grain control is performed (JaSkel fine-grain in

the figure) there is an overhead of using a large number of

remote resources. This overhead is due to fine-grained tasks

that introduce an overhead when they are remotely executed.

The Grain-control service can remove this overhead and, more

importantly, it can detect that this application can not

effectively take advantage of more than 12 remote compute

resources, transparently avoiding the use of more resources

than required.

V. DISCUSSION

Enabling scientific applications to run on grid platforms

with pluggable grid services requires an adequate set of join

points (i.e., execution points) in the original code to plug these

grid services. Moreover, applications must be amenable to run

on grid platforms (i.e., to provide a set of loosely coupled

parallel activities, whose execution can be transparently

redirected to remote compute resources). If these two

requirements are not meet the application must be refactored

to expose the required join points and a loosely coupled set of

parallel activities. The goal of PGS is not to transform a

sequential application into a parallel equivalent, but to help to

enable scientific codes to run on computational Grids. Support

for these refactorings is delegated to other tools. JaSkel plays

an important rule in this path as it provides a software

infrastructure to help to perform these refactorings.

Applications built upon the JaSkel farm skeleton already

satisfy the above requirements ([7] presents an alternative to

JaSkel, using AOP techniques to modularize parallelization

strategies). It should be stressed that PGS do not depend on

JaSkel or on other tools if the original code is already

amenable to run on computational grids.

The current implementation of PGS relies on a library of

aspects built on Java and AspectJ. Java greatly simplifies the

process of deploying grid applications and PGS since the

application and required libraries can be packed into an

autonomous jar file and executed on any grid resource that has

a Java Virtual Machine (JVM). AspectJ is the most stable and

well-know AOP compiler and produces JVM compliant

bytecodes. Although it would be possible to fully implement

PGS in Java, this approach would replicate weaving tasks

currently performed by the AspectJ compiler. The AOP

community also provides support for other languages. As an

example, AspectC++ [17] is the most well known AOP tool

for C/C++. Conceptually, PGS can also be implemented with

AOP tools that support other languages.

Supporting PGS for multiple target languages rises a new

issue of how the develop language independent PGS than can

be weaved into multiple target languages. Ultimately, it would

be necessary to build a library of PGS and an aspect weaver

for each target language. This issue falls into the more recent

field of language independent AOP [18]. These issues are

being addressed in the AspectGrid project [19], where PGS

will be used to enable Java, C++ and Fortran codes to run on

computational grids.

Object-oriented programming fully leverages current AOP

techniques. Procedure-based languages, such as C, do not

have such strong modularity capabilities; as a consequence

they do not provide a so rich set of join points. There are some

results showing that legacy systems can also benefit from

AOP techniques [20]; however the modularity support of the

base language has an impact on the AOP ability to modularize

crosscutting concerns. In the specific case of PGS, the set of

available join points defines the points in execution where

PGS can be attached. A poor set of join points in the target

language can make it more difficult to modularize and to

support pluggable grid concerns. For instance, in Java/AspectJ

an object creation is a join point, but there is no similar join

point in C.

Current AOP technology, including the AspectJ compiler,

requires access to the application source code. It would be

technically possible to perform weaving only at binary level

(i.e., without access to application source code) if binaries

include the information required for aspect weaving.

Languages based on a virtual machine make this task easier

since binary files include more symbolic information than

binaries generated from languages like C++.

Grid systems are moving towards service oriented

architectures. PGS can contribute to this move in two ways:

by transparently enabling applications to consume grid

services and by helping to expose certain functionality as a

grid service. First, PGS help to decouple the client from the

service provider (actually the client is oblivious of the

provided grid service), making it easier to transparently

delegate a specific functionality to an external service

provider. For instance, the fail-over PGS could be

transparently delegated to an external provider. Second, PGS

can help to transparently deploy certain application

functionally as a grid service. For instance, the GridSeparate

PGS deploys an instance of a Java class into a remote resource.

This approach can be extended to deploy a Java class as a web

service on a remote container.

VI. RELATED WORK

The Globus toolkit [21] is a standard for grid computing. It

includes services for authentication and authorization,

resource discovery, allocation and monitoring and file

management. The Java commodity grid kit (Java CoG) [22]

provides an application programming interface to grid

services. It provides a set of Java interface components,

mapping commonly used grid services from Globus and also

includes utility components and services to improve Globus

toolkit functionality. GMarte [23] is a high level Java API that

offers an object-oriented, user friendly, interface to the Globus.

It allows programmers to run applications on grid

environments without detailing the procedure of job execution.

The Grid Application Toolkit (GAT) [24] aims to provide a

simple, clear interface to many different grid infrastructures,

by providing a set of adaptors that connect GAT to grid

services, supporting multiple providers (e.g., Globus, Unicore).

These approaches require an up-front application redesign to

use the provided grid application programmer interface.

MPICH-G2 [1] enables the transparent execution of MPI

programs into computational grids. Higher-Order Components

for grids [25] is skeleton framework specifically designed to

support the execution of skeleton-based applications on grid

systems. The use of AOP techniques to transparently execute

Java thread-based applications on grids is addressed in [26].

PGS differ from these approaches, since PGS address grid

issues by means of modular and (un)pluggable services.

Approaches based on XML-based descriptors, commonly

used in large-scale client/server applications, were proposed to

deploy applications on grid environments [27]. In this

approach, applications are developed for a set of virtual nodes

and XML-based descriptors are used to map virtual nodes into

physical resources, without source code changes. GridGain

[28] is open source framework to support the development of

grid applications. It provides the @Gridify annotation to

specify execution into a remote grid resource. Both

approaches are closely related to our approach, as they

provide a seamless access to grid resources. Pluggable grid

services can be more easily composed and extended to deploy

efficient grid enabled applications. Both XML-based

descriptors and annotations must resort to other techniques

when the service must be configured with application specific

behaviour. These approaches do not aim to attain modular and

(un)pluggable grid services. PGS goes a step further by

completely relying modular and pluggable grid services to

manage grid concerns.

VII. CONCLUSION

This article presented a new approach to make grid enabled

scientific codes, based on pluggable grid services. The

approach relies on aspect-oriented techniques to localize grid

concerns into (un)pluggable modules.

Pluggable grid services promote a softer transition to grids

as they can be attached to current scientific applications

without requiring source code modifications. Pluggable grid

services can be flexibly composed to develop applications that

can take advantage of the hierarchical nature of computational

grids. Moreover, pluggable grid services can be unplugged

from scientific applications making it easier to evolve grid

enabled codes.

Experimentation with the JaSkel framework showed how

these goals were achieved: using the proposed approach

JaSkel applications transparently become grid-enabled, by

plugging modules that localize grid execution issues. This

migration did not required changes to the framework code and

original JaSkel applications can still run when grid related

modules are unplugged.

Current work includes the development of a complete set of

language independent pluggable grid services, namely to

address data grids, utility computing and security issues. This

set of services will be more tightly connected to current grid

technology, for instance, the scheduler implementation can

use current grid schedulers, instead of implementing its own

scheduling policy.

ACKNOWLEDGMENTS

The author would like to acknowledge to the anonymous

reviewers and to Carlos Cunha for their comments that helped

to clarify the explanation of the Pluggable Grid Service

concept.

This work was supported by PPC-VM project (Portable

Parallel Computing Based on Virtual Machines,

POSI/CHS/47158/2002), AspectGrid project (Pluggable Grid

Aspects for Scientific Applications, GRID/GRI/81880/2006)

and by SeARCH (Services & Advanced Computing with

HTC/HPC, CONC-REEQ/443/EEI/2005), all funded by

Portuguese FCT and European funds (FEDER).

REFERENCES

[1] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled

Implementation of the Message Passing Interface”, Journal of Parallel
and Distributed Computing, vol. 63, no. 5, May 2003.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, J. Irwin, “Aspect-Oriented Programming” European
Conference on Object-Oriented Programming (ECOOP), 1997.

[3] R. Hao, L. Bölöni, K. Jun, D. Marinescu, “An aspect-oriented approach

to distributed object security”, Fourth IEEE Symposium on Computers
and Communications, 1999.

[4] A. Rashid, R. Chitchyan, “Persistence as an aspect”, 2nd International

Conference on Aspect-oriented Software Development (AOSD), 2003.

[5] S. Soares, L. Loureiro, P. Borba, “Implementing Distribution and

Persistence Aspects With AspectJ”, Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’02), Nov. 2002.

[6] C. Cunha, J. Sobral, M. Monteiro, “Reusable Aspect-Oriented

Implementation of Concurrency Patterns and Mechanisms”, Fifth
International Conference on Aspect Oriented Software Development

(AOSD'06), March 2006.

[7] J. Sobral, “Incrementally developing parallel applications with
AspectJ”, 20th IEEE International Parallel & Distributed Processing

Symposium (IPDPS'06), Greece, Rhodes, April 2006.

[8] D. Pearce, M. Webster, R.t Berry and P. Kelly, “Profiling with
AspectJ”, Software: Practice and Experience, vol. 37, no. 7, June 2007.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold,

“An Overview of AspectJ”, European Conference on Object-Oriented
Programming (ECOOP), June 2001.

[10] R. Filman, D. Friedman, “Aspect-Oriented Programming is

Quantification and Obliviousness”, In R. Filman et al., (Eds.), Aspect-
Oriented Software Development, Addison-Wesley, 2005.

[11] B. Meyer, Object-Oriented Software Construction, Prentice Hall 1997

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, MA:

Addison-Wesley, 1995.

[13] R. Fernandes, K. Pingali and P. Stodghill, “Mobile MPI Programs in
Computational Grids”, ACM Symposium on Principles and Practices

of Parallel Programming (PPoPP), 2006.

[14] J. Fernando, J. Sobral, A. Proenca, “JaSkel: A Java Skeleton-Based
Framework for Structured Cluster and Grid Computing”, 6th IEEE

International Symposium on Cluster Computing and the Grid
(CCGrid'2006), Singapore, May 2006.

[15] I. Foster, Designing and Building Parallel Programs, Addison-Wesley,

1995.
[16] J. Smith, J. Bull, J. Obdrzálek, “A Parallel Java Grande Benchmark

Suite”, Supercomputing Conference (SC 2001), Denver, Nov. 2001.

[17] www.aspectc.org
[18] D. Lafferty, V. Cahill, “Language-Independent Aspect-Oriented

Programming”, Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA), Anaheim, CA, October 2003.
[19] gec.di.uminho.pt/aspectgrid

[20] R. Lämmel, K. Schutter, “What does aspect oriented programming

mean to Cobol?”, International Conference on Aspect-Oriented
Software Development (AOSD), Chicago, IL, March 2005

[21] www.globus.org

[22] G. Laszewski. I. Foster, J. Gawor, P. Lane, “A Java commodity grid
Kit”, Concurrency and Computation: practice and experience, vol. 13,

no. 8-9, 2001.

[23] J. Alonso, V. Hernández, G. Moltó, “GMarte: Grid middleware to
abstract remote task execution”, Concurrency and Computation:

Practice and Experience, vol. 18, no. 15, December 2006.

[24] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A.
Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott, E.

Seidel, B. Ullmer, “The grid application toolkit: toward generic and

easy application programming interfaces for the grid”, Proceedings of
the IEEE, vol. 93, no. 3, March 2005.

[25] S. Gorlatch and J. Dunnweber, “From Grid Middleware to Grid

Applications: Bridging the Gap with HOCs”, Future Generation Grids,
Springer, 2006.

[26] P. Maia, N. Mendonça, V. Furtado, W. Cirne, K. Saikoski, “A Process

for Separation of Crosscutting Grid Concerns”, ACM Symposium of
Applied Computing (SAC’06), April 2006.

[27] F. Baude, D. Caromel, F. Huel, L. Mestre, J. Vayssière, “Interactive

and Descriptor-based Deployment of Object-Oriented Grid
Applications”, 11th IEEE International Symposium on High

Performance Distributed Computing, Edinburgh, Scotland, July, 2002.

[28] www.gridgain.com

