
A SCOOPP Evaluation on Packing
Parallel Objects in Run-time*

João Luís Sobral, Alberto José Proença

Departamento de Informática - Universidade do Minho
4710 - 057 BRAGA – PORTUGAL

{jls, aproenca}@di.uminho.pt

Abstract The SCOOPP (Scalable Object Oriented Parallel Programming)
system is an hybrid compile and run-time system. SCOOPP dynamically scales
OO applications on a wide range of target platforms, including a novel feature
to perform a run-time packing of excess parallel tasks. This communication
details the methodology and policies to pack parallel objects into grains and
method calls into messages. The SCOOPP evaluation focus on a pipelined
parallel algorithm - the Eratosthenes sieve - which may dynamically generate a
large number of fine-grained parallel tasks and messages. This case study
shows how the parallelism grain-size - both computational and communication
- has a strong impact on performance and on the programmer burden. The
presented performance results show that the SCOOPP methodology is feasible
and the proposed policies achieve efficient portability results across several
target platforms.

1 Introduction

Most parallel applications require parallelism granularity decisions: a larger number
of fine parallel tasks may help to scale up the parallel application and it may improve
the load balancing. However, if parallel tasks are too fine, performance may degrade
due to parallelism overheads, both at the computational and communication level.

Static granularity control, performed at compile-time, can be efficiently applied to
fine grained tasks [1][2], whose number and behaviour is known at compile-time.
HPF [3], HPC++ [4], and Ellie [5] are examples of environments that support static
granularity control. However, parallel applications where parallel tasks are
dynamically created and whose granularity can not be accurately estimated at
compile-time require dynamic granularity control to get an acceptable performance;
this also applies when portability is required across several platforms.

Granularity control can lead to better performance when performed by the
programmer, but it adds an extra burden on the programmer activity: it requires
knowledge of both the architecture and the algorithm behaviour, and it also reduces
the code clarity, reusability and portability.

* This work was partially supported by the SETNA-ParComp project (Scalable
Environments, Tools and Numerical Algorithms in Parallel Computing), under PRAXIS XXI
funding (Ref. 2/2.1/TIT/1557/95).

jls
VECPAR 2000, LNCS 1981, pp. 114–127, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The SCOOPP system [6] is an hybrid compile and run-time system, that extracts
parallelism, supports explicit parallelism and dynamically serialises parallel tasks in
excess at run-time, to dynamically scale applications through a wide range of target
platforms. This paper evaluates the application of the SCOOPP methodology to
dynamically scale a pipelined application - the Eratosthenes sieve - on three different
generations of parallel systems: a 7 node Pentium II 350MHz based cluster, running
Linux with a threaded PVM on TCP/IP, a 16 node PowerPC 601 66 MHz based
Parsytec PowerXplorer and a 56 node T805 30Mhz based Parsytec MultiCluster 3,
both running PARIX with proprietary communication primitives, functionally
identical to PVM. The cluster nodes are inter-connected through a 1 GBbit Myrinet
switch, the PowerXplorer nodes use a 4x4 mesh of 10Mbit Transputer-based
connections and the MultiCluster Transputers are interconnected through a 7x8 mesh.

Section 2 presents an overview of the SCOOPP system and its features to
dynamically evaluate the parallelism granularity and to remove excess parallelism.
Section 3 introduces the Eratosthenes sieve and presents the performance results.
Section 4 concludes the paper and presents suggestions for future work.

2 SCOOPP System Overview

SCOOPP is based on an object oriented programming paradigm supporting both
active and passive objects. Active objects are called parallel objects in SCOOPP
(//obj) and they specify explicit parallelism. These objects model parallel tasks and
may be placed at remote processing nodes. They communicate through either
asynchronous or synchronous method calls.

Passive objects are supported to take advantage of existing code. These objects are
placed in the context of the parallel object that created them, and only copies of them
are allowed to move between parallel objects. Method calls on these objects are
always synchronous.

Parallelism extraction is performed by transforming selected passive objects into
parallel objects (more details in [7]), whereas parallelism serialisation (i.e. grain
packing) is performed by transforming parallel objects into passive ones [8].

Granularity control in SCOOPP is accomplished in two steps. At compile-time the
compiler and/or the programmer specifies a large number of fine-grained parallel
objects. At run-time parallel objects are packed into larger grains - according to the
application/target platform behaviour and based on security and performance issues –
and method calls are packed into larger messages.

Packing methodologies are concerned on “how” to pack and “which” items to
pack; this subject is analysed in section 2.1. These methodologies rely on parameters,
which are estimated to control granularity at run-time; these are analysed on section
2.2. Packing policies focus on “when” and “how much” to pack, and they heavily rely
on the structure of the application; this subject is analysed in section 2.3.

2.1 Run-time Granularity Control

Conventional approaches for run-time granularity control are based on fork/join
parallelism [9][10][11][12][13]. The grain-size can be increased by ignoring the fork
and executing tasks sequentially, avoiding spawning a new parallel activity to execute
the forked task.

The SCOOPP system dynamically controls granularity by packing several //obj
into a single grain and serialising intra-grain operations. Additionally, SCOOPP can
reduce inter-grains communication by packing several method calls into a single
message.

Packing Parallel Objects. The main goal of object packing is to decrease parallelism
overheads by increasing the number of intra-grain operations between remote method
calls. Intra-grain method calls - between objects within the same grain - are
synchronous and usually performed directly as a normal procedure call; asynchronous
inter-grain calls are implemented through standard inter-tasks communication
mechanisms.

The SCOOPP run-time system packs objects when the grain-size is too fine and/or
when the system load is high. The SCOOPP system takes advantage of the
availability of granularity information on existing //obj. When parallel tasks (e.g.
//obj) are created at run-time, it uses this information to decide if a newly created //obj
should be used to enlarge an existing grain (e.g. locally packed) or originate a new
remote grain.

Packing Method Calls. Method call packing in SCOOPP aims to reduce parallelism
overheads by packing several method calls into a single message.

The SCOOPP run-time system packs method calls when the grain-size is too fine.
On each inter-grains method call, SCOOPP uses granularity information on existing
objects to decide if the call generates a new message or if it is packed together with
other method calls into a single message.

Packing Parallel Objects and Method Calls. The two types of packing complement
each other to increase the grain-size. They differ in two aspects: (i) method calls can
not be packed on all applications, since the packing relies on repeated method calls
between two grains, and may lead to deadlock when calls are delayed for an arbitrary
long time; this delay arises from the need to fulfil the required number of calls per
message; (ii) method calls in a message can be more easily unpacked than objects in a
grain. Reversing object packing usually requires object migration, whereas packs of
method calls can be sent without waiting for the message to be fully packed. In
SCOOPP, packs of methods calls are sent either on programmer request or when the
source grain calls a different method on the same remote grain.

2.2 Parameters Estimation

To take the decision to pack, two sets of parameters are considered: those that are
application independent and those that are application dependent. The former
includes the latency of a remote "null-method" call (α) and the inter-node
communication bandwidth. The later includes the average overhead of the method
parameters passing (ν), the average local method execution time (µ), the method
fan-out (φ) (e.g., the average number of method calls performed on each object per
method execution) and the number of grains per node (γ).

Application independent parameters are statically evaluated by a kernel
application, running prior to the application execution; parameters that depend on the
application are dynamically evaluated during application execution. The next two
subsections present more details of how these two types of parameters are estimated.

Application Independent Parameters. Application independent parameters include
the latency of a remote "null-method" call (α) and the inter-node communication
bandwidth. Both parameters are defined for a “unloaded” target platform. They are
estimated through a simple kernel SCOOPP application that creates several //obj on
remote nodes and performs a method call on each object.

The remote method call latency (α) is the time required to activate a method call
on a remote //obj. It is estimated as half the time required to call and remotely execute
a method that has no parameters and only returns a value.

The inter-node communication bandwidth is estimated by measuring the time
required to call a method with an arbitrary large parameters size. It is half of the
division of the parameters size by the time required to execute the method call.

On some target platforms, these two parameters depend on the pair
source/destination nodes, namely on the interconnection topology. In such cases, the
SCOOPP computes the average from the parameters taken between all pairs of nodes.
Moreover, these parameters tend to increase when the target platform is highly
loaded, due to network congestion and computational load. However, this effect is
taken into account on the SCOOPP methodology through the γ parameter (number of
grains per node), which is a measure of the load on each node.

These two parameters are statically estimated to reduce congestion penalties at
run-time, since they require inter-node communication, which is one of the main
sources of parallelism overheads. Their evaluation at run-time, during application
execution, may introduce a significant performance penalty.

Application Dependent Parameters. SCOOPP monitors granularity by computing,
at run-time, the average overhead of the method parameters passing (ν), the average
method execution time (µ) and the average method fan-out (φ). SCOOPP computes
these parameters, at each object creation, from application data collected during
run-time.

The overhead of the method parameters passing (ν) is computed from the
inter-node communication bandwidth multiplied by the average method parameter

size. This last one is evaluated by recording the number of method calls and adding
the parameter sizes of each method call.

The average method execution time (µ) is evaluated by recording the time required
to perform each local method execution. When a method does not perform other calls,
this value is just the elapsed time. When a method contains other calls, the
measurement is split into the pre-call and after-call phases, and the previous
procedure is applied to each phase. Moreover, the time required to perform the
pre-call phase is used has a first estimate of the average method execution time, so
that the average method execution time data is available for the next method call,
even if the first method execution one has not completed yet.

The average method fan-out (φ) is measured by a global program analysis through
object and method calls statistics. The run-time system marks each //obj with its depth
on the object creation tree. The depth of the root object is one and the depth of all
other //obj is equal to the depth of its creator plus one. The run-time system maintains
a table for the number of call performed on each depth, which is incremented on each
local method call. The method fan-out is derived from this table through the overall
ratio between consecutive depths.

SCOOPP minimises the run-time impact of the parameters estimation overhead in
three ways. First, granularity information is collected at class level, e.g., the ν, µ and
φ parameters are measured for each class of parallel objects. This approach is clearly
less costly than an instance-based approach and more accurate than a global one.
Second, when the overhead introduced to access the system clock to measure the
average method execution time is high (usually more than 1%) the frequency of
information retrieval is reduced; this excludes, however, the application start up
phase, since on that phase no information is available. Third, the parameters that are
estimated at run-time do not require inter-nodes communication, since the estimation
is locally performed and parameters information is only exchanged within requests
for remote object creation.

2.3 Packing Policies

Packing policies define “when” and “how much” to pack, e.g. the number of //obj that
should be packed in each grain, and the number of method calls to pack on each
message. These policies are usually grouped according to the structure of the
application: object pipelines, static object trees (e.g. object farming) and dynamic
object trees (e.g. work split and merge). The work here presented focus on packing
policies for pipelined algorithms and the next section evaluates its application to a
case study, the Eratosthenes sieve.

Packing Parallel Objects. The decision “when” to pack is taken based on the
average method execution time (µ), the average latency of a remote "null-method"
call (α) and the overhead of the method parameters passing (ν). When the average
method execution time is excessively short, //obj should be packed, which occurs
when the overhead of a remote method call is higher than the average method

execution time, e.g., (α+ν)>µ. This is the turnover point to pack //obj, where the
parallelism overhead becomes longer than the time spent on locally “useful work”.

The decision of “how many” //obj to pack into a single grain (e.g., degree of object
packing or computation grain-size, Cp) is related to the α, ν and µ parameters as seen
before, and also on the method fan-out (φ) and on the system computational load,
e.g., the number of grains per node (γ). The computation grain-size should be
increased when the system presents high parallelism overhead (e.g., high α and ν)
and be decreased on high average method execution time. The degree of object
packing should also be decreased when fan-out increases, since each method call
performs several intra-grain calls, and it can be increased when the number of grains
per node is high, to decrease parallelism overheads.

On pipelined applications, packing adjacent //obj makes the number of intra-grain
calls equal to the average number of objects in each grain, since the fan-out is close
to 1. When Cp //obj are packed together, each remote method call generates Cp method
calls, executing on Cpµ time. Under these conditions, the turnover point to decide
when to pack is reached when Cp =(α+ν)/µ. This expression defines the minimum
number of //obj to pack on each grain to overcome the parallelism overheads. To
decrease parallelism overheads even more, SCOOPP increases the number of //obj on
each grain linearly with γ by using the expression Cp=γ(α+ν)/µ.

Packing Method Calls. The decision “when” to pack method calls follows the same
rule as the one applied to pack objects, e.g., when (α+ν)>µ; this condition reflects
that the overhead to place a single remote call is higher than the remote method
execution time. In this case, several inter-grains calls should be packed to reduce
communication overheads.

The decision “how many” method calls to pack into a single message (e.g., degree
of method call packing or communication grain-size, Cm) is computed from the α, ν
and µ parameters. Sending a message that packs Cm method calls has a time overhead
of (α+Cmν) and the time to locally execute this pack is Cmµ. Packing should be
performed such that (α+Cmν)<Cmµ, e.g., when the overhead to place a remote call is
lower than the time to locally execute the pack of method calls. Resolving the
equation gives the turnover point Cm=α/(µ-ν).

When the average method execution time is close or smaller than the overhead of
the parameter passing (e.g., µ<=ν), method calls should not be packed. However, this
rule can be relaxed if both method calls and //obj are packed.

Packing Parallel Objects and Method Calls. SCOOPP can simultaneously pack
method calls and //obj. However, when method calls are packed, the application
performance may benefit from a less //obj packing degree. In this case, SCOOPP
scales down the computation grain-size by using the expression Cp=γ(α+Cmν)/(µCm).

When the overhead of the parameters passing (ν) is longer than the average
method execution time (µ), e.g., ν>µ, the method calls packing factor should be
decreased. In this case, the method call packing is estimated as Cm=α/ν.

To summarise, on pipelined applications, the µ/ν ratio is the key to choose
between object and method calls packing. When ν<µ the communication packing

degree, in number of method calls per message is Cm=α/(µ-ν), and the object packing
degree is decreased by the Cm factor, e.g., the number of //obj on each grain is
Cp=γ(α+Cmν)/(µCm). When ν>µ, the communication packing degree is Cm=α/ν and the
same Cp expression can be used to compute the number of //obj per grain.

3 SCOOPP Evaluation with the Eratosthenes Sieve

The Eratosthenes sieve is an algorithm to compute all prime numbers up to a given
maximum. The original algorithm is well known; although several faster algorithms
have been proposed [14][15][16], the original one is still the most adequate to
illustrate relevant features in parallel algorithms, since a parallel version is intuitively
obtained from the original sequential algorithm.

One simple parallel implementation is a pipelined algorithm containing all
computed prime numbers, where each element filters its multiples. Numbers are sent
to the pipeline on an increasing order. Each number that gets to the end of the
pipeline is a prime number and is appended as a new filter. Fig.1 presents the sieve
processing flow for the numbers 3, 4 and 5.

Fig. 1. Parallel sieve of Eratosthenes processing numbers 3, 4 and 5

The Eratosthenes sieve has been chosen to show the relevant features of the
SCOOPP since it has a totally predictable behaviour, making it adequate to evaluate
the separate impact on the execution time of each parameter and packing approach.
Furthermore, it is scalable to large environments, if a large number is selected.

The Eratosthenes sieve has a large parallelism potential since each element of the
pipeline (e.g., sieve filter) can be a parallel task (e.g., a parallel object), which
originates a large number of fine-grained parallel tasks. It dynamically creates parallel
tasks and their number is dependent of the problem size. Table 1 presents the
parallelism degree of the sieve of Eratosthenes for several problem sizes.

Table 1. Parallelism degree of the Eratosthenes sieve several problem sizes

Problem
size

Number of
parallel tasks

Number of
messages

100 24 290
1.000 167 14292

10.000 1228 762862
100.000 9591 46224072

2 3
3

2

325 32

324

5
32 5

Parallel task

Message flow

On a naive implementation of the sieve, each parallel task has a computation to
communication ratio of one integer division operation per message received, which is
a too low ratio for the generality of distributed memory machines. A slightly
optimised sieve was developed to increase this ratio and decrease the sieve sequential
workload, which sends blocks of 10 values between sieve filters on a single method
call. Each sieve filter marks the numbers that it filters and a block is merged with
another block when it has more 5 values marked. This optimisation decreases the
number of messages by a factor close to 10 and increases the computation to
communication ratio to a value close to 10 integer divisions per message received.

The next subsection discusses how a programmer based static grain-size adaptation
can increase this ratio. A second subsection shows performance results measured
using the SCOOPP dynamically grain-size adaptation. Both subsections present
performance results for an optimised sieve on a problem size of 100 000 values.

3.1 Programmer Based Grain-size Adaptation

This section shows how a programmer can adapt the grain-size of the sieve to
improve performance on several platforms. It presents the impact of the grain-size
choices on the number of //tasks and inter-//task messages. Finally, it presents the
execution times of the sieve for a number of grain-size choices and analyses the
impact of grain-size choices on the tested three platforms.

To adapt the grain-size in the sieve algorithm a parallel programmer may merge
sieve filters into a single parallel object and/or pack several parallel objects into a
single grain (e.g., a parallel task). Merging filters into a //obj requires some code
rewrite, while packing //obj into a grain is less demanding: minor code modifications,
mainly to adapt the load distribution policy to perform a block distribution. Merging
filters into a //obj removes overheads of intra-grain object creation and method calls,
leading to lower execution times (e.g., sequential workload). However, it requires
complex code to support dynamic grain-size modifications.

Both approaches adapt the computational grain-size, increasing the average
number of operations per received value on each //task (e.g., //task computation to
communication ratio) and reducing the overall number of //tasks. On the sieve, this
number of operations is directly proportional to the number of filters on each //task
and is hereafter referred to as the //task computation granularity, in number of filters
per parallel task. However, this increase may not lead to an acceptable performance,
namely there may be not enough //tasks and the sieve may generate an excessive
number of messages. Packing several method calls into a single message reduces the
messages traffic, decreasing the communication overhead. On the optimised sieve
under study, the number of values per message is tenfold the number of method calls
per message, since each method call sends a block of 10 values, and is hereafter
referred to as the inter-//task communication granularity.

Table 2 presents the number of parallel tasks and inter-tasks messages required to
compute the prime numbers up to 100 000, for several //task computation and
communication granularities. The grain-sizes values were selected to show
representatives values of the sieve execution times.

Table 2. Sieve parallelism degree for several computation and communication granularities

Inter-tasks communication granularity
 (values per message)

10 50 100 500 1000

1 9591 4 894 536 1 005 717 518 063 118 860 67 100
6 1599 845 518 174 272 89 192 19 569 10 856

25 384 236 692 45 144 24 013 6 364 3 354
100 96 72 750 16 175 8 318 1 873 889
400 24 21 406 4 678 2 395 526 282

1600 6 8 572 1 802 915 194 102
6400 2 5 480 1 110 558 115 59T

as
k

co
m

pu
ta

ti
on

gr
an

ul
ar

it
y

(f
il

te
rs

 p
er

 //
ta

sk
)

9591 1 0 0 0 0 0

// tasks Inter-tasks messages

Fig.2 presents the sieve execution times as a function of both the computation and
communication granularities. These figures present the execution times on 4 and 7
cluster nodes, on 4 and 16 PowerXplorer nodes and on 14 and 56 MultiCluster nodes.
On these experiments the measured values were obtained by using one sieve filter per
//obj and grain packing was performed by packing several //obj into a single //task.
The MultiCluster can not run sieves with grains smaller than 3 sieve filters, due to
memory space limitations. All graphs are scaled to the sieve execution time on a
single node.

On all these targets platforms the computation granularity has a strong impact on
the sieve performance: when the computation grain-size is too fine or too large the
performance penalties are considerably heavy. Too fine grains can lead to a large
number of //tasks and the associated overhead costs; too large grains may not use all
the available processing nodes.

Communication grains also have an impact on the overall performance: on smaller
systems, fine grains (short messages) introduce a penalty, since they generate an
excessive number of messages between pairs of nodes; on large systems, shorter and
more frequent messages favour load balancing and reduce start-up times.

These results show how relevant is the right choice for both the computation and
communication grain-size. However, they also show how time consuming a
programmer based approach can be due to the dynamic nature of the parallel tasks of
the sieve; it requires long experimental work (to test a wide range of computation and
communication grain-sizes) and/or a deep analysis of both the algorithm and target
platform features.

Fig. 2. Sieve execution times for a programmer based grain-size adaptation

0,0

1,5

3,0

4,5

6,0

7,5

9,0

10,5

12,0

13,5

15,0

1 10 100 1000 10000

Computation grain-size (filters)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

a) 4 x 350 MHz Pentium II (in Cluster)

0,0

1,5

3,0

4,5

6,0

7,5

9,0

10,5

12,0

13,5

15,0

1 10 100 1000 10000

Computation grain-size (filters)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

b) 7 x 350 MHz Pentium II (in Cluster)

0

9

18

27

36

45

54

63

72

81

90

1 10 100 1000 10000
Computation grain-size (filters)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

c) 4 x 66 MHz PPC 601 (in PowerXplorer)

0

9

18

27

36

45

54

63

72

81

90

1 10 100 1000 10000
 Computation grain-size (filters)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

d s
)

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

d) 16 x 66 MHz PPC 601 (in PowerXplorer)

0

120

240

360

480

600

720

840

960

1080

1200

1 10 100 1000 10000
Computation grain-size (filters)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

f) 56 x 30 MHz T805 (in MultiCluster)

0

120

240

360

480

600

720

840

960

1080

1200

1 10 100 1000 10000
Computation grain-size (filters)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

10 Values per message
50 Values per message
100 Values per message
500 Values per message
1000 Values per message

e) 14 x 30 MHz T805 (in MultiCluster)

3.2 Dynamic Grain-size Adaptation

One of the main goals of SCOOPP is dynamic scalability through grain packing. To
tests de effectiveness of the SCOOPP granularity control, an evaluation of the ability
to dynamically pack sieves filters was performed. This evaluation compares the
lowest execution times – experimentally measured in the previous section - with the
execution times obtained by running the sieve on several target platforms, without
any code change and relying on the granularity control mechanisms in the SCOOPP
run-time system.

Table 3 summarises the measures above mentioned. On the SCOOPP strategy, the
computation and communication grain-sizes were obtained by computing the number
of //obj on each //tasks and the number of method calls on each message, according
the expressions on section 2.3. A circular load balancing strategy spreads grains
through the nodes and can place several grains per node.

The P column shows the number of processors used for each test. For both the
programmer based and SCOOPP grain-size adaptation several parameters are given:
T is the execution time in seconds; Sp is the speedup obtained comparing with the
same sieve on a single node; γ is the number of grains placed on each node; Cp is the
degree of the computation packing, in number of //obj (filters) per //task (e.g., the
computation grain-size) and Cm is the degree of the communication packing, in values
per message (e.g., the communication grain-size). Cm is tenfold the number of method
calls per message, since each method call sends a block of 10 values. On the
SCOOPP methodology Cp and Cm are mean values, since they are computed
dynamically and change during run-time.

The SCOOPP methodology results also include 3 columns with the estimated
parameters, in microseconds: the remote method call latency (α), the overhead of the
method parameters passing (ν) and the average method execution time (µ). The latter
two parameters are also mean values.

Table 3. Comparing sieve execution times: programmer based and SCOOPP

Programmer based SCOOPP

P T Sp γ Cp Cm T Sp γ Cp Cm
α ν µ

4 3.86 3.8 24 100 500 3.96 3.7 28 86 560
Cluster

7 2.52 5.9 27 50 500 2.66 5.6 21 65 560
500 10 5

4 23.2 3.9 48 50 100 28.0 3.2 19 126 50
PowerXplorer

16 6.9 13.0 12 50 100 8.0 11.3 12 50 50
300 72 18

14 135.6 9.6 14 50 100 162.3 8.0 21 34 20
MultiCluster

56 44.5 29.2 14 12 50 44.8 29.0 11 16 20
530 82 440

These results show the effectiveness of the SCOOPP methodology to scale the
sieve application on several target platforms. The methodology was able to
dynamically increase grain-sizes to obtain speedups of the same order of magnitude
as a programmer-based approach. Moreover, execution times obtained through the
SCOOPP methodology are often in a 20% range of the optimal values, showing that
this methodology successively removes most of the parallelism overheads. The
remaining overhead is usually due to a choice of a too large or too small number of

grains. However, removing this overhead requires the knowledge of the full number
of //task or some guessing through experiments, as the ones performed on the
previous section. These alternatives increase development costs and are not feasible
on applications where the number of //tasks is strongly dependent on input data.

When computation and communication grain-sizes are controlled through packing
(both object and method calls packing) the total number of created objects and
method calls remains the same. To reduce this sequential workload - due to the object
oriented paradigm – the programmer can “pack” by merging several //obj into a
single //obj (e.g., pack several filters into a single //obj) and by grouping blocks of
values on a single method call. Fig.3a and 3b show the impact of merging several
filters into a single //obj and increasing the block size on method calls. The graphs
show execution times on a single cluster node and the ideal execution time on 4
cluster nodes, for several computation and communication grain-sizes.

Fig. 3. Execution times for partially optimised sieves through method call and object merging

When these optimisation approaches are followed to supply SCOOPP with
pre-optimised parallel versions, SCOOPP is also able to improve the overall
performance. Fig.4a presents the times obtained on programmer partially optimised
sieves, with communication grain-sizes of 10 and 100 values per message; Fig.4b
shows their behaviour on the SCOOPP system.

Fig. 4. Programmer based and SCOOPP implementation on partially optimised sieves

0,0

1,5

3,0

4,5

6,0

7,5

9,0

10,5

12,0

13,5

15,0

1 10 100 1000 10000

Computation grain-size (filters per //obj)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

1 Value per message
3 Values per message
10 Values per message
100 Values per message

a) "Packing" on 1 cluster node

0,0

1,5

3,0

4,5

6,0

7,5

9,0

10,5

12,0

13,5

15,0

1 10 100 1000 10000

Computation grain-size (filters per //obj)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

ds
)

10 Values per message

100 Values per message

a) Programmer based on 4 cluster nodes

0,0

1,5

3,0

4,5

6,0

7,5

9,0

10,5

12,0

13,5

15,0

1 10 100 1000 10000
Computation grain-size (filters per //obj)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

d s
)

1 Value per message
3 Values per message
10 Values per message
100 Values per message

b) Ideal "packing" on 4 cluster nodes

0,0

1,5

3,0

4,5

6,0

7,5

9,0

10,5

12,0

13,5

15,0

1 10 100 1000 10000
Computation grain-size (filters per //obj)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
on

d s
)

10 Values per message

100 Values per message

b) SCOOPP on 4 cluster nodes

These execution times show that the SCOOPP values are very close to the “ideal”
ones in Fig.3b. These results reinforce the effectiveness of the SCOOPP
methodology, showing that SCOOPP can efficiently scale pipelined applications,
even when these are previous and partially optimised by the programmer.

Conclusion

The commercial success of massively parallel systems was slowed down mainly
due to the lack of adequate tools to support automatic mapping of the applications
into distinct target platforms, without significative loss of efficiency. The overhead on
programmers was too high and the available tools were inefficient. SCOOPP attempts
to overcome these limitations: it provides dynamic and efficient scalability of object
oriented parallel applications across several target platforms, packing grains and
messages, without any code modification.

The presented results show the effectiveness of the SCOOPP methodology when
applied to pipelined applications on several target platforms. The methodology is able
to dynamically increase grain-sizes and to obtain speedups of the same order of
magnitude as a programmer-based approach. Moreover, execution times obtained
through the SCOOPP methodology are often in a 20% range of the optimal values,
showing that this methodology successively removes most of the parallelism
overheads.

Programmer based grain-size adaptation is not a competitive alternative to
SCOOPP, it requires a wide range of tests on each target platform and each test is
highly time consuming (as presented in Fig.2).

The performance penalties imposed by SCOOPP have a low impact on application
execution time, and they are mainly due to the run-time requirements to estimate the
application dependent parameters to adapt the computation and communication
grain-sizes. A static adaptation can provide the correct grain-size at the beginning of
the running, but a dynamic strategy requires some time to evaluate the application
features and to react accordingly.

Dynamic scalability of the parallel code version largely overcomes this small
performance cost. It is the most promising approach to scale applications where task
granularity is strongly dependent on input data. When compile time estimates of task
granularity are not accurate, it may decrease the cost of the parallel code development
and improve the code reutilization on multiple target platforms.

Current work includes development of packing policies for static and dynamic
object trees, and applied to less controlled application environments (such as
computer vision applications).

References

[1] Kruatrachue, B., Lewis, T.: Grain Size Determination for Parallel Processing, IEEE
Software, Vol. 5(1), January (1988)

[2] Gresoulis, A., Yang, T.: On the Granularity and Clustering of Direct Acyclic Graphs,
IEEE Transactions on Parallel and Distributed Systems, Vol. 4(6), June (1993)

[3] High Performance Fortran Forum: HPF language specification, Technical Report CPRPC-
TR92225, Center for Research on Parallel Computation, Rice University, Tex., (1993)

[4] Beckman, P., Gannon, D., Johnson, E.: HPC++ and the HPC++ Lib. Toolkit, White
Paper, www.extreme.indiana.edu/hpc++, (1997)

[5] Andersen, A.: A General, Fine-Grained, Machine Independent, Object-Oriented
Language, ACM SIGPLAN Notices, Vol. 29(5), May (1994)

[6] Sobral, J., Proença, A.: Dynamic Grain-Size Adaptation on Object-Oriented Parallel
Programming - The SCOOPP Approach, Proceedings of the 2nd Merged IPPS/SPDP
1999, Puerto Rico, April (1999)

[7] Sobral, J., Proença, A.: ParC++: A Simple Extension of C++ to Parallel Systems,
Proceedings of the 6th Euromicro Workshop on Parallel and Distributed Applications
(PDP’98), Madrid, Spain, January (1998)

[8] Sobral, J., Proença, A.: A Run-time System for Dynamic Grain Packing, Proceedings of
the 5th International EuroPar Conference (Euro-Par'99), Toulouse, France, September
(1999)

[9] Mohr, E., Kranz, A., Halstead, R.: Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs, IEEE Transactions on Parallel and Distributed
Processing, Vol. 2(3), July (1991)

[10] Goldstien, S., Schauser, K., Culler, D: Lazy Threads: Implementing a Fast Parallel Call,
Journal of Parallel and Distributed Computing, Vol. 37(1), August (1996)

[11] Karamcheti, V., Plevyak, J., Chien, A.: Runtime Mechanisms for Efficient Dynamic
Multithreading, Journal of Parallel and Distributed Computing, Vol. 37(1), August (1996)

[12] Taura, K., Yonezawa, A.: Fine-Grained Multithreading with Minimal Compiler Support –
A Cost Effective Approach to Implementing Efficient Multithreading Languages,
Proceedings of the ACM SIGPLAN Conference on Programming Language Design &
Implementation (CPLDI’97), Las Vegas, July (1997)

[13] Lopez, P., Hermenegildo, M., Debray, S.: A Methodology for Granularity Based Control
of Parallelism in Logic Programs, Journal of Symbolic Computation, Vol. 22, (1998)

[14] Pritchard, P.: Linear Prime-Number Sieves: A Family Tree, Science of Computer
Programming, Vol. 9, (1987)

[15] Xuedong, L.: A Practical Sieve Algorithm Finding Prime Numbers, Communications of
the ACM, Vol. 32(3), (1989)

[16] Dunten, B., Jones, J., Sorenson, J.: A Space-Efficient Fast Prime Number Sieve,
Information Processing Letters, Vol. 59, (1996)

