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Abstract. This paper describes experiments with the development of a parallel 
computing platform on top of a compatible C# implementation: the Mono 
project. This implementation has the advantage of running on both Windows 
and UNIX platforms and has reached a stable state. This paper presents 
performance results obtained and compares these results with implementations 
in Java/RMI. The results show that the Mono network performance, critical for 
parallel applications, has greatly improved in recent releases, that it is superior 
to the Java RMI and is close to the performance of the new Java nio package. 
The Mono virtual machine is not yet so highly tuned as the Sun JVM and 
Thread scheduling needs to be improved. Overall, this platform is a new 
alternative to explore in the future for parallel computing. 

1   Introduction 

Traditional parallel computing is based on languages such as C/C++ and Fortran, 
since these languages provide a very good performance. Message passing libraries 
such as MPI and PVM are also very popular, since there are bindings for several 
languages and implementations for high performance networks, like Myrinet and 
Infiniband. These message passing libraries support the CSP model, where parallel 
applications are decomposed into a set of processes that communicate through 
message passing. It has been recognised that this programming model is not the most 
appropriated for object-oriented applications [1], since the natural mechanism for 
communication on these applications is the method invocation. Several extensions to 
C++ have been proposed [2] that use the object as the base unit of parallelism (instead 
of process) and objects communicate through remote method invocations (instead of 
message passing). 

The Java programming language has gained an increasing acceptation in the last 
decade. It is a much cleaner object oriented language than C++, since it removes the 
burden of pointer management and memory allocation. It also has an increased 
portability, since it is based on a virtual machine and an application can run anywhere 
that has a virtual machine implementation. This approach also resolves the 
communication problem among heterogeneous machines, since the communication is 
always between virtual machines. These are also important advantages for the 
increasing popular GRID computing field. The Java language also includes support 
for threads, remote method invocation (RMI) and object serialisation. Object 
serialisation allows object copies to move between virtual machines, even when 
objects are not allocated on a continuous memory range or when they are composed 



240 J.F. Ferreira and J.L. Sobral 

 

by several objects. The serialisation mechanism can automatically copy the object to a 
continuous stream that can be sent to another virtual machine, which can reconstruct a 
copy of the original object structure on the remote machine. 

Several works are based on the Java platform for parallel computing: performance 
improvements to the original RMI implementation [3], thread distribution among 
virtual machines [4][5], MPI bindings [6] and implementation of higher level 
programming paradigms [7], just to name a few. 

Microsoft has proposed the .Net platform to compete against the Java success. In 
particular, the C# language closely resembles to Java: it is also based on a virtual 
machine; it relieves the programmer from memory allocation and pointer 
management issues; it includes thread support in the language specification and 
supports RMI. However, the C# language includes some improvements; namely, it 
provides support for asynchronous method invocation and several ways to publish 
remote objects, which will be discussed in more detail in the next section. The main 
Microsoft .Net platform drawback is the lack of support in other platforms besides 
Microsoft Windows. This may explain the limited number of research projects related 
to .Net platform on clusters, since clusters mainly run Linux operating systems or 
other UNIX variants. 

The Mono project is a free .Net platform implementation that runs on several 
operating systems, including Linux machines. This paper describes the experience 
acquired when porting a parallel object oriented system to this platform. The rest of 
this paper is organised as follows. Section 2 presents a more detailed comparison of 
the supported concurrency and distribution mechanisms of MPI, Java and C#. Section 
3 presents the proposed platform, including the programming model and its 
implementation on the Mono platform. Section 4 presents performance results. 
Section 5 closes the paper with suggestions for future work. 

2   C# Remoting Versus MPI and JAVA RMI 

The Message Passing Interface (MPI) is a collection of routines for inter process 
communication. The mechanisms for communication are based on explicit message 
send and receive, where each process is identified by its rank in the communication 
group. MPI has a large set of primitives to send and receive messages, namely, 
blocking and unblocking sends and receives; broadcasts and reductions. MPI requires 
explicit packing and unpacking of messages (i.e., a data structure residing in a 
non-continuous memory must be packed into a continuous memory area before being 
sent and must be unpacked in the receiver). A thread library such as Pthreads can be 
used to create multithreaded applications. However, most MPI implementations are 
not thread safe, increasing the application complexity, when several threads in the 
same process need to access to the MPI library. 

The Java language specification includes support for multithreaded applications 
through the Thread class and the Runnable interface. The thread method start initiates 
the execution of a new thread that executes the run method of an object implementing 
the Runnable interface. Synchronised methods prevent two threads from 
simultaneously executing code in the same object, avoiding data races. The Java RMI 
provides remote method invocations among Java virtual machines. Using RMI 
involves several steps, which considerably increase the burden to use it: 
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public interface IDServer extends Remote {
  double divide(double d1, double d2) throws RemoteException; 
} 
 
public class DServer extends UnicastRemoteObject implements IDServer { 
  public double divide(double d1, double d2) throws RemoteException { 
    return d1 / d2; 
  } 
  public static void main(String args[]) { 
    try { 
      DServer dsi = new DServer(); 
      Naming.rebind("rmi://host:1050/DivideServer",dsi); 
    } catch(Exception e) { e.printStackTrace(); } 
  } 
} 
 
public class DivideClient { 
  public static void main(String args[]) { 
    try { 
      IDServer ds; // Obtains a reference to the remote object 
      ds = (IDServer) Naming.lookup("rmi://host:1050/DivideServer"); 
      double d1 = Double.valueOf(args[0]).doubleValue(); 
      double d2 = Double.valueOf(args[1]).doubleValue(); 
      double result = ds.divide(d1, d2); 
    } catch(RemoteException ex) { ex.printStackTrace(); } 
} 

public class DServer { 
  public double divide(double d1, double d2) { 
    return d1 / d2; 
  } 
 
public class DivideClient { 
  public static void main(String args[]) { 
    DServer ds = new DServer(); 
    double d1 = Double.valueOf(args[0]).doubleValue(); 
    double d2 = Double.valueOf(args[1]).doubleValue(); 
    double result = ds.divide(d1, d2); 
  } 
} 

1. Server classes must implement an interface, which must extend the Remote 
interface, and its methods must throw a RemoteException. 

2. Each server object must be manually instantiated (by introducing a main method 
on the server class), exported to be remotely available and registered in a name 
server to provide remote references to it; 

3. Client classes must contact a name server to obtain a local reference to a remote 
object; 

4. Each remote call must include a try { … } catch statement to deal with 
RemoteExcetions; 

5. For each server class it is required to run the rmic utility to generate proxies and 
ties that are, respectively, used by the client and server class in a transparent way. 

Fig. 1 illustrates these required transforms for a simple remote class that performs a 
division of two numbers. 

 
Fig. 1. Conversion of a Java class to a remote class 

With RMI the only binding between the client and the server is the registered name 
of the server object (host:1050/DivideServer in the figure), which truly provides 
location transparency. All objects passed among remote classes should implement the 
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public interface IDServer { 
  double divide(double d1, double d2); 
} 
 
public class DServer : MarshalByRefObject, IDServer { 
  public double divide(double d1, double d2) { 
    return d1 / d2; 
  } 
  public static int Main (string [] args) { 
    TcpChannel cn = new TcpChannel (1050); 
    ChannelServices.RegisterChannel(cn); 
    RemotingConfiguration.RegisterWellKnownServiceType( typeof(DServer), 
      "DivideServer", WellKnownObjectMode.Singleton); 
  } 
} 
 
public class DivideClient { 
  public static int Main (string [] args) { 
    TcpChannel cn = new TcpChannel(); 
    ChannelServices.RegisterChannel(cn); 
    IDServer ds = (IDServer) Activator.GetObject( typeof(DivideServer), 
      "tcp://localhost:1050/DivideServer"); 
    double d1 = Convert.ToDouble(args[0]); 
    double d2 = Convert.ToDouble(args[1]); 
    double result = ds.divide(d1, d2); 
  } 
} 

interface serializable, providing a way to automatically send object copies among 
virtual machines. 

The .Net platform implements threads in a way similar to Java, but the use of 
remote method invocations has become simpler and several improvements have been 
added. One important difference is the various alternatives to publish remote objects 
(step 2 from the previous list). In addition to publish objects explicitly instantiated, it 
is possible to register an object factory that instantiates objects at request. This object 
factory has two alternatives to instantiate objects: 

1. singleton - all remote calls are executed by the same object instance; 
2. singlecall – each remote call may be executed by a different instance (i.e., object 

state is not maintained between remote calls). 

Fig. 2 presents the code in Fig. 1 converted to C#. 
 

Fig. 2. Remote class in C# 

There are two important differences: no RemoteException needs to be 
thrown/caught and the server code only publishes the object factory 
(RemotingConfiguration line), not an object instance. Conversely to the Java version 
it is not required to generate proxy and ties, since they are automatically generated.  

C# Remoting also includes support for asynchronous method invocation through 
delegates. A delegate can perform a method call in background and provides a 
mechanism to get the remote method return value, if required. In Java, a similar 
functionality must be explicitly programmed using threads. 

3   The Platform 

The ParC# is a SCOOPP (Scalable Object Oriented Parallel Programming) 
implementation [8], which has been previously implemented in C++/MPI 



 ParC#: Parallel Computing with C# in .Net 243 

 

(implementation called ParC++). The C# implementation is much simpler, since the 
C++ version must contain code to explicitly pack/unpack method tags and parameters 
into MPI messages, required to implement synchronous or asynchronous remote 
method invocations. This section shortly reviews the programming model and details 
the main differences between these two implementations. 

3.1   Programming Paradigm 

SCOOPP is based on an object oriented programming paradigm supporting active and 
passive objects. Active objects are called parallel objects and they specify explicit 
parallelism, having its own thread of control. These objects model parallel tasks and 
are automatically distributed among processing nodes. They communicate through 
either asynchronous (when no value is returned) or synchronous method calls (when a 
value is returned). 

References to parallel objects may be copied or sent as a method argument, which 
may lead to cycles in a dependence graph. The application's dependence graph 
becomes a DAG when this feature is not used. 

Passive objects are supported to make easier the reuse of existing code. These 
objects are placed in the context of the parallel object that created them, and only 
copies of them are allowed to move between parallel objects. 

SCOOPP removes parallelism overheads at run-time by transforming (packing) 
parallel objects in passive ones and by aggregating method calls [8]. These run-time 
optimisations are implemented through: 
− method call aggregation: (delay and) combine a series of asynchronous method 

calls into a single aggregate call message; this reduces message overheads and per-
message latency; 

− object agglomeration: when a new object is created, create it locally so that its 
subsequent (asynchronous parallel) method invocations are actually executed 
synchronously and serially.  

3.2   Implementation 

The ParC++ implementation supports some extensions to C++. It includes a 
pre-processor, several C++ support classes and a run-time system. The pre-processor 
analyses the application - retrieving information about the declared parallel objects - 
and generates code for remote object creation and remote method invocation. 

The ParC++ run-time system (RTS) is based on three object classes: proxy objects 
(PO), implementation objects (IO) and server objects (SO). 

A PO represents a local or a remote parallel object and has the same interface as 
the object it represents. It transparently replaces remote parallel objects and forwards 
all method invocations to the remote parallel object implementation (IO/SO in Fig. 3). 
A PO maintains the remote identification of its IO and SO. On inter-grains method 
calls the PO forwards the call to a remote SO, which activates the corresponding 
method on the IO (calls a in Fig.3). On intra-grain calls, the PO directly calls the 
corresponding method on the local IO (call b in Fig.3).  

Converting the ParC++ prototype to C# removed a large amount of code from PO 
objects, since most of its functionality is already implemented by C# remoting. 
 



244 J.F. Ferreira and J.L. Sobral 

 

public class PrimeServer : PrimeFilter { 
  public void process(int[] num) { 
  ... 
  } 
} 

public class PrimeServer : PrimeFilter {  // PO object 
  public delegate void RemoteAsyncDelegate (int[] num );   // delegate decl. 
  PrimeServerImpl obj;    // reference to IO object 
  ... 
  public void process(int[] num) {   // asynchronous call using delegates 
    RemoteAsyncDelegate RemoteDel= new RemoteAsyncDelegate(obj.process); 
    IAsyncResult RemAr=RemoteDel.BeginInvoke(num,null,null); 
  } 
} 

   Node 0 Node 1

IO 3

SO

b)

a) 

a)

Call through IPC/RMI 

Method call 

IO 1 

IO 2 

c) 

d) 

PO 1

Object creation 

OM OM

c)

PO 2 

c) 

 

Fig. 3. Inter-grains a) and intra-grain b) method calls; RTS c) and d) direct object creation 

However, PO objects are still required, since they perform much of the grain-size 
adaptation. The main simplification of PO objects arises from the elimination of code 
required to pack a method tag and method arguments into a MPI message. This code 
is directly replaced by a direct call to the corresponding method in the IO, using C# 
remoting. This change also allowed PO objects to transparently use remote objects or 
local objects (i.e., those objects created directly, when performing object 
agglomeration). Implementing asynchronous method invocation was simpler, since it 
only required the use of delegates. During the preprocessing phase, the original 
parallel object classes are replaced by generated PO classes.  

Fig. 4 presents a simple source code and the PO code generated by the 
preprocessor. This code calls the process method asynchronously, using a delegate.  

 
Fig. 4. PO object using delegates 

The ParC++ RTS provides run-time grain-size adaptation and load balancing 
through cooperation among object managers (OM) and POs. The application entry 
code creates one instance of the OM on each processing node. The OM controls the 
grain-size adaptation by instructing PO objects to perform method call aggregation 
and/or object agglomeration.  

When a parallel object is created in the original code, the generated code creates a 
PO object instead. The first task of the newly created PO is to request the creation of 
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public class PrimeServer : PrimeFilter {  // PO object 
  ... 
  PrimeServerImpl obj;    // reference to IO object 
  ... 
  public PrimeServer() {    
    if (aglomerateObj) {      // perform agglomeration? 
      obj = new PrimeServerImpl();            // intra-grain object creation 
      ... // notify local OM 
    } 
    else { 
      ... // contact OM to get a (host) and tcp (port) for the new object  
      string uri="tcp://"+host+":"+port+"/factory.soap"; 
      // gets a reference to the remote factory (rf)  
      rf =(RemoteFactory)Activator.GetObject(typeof(RemoteFactory),uri); 
      obj=(PrimeServerImpl)rf.PrimeServer(); // request remote object creation 
    } 
  } 
} 

public class PrimeServerImpl : MarshalByRefObject { 
  ... 
  public void process(int[] num) { 
    ... // copy of the original method implementation 
  } 
} 
// object factory 
public class RemoteFactory : MarshalByRefObject  { 
  ... 
  public PrimeServerImpl PrimeServer() { 
    return new PrimeServerImpl(); 
  } 
} 
// main code the register the factory 
public static void Main (string [] args) { 
  ... 
  RemotingConfiguration.RegisterWellKnownServiceType(typeof(RemoteFactory), 
 "factory.soap",WellKnownObjectMode.Singleton); 
} 

the IO. When parallelism is not being removed, the OM selects a processing node to 
create a new IO (according to the current load distribution policy), selects or creates 
the associated SO and returns their identifier to the PO (calls c in Fig.3). When the 
RTS is removing excess of parallelism, the PO directly creates the parallel object, by 
locally creating the IO (call d in Fig.3) and notifying the RTS. In ParC# this generated 
code is very similar to the ParC++ code and it is placed on the PO object constructor.  
shows the PO generated constructor from the example in Fig. 4. 

Fig. 5. PO generated code for IO object creation 

 
Fig. 6. IO code and the corresponding factory 

In ParC++ SO objects are active entities (i.e., threads) that continuously receive 
messages from PO objects, calling the requested method on local IO and, if needed, 
returning the result value to the caller. The ParC# implementation no longer requires 
SO objects and the corresponding message loop to receive external messages, since 
this loop is implemented by the C# remoting. 

The object manager in the ParC++ implementation had the responsibility to 
perform load management and explicit object creation. A factory was generated for 
each class and instantiated on each node to implement this functionality. On the C# 
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public class PrimeServer : PrimeFilter {  // PO with method call aggregation 
  [Serializable] 
  struct paramsprocess {            
      public int[] num; 
  } // array structure for multiple invocations 
  public ArrayList processList = new ArrayList(); 
  paramsprocess processStruct = new paramsprocess(); 
 
  public void process (int[] num) { 
    if (currentCall++<maxCalls) {            // maxCalls = calls per message 
      processStruct.num=num; 
      processList.Add(processStruct); 
      currentCall++; 
    } else { 
      obj.processN(processList, maxCalls); 
    } 
} 
public class PrimeServerImpl : MarshalByRefObject { // IO code 
  ... 
  public void processN (ArrayList a, int nInv) { 
    paramsprocess b; 
    for (int i=0;i<maxCalls;i++) { 
    b=(paramsprocess)(a[i]); 
    process(b.num); 
  } 
} 

prototype this functionality was separated form the OM code since object factories 
can be automatically registered in the boot code of each node. Fig. 6 shows the code 
of the generated IO from the previous example and also shows the generated object 
factory and the code to register this factory. 

Aggregating several method calls in a single message required the introduction of a 
new method in the implementation object to process a pack of several method calls. 
The parameters of the several invocations are placed in an array structure that is 
constructed on the PO side and fetched from the array on the IO side. Fig. 7. presents 
the generated code for method call aggregation. 

 

Fig. 7. Method call aggregation code 

4   Performance Results 

Performance evaluation was performed through low and high level tests. The low 
level evaluation measures the base communication latency and bandwidth. The high 
level evaluation measures the application performance with a simple application. 
These tests were run in a Linux cluster, connected through a 100 Mbit Ethernet. Each 
node is a dual Athlon MP 1800+ and has 512 MB of RAM. 

Low-level performance was evaluated by a ping-pong test, where messages with 
several sizes are exchanged between two nodes. These tests compare the Mono 
Remoting (version 1.1.7) performance against an equivalent Java RMI (SDK 1.4.2) 
application and an MPI version (MPICH 1.2.6 and GNU g++ 3.2.2). Both Java and 
the Mono implementations use a remote object, where an array of integers is sent and 
received as the method parameter and return type. In these results the performance 
penalty introduced by the ParC# platform is not noticeable (results not shown). The 
MPI version uses the MPI_Send and MPI_Recv primitives. 

Inter-node bandwidth (Fig. 8b) shows that the MPI bandwidth performance is 
superior to Java and Mono. This is explained by the high level nature of the remote 
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method invocation and the well-optimised version of MPI. Also, for large messages, 
the Mono performance lags behind the Java implementation. This may be explained 
by the fact that the Mono platform is relatively new, when compared to the other 
alternatives and it is not yet so well tuned. 

Inter node latency in Mono (not shown) is between the Java RMI and the MPI 
latency (respectively, 520, 273 and 100us). This low latency is promising for parallel 
applications since it is in the same order as highly optimised Java RMI 
 

 

Fig. 8. Inter-node bandwidth a) Mono versus other; b) Mono implementations 

 
 
 
 

 
 

 

 

 

 

Fig. 9. Parallel Ray Tracer execution time 

implementations [3]. This latency is very close to the performance of the Java nio 
package (introduced in Java 4). However, this Java package is more low level, based 
on message passing. Fig. 8b compares the performance of various Mono 
implementations; it shows that Mono performance has radically increased from 
release 1.0.5 and the low performance of an Http channel. 

The high level evaluation was performed using a parallel Ray Tracer from the Java 
Grande Forum, converted to C#. This application was parallelised using a farming 
approach, where each worker renders several lines from the generated image. 
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Fig. 9 compares the execution times of Java and ParC# to render a scene with 
500x500 pixels. The C# sequential execution time in this particular application is 40% 
superior to the Java version (using the Microsoft virtual machine, on a Windows 
machine, it is only 10% superior). This indicates that the Mono virtual machine is not 
as highly tuned as the JVM. However, running another application, a prime number 
sieve, the Mono execution time is about the same as the JVM. 

The parallel Ray Tracer execution time in several processors is higher in ParC# 
mainly due to the higher sequential time and due to thread management. The Mono 
implementation uses a thread pool to reduce the thread creation cost; however 
limiting the number of running threads in parallel applications reduces the overlap 
among computation and communication and also produces starvation in some 
application threads. 

5   Conclusion 

This paper presented the implementation of a parallel programming paradigm on top 
of a C# and .Net platform. The experience with this implementation revealed that the 
platform greatly simplifies the implementation of the ParC++ and that it is possible to 
use C# and the .Net platform for parallel applications, both on Windows and UNIX 
machines. Code can be moved between these two platforms without any 
recompilation and it is even possible to use it simultaneously on both platforms 
(something that Java does since its appearance). However, performance gains would 
be achieved by a more performance tuned Mono implementation; specifically, the 
virtual machine JIT and the Thread scheduling policy should be improved. 
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