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Abstract— This paper introduces a new concept of pluggable grid 

service, that provides seamless access to computational grids, 

based on aspect-oriented techniques. Pluggable grid services 

avoid explicit calls to grid services in scientific codes, localize 

grid-specific concerns into well defined modules and can be 

(un)plugged from scientific codes. Domain specific code becomes 

oblivious of grid issues, allowing scientists to concentrate on 

domain specific issues, and to manage grid issues by composing 

grid-specific modules. This paper presents a collection of 

pluggable grid services that illustrates the idea and shows how 

pluggable grid services can grid-enable a skeleton framework. 

I. INTRODUCTION 

Computational grids provide unparallel computational 

power to scientists, making it possible to perform larger and 

more complex simulations and experiments. However, current 

grid services require a considerable up-front investment to 

understand and to use a grid application programming 

interface. Moreover, to enable applications to run on 

computational grids, scientists lose control of the overall 

structure of their code and execution of their code becomes 

dependent of a grid infrastructure (or a ghost local grid). For 

instance, when using MPICH-G [1] programmers must 

parallelize their application, splitting application data among 

MPI process and to use send and receive primitives to 

exchange data among processes. The main control flow is now 

MPI-based, which poses limitations to understanding and 

evolving grid-enabled codes. These limitations contribute to a 

shortage of real grid users, as converting applications to run 

on computational grids requires multiple and non-reversible 

changes to the original domain specific code. 

Aspect-oriented programming [2] (AOP) was proposed to 

address crosscutting concerns in systems software. AOP 

makes it possible to localize into well defined modules 

concerns that are not effectively modularized with other 

programming techniques. Concerns modularized with AOP 

techniques include security [3], persistence [4], distribution 

[5], concurrency [6], parallelization [7] and profiling [8]. 

This paper explores the use of AOP techniques to support 

pluggable grid services (PGS). The idea is three-fold: 

(i) Modularity of grid concerns: to use AOP techniques 

to localize grid concerns into well defined modules. 

(ii) Pluggability of grid services: to provide means to 

grid-enable scientific applications with less changes to 

the source code than current approaches. 

(iii) Unpluggability of grid services: to support the 

development of grid enabled applications that can run 

when grid-specific modules are not included in the 

build. 

The goal of pluggable grid services is not to provide a new 

grid middleware, but to leverage the usage of current grid 

infra-structure, providing a seamless access to grid resources. 

This paper starts by an overview of AOP techniques. 

Section III presents the concept of pluggable grid service and 

outlines the current Java-based implementation. Section IV 

illustrates the use of pluggable grid services by showing how 

these services were used to transform a Java skeleton 

framework into a grid-enabled framework. Sections V and VI 

discuss the approach and related work, respectively. Section 

VII concludes the paper. 

II. OVERVIEW OF ASPECT-ORIENTED CONCEPTS 

AOP was proposed to help to modularize the so-called 

crosscutting concerns in software systems. Crosscutting 

concerns are system behaviours that are not effectively 

modularized with other programming techniques. The 

implementation of crosscutting concerns leads to code 

tangling - the code that implements the concern is mixed with 

other application functionality - and scattering - the code that 

implements the concern is distributed by several modules. 

Suppose, for instance, that the programmer wants to add a 

logging mechanism to an object oriented application, to print 

the name of each method executed. Using traditional 

mechanisms it needs to include a print (or a call to a logging 

API) on every method implementation, resulting in tangling 

and scattering of the logging concern. AOP techniques make it 

possible to attach this behaviour with a single statement like 

the following (an aspect coded in pseudo-AspectJ [9]): 

 

aspect logging { 
 around execution( * *.*(..) )  {          // on every method execution 
  print( thisJoinPoint().methodName() )   // print method name 
  proceed()                             //  execute original method 
}  } 

 

The aspect complier will generate code to call the print 

statement on every method execution (e.g., by including the 

print statement on each method implementation). This 

compilation process in called weaving to emphasize the fact 

that this behaviour is attached to multiple execution points. 

Execution points where it is possible to attach additional 

functionality are called join points. By attaching behaviour to 

a set of join points a module (i.e., aspect) can change the 

dynamic behaviour of the base system. Most AOP languages 

also provide means to change the static structure of 

applications, by modifying the type hierarchy, for instance by 

inserting a method into a class or by adding a super-class to an 

existing class. 



Quantification and obliviousness [10] were recently 

proposed as two main distinguishing features of AOP. 

Quantification allows an aspect to intercept many, non-local, 

application execution points and to attach aspect-related 

behaviour at those points (e.g., in the above example to print 

the method name). AOP languages usually provide a rich set 

of options to select a subset of available join points, namely, 

based on the target object type, method name, type and 

number of parameters. In the presented example the logging 

facility could be restrict to methods with no return type (i.e., 

returning a void type), by using execution( void *.*(..) ). 

Obliviousness is the ability to apply aspects to some base 

code that was not explicitly prepared for that purpose. In the 

above example the logging aspect does not require any special 

cooperation from the original source code writer. This way, 

the original code can be oblivious of the behaviour introduced 

by the aspect. A consequence of obliviousness is that the 

original code can run without the additional behaviour. This 

work refers to this characteristic as pluggability (a term not 

coined among the AOP community) to reinforce the idea that 

the original system does not depend on the specific features 

implemented by aspects, as this behaviour can be attached and 

detached from the remainder program behaviour. 

III. PLUGGABLE GRID SERVICES 

The goal of pluggable grid services it to allow scientists to 

run scientific applications into their desktops and to 

transparently access to grid resources, when requested. The 

idea is to plug accesses to grid services into certain application 

execution points using pluggable modules, instead of inserting 

calls to a grid application programming interface. These grid 

services can, at any time, be unplugged from scientific codes. 

Table I illustrates the concept of pluggable grid service. 

The domain specific code is a ray tracer application (code at 

the left). The pluggable service (remote execution) redirects 

the execution of render methods to a remote resource. The 

main point is that the remote execution concern is localized 

into its own module; it can be plugged into the base scientific 

code without changing the source code and it can be easily 

removed from the build (i.e., unplugged). Pluggable services 

can also be used through code annotations, by introducing the 

annotation @remoteExec before the render method definition. 

Annotations are an intermediate approach since they can be 

ignored (i.e., the functionally they attach can be unplugged), 

however, they require changes to the source code and they 

lead to non-localized grid concerns. 

TABLE I 

EXAMPLE OF A PLUGGABLE SERVICE 

Scientific code Remote execution module 

 

class RayTracer { 

    void render(/*…*/) { 

         ... 

     } 

} 

 

 

 

RemoteExec<RayTracer,”render”> 

 

 

Pluggable grid services rely on AOP techniques to generate 

a new type-compatible class from a domain specific class, 

where the additional functionality is attached into certain 

execution points (this set of join points is called a pointcut). 

For instance, a class may become a remote class by changing 

the class implementation, intercepting object creations and 

method call statements in the original code to redirect their 

execution to the remote resource [5]. 

The collection of pluggable grid services currently includes 

services for remote object creation and remote method calls, 

method execution scheduling, granularity control and fail-over 

execution. Table II summarizes currently supported grid 

services. 

TABLE II 
PLUGGABLE GRID SERVICES 

Service Description 

GridSeparate 

<Class T, Pointcut P> 

Class T becomes grid enabled (can be 

created on a remote grid resource) 

Separate 

<Class T, Pointcut P> 

Class T becomes cluster enabled (can 

be created on a local cluster node) 

Schedule 

<Class T, Pointcut P> 

Schedules method execution in 

available resources 

GrainControl 

<Class T, Pointcut P> 

Task coalescing in calls P of class T 

FailOver 

<Class T, Pointcut P> 
Failover execution on methods P of 

class T 

 

A. Grid Separate 

The separate service was inspired in the separate keyword 

from Eiffel [11] that specifies that a class can be placed on a 

remote resource. The GridSeparate service transforms a 

domain specific class T into a grid enabled class. When this 

service is plugged into a domain specific class, instances of 

that class are created into remote resources and method calls 

specified by pointcut P (a pattern expression that specifies a 

set of method calls) are redirected to that remote instance. 

Currently two underlying protocols are supported to 

implement remote objects: Remote Method Invocation based 

(RMI) and Job Submission based (JS). 

The RMI based protocol, transforms a class into a RMI 

class. It can be used to instantiate remote classes into local 

area nodes and to communicate with these instances through 

the standard RMI protocol. It uses a standard ssh command to 

start a daemon on each available local resource. This daemon 

accepts remote (intra-cluster) requests for object creations and 

remote method calls. 

The JS protocol transforms a class into a stand-alone 

application that can be deployed on a remote grid resource. 

This application is instantiated using a grid service (e.g., a 

Globus GRAM service), receives requests through files that 

are staged-in and saves its results into files that are staged-out 

to the client machine. 

Both RMI and JS services place an object factory into each 

remote resource to instantiate domain specific classes. After 

this factory has been created, object creations in the domain 

specific code are redirected to the remote resource, by 

intercepting new statements. Method calls to these instances 



are redirected to the remote instance; either by means of 

standard RMI mechanisms or through grid file stage-in and 

stage-out mechanisms. 

Both services require that each class becoming grid enabled 

should follow the standard rules applied to RMI enabled 

classes, namely, accesses to static or shared variables are not 

allowed. 

The separate service requires access to a list of available 

resources to instantiate separate classes and the definition of a 

policy to select one particular resource from the list. The 

separate service provides default implementations (e.g., 

round-robin selection) than can be adapted to an 

application/middleware specific case, for instance to use an 

external grid service to find available resources.  

The important point about the separate service is that it is a 

(un)pluggable service and that changes to its implementation 

do not require changes in the domain specific code. 

B. Schedule 

The goal of the scheduler service is to select the best 

resource for each task execution. It acts upon a set of object 

instances to adapt the load distribution according to the 

available processing power and the computational 

requirements of each task. 

The Schedule service applies a load-balancing mechanism 

to all instances of class T and to method calls specified by 

pointcut P. The load-balancing mechanism selects the instance 

with the shortest execution time to perform the next method 

execution. Method calls to a scheduled method are delayed 

until a class instance is available for execution. 

The Schedule service can be composed with the Separate 

service, scheduling method executions among remote objects 

to balance the load. In that case, it may be of interest to 

employ multiple schedulers in an application. For instance, a 

scheduling level can perform intra-cluster scheduling whereas 

another level can schedule method executions among clusters, 

replacing the traditional rule of a grid meta-scheduler. 

Current scheduler implementation is based on Java 

executors. Whenever a scheduled method call is performed 

the call is encapsulated into a command pattern [12] and it is 

placed into a shared work queue. A set of working threads 

(one for each remote object instance) retrieve tasks from the 

work queue and send these tasks for remote execution. 

Whenever a task completes execution, a new task is retrieved 

from the queue and sent to the remote object instance. Since 

the workload is distributed on demand there is no need to 

measure the workload of remote compute resources. 

Application-specific schedulers can be implemented by 

extending the provided scheduler service, for instance, to take 

advantage of compile-time estimations of execution time. 

C. Grain Control 

The grain control service has two goals: to decide if a 

resource should be used for task execution and to combine 

fine-grained tasks into coarse-grain tasks. The idea is to 

provide fine-grained tasks (sometimes called 

over-decomposition [13]) that are coalesced at run-time to 

match resource availability. 

The GrainControl service applies a granularity control 

mechanism to all instances of class T and to method calls 

specified by pointcut P. For each remote object instance, this 

service computes the minimum number of tasks that should be 

combined into a single request for an efficient resource usage. 

It is based on a 1 to 10 ratio heuristic (i.e., communication 

costs should be less than 1/10 of computation costs). The 

grain control service may decide to not to use a resource due 

to a too high communication overhead. 

The grain control service relies on run-time profiling that 

collects the time spent on each remote task execution. It is 

based on a probing phase that gathers the computational 

power and communication costs for each remote resource. A 

static function can be supplied to provide an estimate of the 

method complexity, which can be useful when no profiling 

information is yet available. 

Implementation of the grain control service is based on the 

composite pattern [12]. Each method call is transformed into a 

command that is inserted into a composite of tasks that are 

sent as a single unit for remote execution. 

The GrainControl service can be combined with both 

Separate and Schedule services. It is also possible to combine 

multiple grain-control services into a single application. For 

instance, it is possible to have a grain-control service for 

intra-cluster instances and another service for inter-cluster 

grain control. 

D. Fail Over Service 

The fail over service can be used to address faulty 

resources. It provides a time-out mechanism that may 

re-execute a task into the same or into another grid resource. 

The FailOver service applies a fault tolerance mechanism 

to all instances of class T and to method calls specified by 

pointcut P. Whenever a time-out occurs, a mechanism similar 

to the scheduler selects an available resource for task 

re-execution. This time-out is computed by using run-time 

profiling data, but it can also be supplied by the programmer. 

The fail over service can be combined with grain-size 

control to re-execute a set of coalesced tasks. 

 

 
public aspect Separate<Class T, Pointcut P> { 
 
 main() {   // main function. registers server in RMI 
  T rt = new T(); // creates a new instance of T 
  … // register instance in name server  
  … // wait for shutdown 
  … // un-register instance in RMI name server  
 } 
 
 around execution ( T.new ) {  
    … // get a reference to the remote instance;  
 } 
 
 around execution (P) { 
  … // delegate execution to the remote instance 
 } 
 
} 
 

Fig. 1 – Outline of the implementation of the Separate service 



E. Implementation Outline 

The current implementation is based on a source code to 

source code generator that generates AspectJ. Generating 

AspectJ avoids modifying the original source code and 

reduces the amount of the generated code when compared 

with similar Java-based tools. 

The Separate service relies on AspectJ AOP features to 

change the type hierarchy and to attach additional 

functionality to certain execution points. Fig. 1 presents the 

AspectJ pseudo-code of Separate<Class T, Pointcut P> 

service implementation in Java RMI (for clarity, exception 

handling code and remote factory code are not included). 

The generated code introduces a new main method, which 

creates an instance of class T and registers this instance into 

the RMI name server. This instance will serve incoming RMI 

requests, until a shutdown order is received. The around 

execution(T.new) statement redirects creations of objects of 

type T to a remote resource (it also creates a local fake object 

and saves the association among local fakes and remote 

instances into a local hash map, code not shown in the figure). 

The around execution(P) redirects method calls specified by 

pointcut P to the remote instance. In addition to the generated 

AspectJ code, the implementation also relies on scripts to 

perform command line requests to remotely execute java code 

(e.g. jar files). 

The GridSeparate service is implemented in a similar 

manner. However, there are two main differences: 

1. Communication with the remote object instance is 

performed by means of file stage-in and stage-out that 

contain method execution requests and replies. 

2. Object instantiation is performed by submitting a task 

to a remote grid resource, instead of local creating the 

executable using the remote secure shell. 

The Schedule service implementation keeps track of all 

created instances of the target class (also based on the T.new 

join point but it does not creates new instances). On each 

method call it selects one target remote instance or it places 

the request into a work queue. 

F. Annotations 

Annotations provide an alternative way to plug grid 

services into specific element types, e.g. methods or classes 

(see Fig. 2). 

 

 
@ClassAnnotation 
public class <class_name> { 
  //... 
  @MethodAnnotation 
  public void method_name() { … } 
} 
 

Fig. 2 – Annotation elements 

The collection of grid services can also be used with 

annotations (see Table 3). Each implementation (presented in 

the previous section) supports both the traditional and 

annotation based style of using grid services. AspectJ enables 

the use of single implementations for both styles. 

TABLE III 

PLUGGABLE GRID SERVICES ANNOTATIONS 

Service Annotation Target type 

[Grid]Separate @[Grid]Separate Class 

Schedule @Schedule(…) Method 

GrainControl @GrainControl(…) Method 

FailOver @FailOver(…) Method 

 

IV. GRID ENABLED JASKEL APPLICATIONS 

This section shows how the proposed pluggable grid 

services were used to transform a Java-based skeleton 

framework into a grid enabled framework. The resulting 

framework allows the transparent execution of skeleton 

applications on local machines and/or on computational grids. 

A. JaSkel Overview 

The JaSkel framework [14] is based on a set of abstract 

Java classes that encapsulate pre-set parallelization strategies. 

To develop an application the programmer selects the classes 

that best match the application parallelization structure and 

fills the framework hooks with domain specific functionality. 

The framework takes care of all aspects of parallel execution, 

including starting parallel activities, splitting the work into 

parallel tasks and joining the results. 

Fig. 3 illustrates a simple JaSkel farming application. Lines 

01-06 declare a MyWorker class that implements the domain 

specific code. The compute method receives a task to process 

and returns the processed task. Lines 07-16 define a MyFarm 

class that creates several workers and includes the split and 

join methods to split the original tasks into independent pieces 

of work and to join the processed pieces of work. Lines 18-23 

create a task and a MyFarm instance, start the farm activity 

and gather the results using the getResult method. In this code 

the number of workers can be provided by the programmer or 

selected by the framework. 

 

 
01 public class MyWorker extends Compute { 
02  … 
03  public Object compute(Object input) { 
04   return /* processed input */; 
05  } 
06 } 
07 public class MyFarm extends Farm { 
08  … 
09  public MyFarm(Object task) { 
10   super(task);       // save task into local structure 
11   for(int i=0; i<myNumberOfWorkers; i++) 
12    /* … */ = new MyWorker(); 
13  } 
14  Collection split(Object initialTask) { … }  // split 
15  Object join(Collection partialResults) { … } // join 
16 } 
17 
18 // main function 
19 Task task = … // task to compute 
20 MyFarm farmer = new MyFarm(tasks); 
21 farmer.eval(); // starts the farming process 
22 Object o = farmer.getResult(); // get results 
 

Fig. 3  A sample JaSkel task farm 



The Farm eval method creates several workers, splits the 

initial task using the supplied split method, sends a piece of 

work to each worker and joins the processed pieces of work 

using the supplied join method. 

Using the built-in Farm skeleton it is possible to take 

advantage of multi-core and/or multiprocessor machines, as it 

spawns one thread per each worker, performing concurrent 

compute calls. 

B. Grid Enabled Skeletons 

Pluggable grid services allow the transparent execution of 

JaSkel applications on cluster and/or grid platforms. The 

GridSeparate service can be applied to the MyWorker class to 

transparently introduce remotely executed workers, using the 

following statement: 

 
GridSeparate<MyWorker,”compute”> 

 

The previous statement indicates that all instances of 

MyWorker class can be created and executed on a remote grid 

resource and that method calls to the compute method should 

be redirected to that remote instance. As an alternative, it is 

possible to specify that instances of the MyWorker class are 

distributed across local nodes, using the Separate service. 

Selecting the faster resource for a particular task can be 

addressed using the Schedule service. For this purpose the 

number of provided tasks (computed by the split method) 

should be much larger than the number of workers to attain a 

good load distribution [15]. The scheduler service implements 

a demand-driven scheme, where faster resources receive more 

tasks to process. This service can be applied to this example 

by the following statement: 

 
Schedule<MyWorker,”compute”> 

 

This statement binds the Schedule service to compute calls 

of class MyWorker. Calls to this method will be delayed until 

one remote instance is ready to execute the compute call, 

leading to a demand driven task allocation among available 

resources. 

Selecting the ideal number of resources to use for a 

particular application can be addressed by the GrainControl 

service. This service uses profiling data to compute the 

minimum size of each task and it can even decide that a 

particular resource can not be effectively used by an 

application. This service can be useful in cases where the 

available resources are much larger than the computational 

requirements of the application. 

The FailOver service can be plugged into the previous 

application in a similar manner 

C. Multi-level Skeletons 

This section uses a multi-level skeleton application to 

illustrate the use of multiple Separate and Schedule services 

into a single application. The case study (see Fig. 4) of a 

multi-level skeleton is a meta-farm that creates several farms 

from Fig. 3. A meta-farm is composed of multiple farms, and 

each farm has its own workers. 

 
01 public class MetaFarm extends Farm { 
02  … 
03  public MetaFarm(Object task) { 
04   super(task);       // save task into local structure 
05   for(int i=0; i<myNumberOfFarms; i++) 
06    /* … */ = new MyFarm(); 
07  } 
08  Collection split(Object initialTask) { … }  // meta-farm split 
09  Object join(Collection partialResults) { … } // meta-farm join 
10 } 
11 
12 // main function 
13 Task task = … // task to compute 
14 MetaFarm farmer = new MetaFarm(tasks); 
15 farmer.eval();  // starts the farming process 
16 Object o = farmer.getResult(); // get results 
17 
 

Fig. 4  A JaSkel meta-farm 

The idea of a meta-farm is to deploy a farm on each grid 

resource and to use the scheduler service to perform the load 

balancing among farms. 

Using pluggable services it is possible to deploy each 

MyFarm on a grid cluster and to deploy MyWorker instancies 

into local cluster nodes. This is accomplished by the following 

statements: 

 
GridSeparate<MyFarm,”compute”> 
Separate<MyWorker,”compute”> 

 

Multiple scheduler services can be applied in a similar 

manner using the statements:  

 
Schedule<MyFarm,”compute”> 
Schedule<MyWorker,”compute”> 
 

One scheduling level (MyFarm scheduler) is deployed on 

each local cluster and a meta-scheduler balances the load 

among clusters (i.e., among MyFarm instancies) 

D. Pluggable Grid Services Performance 

This section aims to evaluate the performance benefits of 

pluggable grid services, by comparing the performance of a 

base JaSkel application and grid enabled versions. 

Performance results presented in this section were collected 

using two clusters at the Universidade do Minho campus. 

Each cluster consists of a 5-nodes, dual processor machines 

(Xeon 3.2 GHz). Single node tests were performed on a Mac 

Pro Xeon 5130 (with two dual core processors). Single and 

multi-cluster results are based on pluggable grid services 

described in section III. 

The PGS approach enables the use of a single code base to 

run an application on a multi-core machine, on a cluster and 

on a federation of clusters. Depending on the target platform, 

the programmer just plugs the required service(s). 

Fig. 5 compares the execution times of the base JaSkel code 

and the same base source code with attached pluggable 

services (Separate services). The application is the Java 

Grande Forum parallel ray tracer (image size of 4000) [16]. 
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Fig. 5  Separate Grid Services Performance 

As it is expected, the base JaSkel application can not take 

advantage of more than 4 parallel tasks, as it relies on shared 

memory mechanisms. Using the Separate service, JaSkel 

skeletons can be distributed across the nodes of a local cluster. 

The GridSeparate service distributes tasks among the two 

clusters, enabling the application to take advantage of more 

parallel tasks. The Separate service imposes an additional 

overhead when using a small number of nodes, due to the 

introduction of a communication middleware (e.g., Java RMI). 

Performance penalty of this service is less than 5%, when 

compared with the manual introduction of communication 

primitives into JaSkel skeletons (results not presented here). 

The next benchmark evaluates the schedule service. Fig. 6 

compares the execution times of the same application (running 

on two clusters, by means of the GridSeparate service), but 

now there is an imbalance among tasks (the partition of the 

image to render is made block-wise instead of cyclic, as in the 

JGF implementation). In this imbalanced version the number 

of tasks is four times more than the number of remote 

resources. 
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Fig. 6  Scheduler Service Performance 

These results show that the scheduler service was able to 

address the application load imbalances, avoiding execution 

penalties. This service provides execution times close to the 

balanced version (5% overhead, on average). Using the 

schedule service the original application could be relived from 

the code to provide equally sized tasks. Moreover, the 

scheduler service can also address the use of heterogeneous 

remote resources. 

The last test evaluates the effectiveness of the grain size 

control service. Fig. 7. compares execution times of the ray 

tracer of a smaller image size (1000x1000), when no grain 

control is performed, when the grain-size is manually tuned 

and when the Grain-control service is used. 
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Fig. 7  Grain-control Service Performance 

When no grain control is performed (JaSkel fine-grain in 

the figure) there is an overhead of using a large number of 

remote resources. This overhead is due to fine-grained tasks 

that introduce an overhead when they are remotely executed. 

The Grain-control service can remove this overhead and, more 

importantly, it can detect that this application can not 

effectively take advantage of more than 12 remote compute 

resources, transparently avoiding the use of more resources 

than required. 

V. DISCUSSION 

Enabling scientific applications to run on grid platforms 

with pluggable grid services requires an adequate set of join 

points (i.e., execution points) in the original code to plug these 

grid services. Moreover, applications must be amenable to run 

on grid platforms (i.e., to provide a set of loosely coupled 

parallel activities, whose execution can be transparently 

redirected to remote compute resources). If these two 

requirements are not meet the application must be refactored 

to expose the required join points and a loosely coupled set of 

parallel activities. The goal of PGS is not to transform a 

sequential application into a parallel equivalent, but to help to 

enable scientific codes to run on computational Grids. Support 

for these refactorings is delegated to other tools. JaSkel plays 

an important rule in this path as it provides a software 

infrastructure to help to perform these refactorings. 



Applications built upon the JaSkel farm skeleton already 

satisfy the above requirements ([7] presents an alternative to 

JaSkel, using AOP techniques to modularize parallelization 

strategies). It should be stressed that PGS do not depend on 

JaSkel or on other tools if the original code is already 

amenable to run on computational grids. 

The current implementation of PGS relies on a library of 

aspects built on Java and AspectJ. Java greatly simplifies the 

process of deploying grid applications and PGS since the 

application and required libraries can be packed into an 

autonomous jar file and executed on any grid resource that has 

a Java Virtual Machine (JVM). AspectJ is the most stable and 

well-know AOP compiler and produces JVM compliant 

bytecodes. Although it would be possible to fully implement 

PGS in Java, this approach would replicate weaving tasks 

currently performed by the AspectJ compiler. The AOP 

community also provides support for other languages. As an 

example, AspectC++ [17] is the most well known AOP tool 

for C/C++. Conceptually, PGS can also be implemented with 

AOP tools that support other languages. 

Supporting PGS for multiple target languages rises a new 

issue of how the develop language independent PGS than can 

be weaved into multiple target languages. Ultimately, it would 

be necessary to build a library of PGS and an aspect weaver 

for each target language. This issue falls into the more recent 

field of language independent AOP [18]. These issues are 

being addressed in the AspectGrid project [19], where PGS 

will be used to enable Java, C++ and Fortran codes to run on 

computational grids. 

Object-oriented programming fully leverages current AOP 

techniques. Procedure-based languages, such as C, do not 

have such strong modularity capabilities; as a consequence 

they do not provide a so rich set of join points. There are some 

results showing that legacy systems can also benefit from 

AOP techniques [20]; however the modularity support of the 

base language has an impact on the AOP ability to modularize 

crosscutting concerns. In the specific case of PGS, the set of 

available join points defines the points in execution where 

PGS can be attached. A poor set of join points in the target 

language can make it more difficult to modularize and to 

support pluggable grid concerns. For instance, in Java/AspectJ 

an object creation is a join point, but there is no similar join 

point in C. 

Current AOP technology, including the AspectJ compiler, 

requires access to the application source code. It would be 

technically possible to perform weaving only at binary level 

(i.e., without access to application source code) if binaries 

include the information required for aspect weaving. 

Languages based on a virtual machine make this task easier 

since binary files include more symbolic information than 

binaries generated from languages like C++. 

Grid systems are moving towards service oriented 

architectures. PGS can contribute to this move in two ways: 

by transparently enabling applications to consume grid 

services and by helping to expose certain functionality as a 

grid service. First, PGS help to decouple the client from the 

service provider (actually the client is oblivious of the 

provided grid service), making it easier to transparently 

delegate a specific functionality to an external service 

provider. For instance, the fail-over PGS could be 

transparently delegated to an external provider. Second, PGS 

can help to transparently deploy certain application 

functionally as a grid service. For instance, the GridSeparate 

PGS deploys an instance of a Java class into a remote resource. 

This approach can be extended to deploy a Java class as a web 

service on a remote container. 

VI. RELATED WORK 

The Globus toolkit [21] is a standard for grid computing. It 

includes services for authentication and authorization, 

resource discovery, allocation and monitoring and file 

management. The Java commodity grid kit (Java CoG) [22] 

provides an application programming interface to grid 

services. It provides a set of Java interface components, 

mapping commonly used grid services from Globus and also 

includes utility components and services to improve Globus 

toolkit functionality. GMarte [23] is a high level Java API that 

offers an object-oriented, user friendly, interface to the Globus. 

It allows programmers to run applications on grid 

environments without detailing the procedure of job execution. 

The Grid Application Toolkit (GAT) [24] aims to provide a 

simple, clear interface to many different grid infrastructures, 

by providing a set of adaptors that connect GAT to grid 

services, supporting multiple providers (e.g., Globus, Unicore). 

These approaches require an up-front application redesign to 

use the provided grid application programmer interface. 

MPICH-G2 [1] enables the transparent execution of MPI 

programs into computational grids. Higher-Order Components 

for grids [25] is skeleton framework specifically designed to 

support the execution of skeleton-based applications on grid 

systems. The use of AOP techniques to transparently execute 

Java thread-based applications on grids is addressed in [26]. 

PGS differ from these approaches, since PGS address grid 

issues by means of modular and (un)pluggable services. 

Approaches based on XML-based descriptors, commonly 

used in large-scale client/server applications, were proposed to 

deploy applications on grid environments [27]. In this 

approach, applications are developed for a set of virtual nodes 

and XML-based descriptors are used to map virtual nodes into 

physical resources, without source code changes. GridGain 

[28] is open source framework to support the development of 

grid applications. It provides the @Gridify annotation to 

specify execution into a remote grid resource. Both 

approaches are closely related to our approach, as they 

provide a seamless access to grid resources. Pluggable grid 

services can be more easily composed and extended to deploy 

efficient grid enabled applications. Both XML-based 

descriptors and annotations must resort to other techniques 

when the service must be configured with application specific 

behaviour. These approaches do not aim to attain modular and 

(un)pluggable grid services. PGS goes a step further by 

completely relying modular and pluggable grid services to 

manage grid concerns. 

 



VII. CONCLUSION 

This article presented a new approach to make grid enabled 

scientific codes, based on pluggable grid services. The 

approach relies on aspect-oriented techniques to localize grid 

concerns into (un)pluggable modules. 

Pluggable grid services promote a softer transition to grids 

as they can be attached to current scientific applications 

without requiring source code modifications. Pluggable grid 

services can be flexibly composed to develop applications that 

can take advantage of the hierarchical nature of computational 

grids. Moreover, pluggable grid services can be unplugged 

from scientific applications making it easier to evolve grid 

enabled codes. 

Experimentation with the JaSkel framework showed how 

these goals were achieved: using the proposed approach 

JaSkel applications transparently become grid-enabled, by 

plugging modules that localize grid execution issues. This 

migration did not required changes to the framework code and 

original JaSkel applications can still run when grid related 

modules are unplugged. 

Current work includes the development of a complete set of 

language independent pluggable grid services, namely to 

address data grids, utility computing and security issues. This 

set of services will be more tightly connected to current grid 

technology, for instance, the scheduler implementation can 

use current grid schedulers, instead of implementing its own 

scheduling policy. 
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