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Abstract— JaSkel is a skeleton-based framework to develop 

efficient concurrent, parallel and Grid applications. It provides a 

set of Java abstract classes that implement recurring parallel 

interaction paradigms. The key feature of JaSkel is to use 

aspect-oriented external tools to address distributed execution, 

by injecting code to support communication middleware into 

JaSkel built-in skeleton implementations. This feature, when 

combined with the ability to develop nested skeletons, can help to 

tailor JaSkel applications to efficiently run on a Grid of clusters 

systems, by taking advantage of inter/intra-cluster and/or 

intra-node communications. This paper describes the JaSkel 

distributed execution tools and how they interplay with the 

JaSkel framework to transparently run applications on a wide 

range of computing platforms, from multi-core to computational 

Grids. Results are presented to show the feasibility and 

scalability of this approach. 

I. INTRODUCTION 

The current move from higher clock frequency CPU 

devices into multi-core chips, together with the increased 

availability of federations of cluster systems, stressed the 

demand for concurrent and distributed applications. Current 

programming environments do not yet conveniently cope with 

this wide range of computing platforms. These environments 

are either targeted for shared memory systems, by providing 

thread-based approaches, or targeted for distributed 

environments, using message passing or remote method 

invocation. Adapting an application to Grid systems also 

requires a significant upfront investment, which is an obstacle 

to a faster embracing of Grids systems. 

Developing applications for computational Grids requires 

applications that are aware of the hierarchical nature of a Grid 

to take advantage of multiple levels of locality: a Grid can be 

built of multiple clusters, where each cluster node can have 

several CPU/cores, and each level usually provides its type of 

middleware for inter-task communication. For instance, each 

Grid cluster usually provides a way for job submission, where 

all data must be provided through files, whereas intra-cluster 

communications can use more efficient inter-process 

communication middleware (e.g., MPI). 

Skeletons are abstractions [1], [2] modelling common and 

reusable parallelism patterns. They aim to hide low-level 

details from the programmer, that are platform dependent. A 

skeleton based framework [3]-[5] usually provides a set of 

skeletons that are efficiently implemented on a range of 

computing platforms. The programmer can use the provided 

skeletons to build parallel applications without being aware of 

the skeletons implementation. 

Skeleton based approaches are especially attractive for Grid 

environments as they support composition of skeletons [6] 

(i.e., skeleton nesting) that can closely match the hierarchical 

nature of a Grid. For instance, a two-level farm can take 

advantage of a Grid of clusters by deploying an inner farm on 

each Grid cluster, and using the top level farm to coordinate 

work allocation among Grid clusters. 

JaSkel [5] is a skeleton framework that provides several 

skeletons and supports skeleton nesting. It provides a 

collection of code templates implemented as a library of Java 

abstract classes. The collection aims to help programmers to 

create parallel applications that can run on a wide range of 

computing platforms. 

JaSkel differs from other skeleton approaches [3], [4], [7], 

[8] in the way it deals with distribution issues (i.e., to adapt 

skeletons to a specific communication middleware): these are 

solved in an orthogonal way, by code generators that support 

distribution of selected skeleton classes. The JaSkel 

framework presented in [5] already had built-in support for 

multi-threaded codes, while this communication focuses on 

complementary distribution tools and aims to show their 

overall advantage in scaling applications to a wide range of 

platforms and in multi-level computing systems. These 

additional tools generate and launch two types of distributed 

skeletons: one, where skeletons communicate through 

message passing or remote method invocations; another, 

where skeletons submit jobs to clusters/Grids through a 

resource manager system (such as PBS). These distribution 

tools, when combined with a multi-level farm, generate 

application code that takes advantage of the multi-level nature 

of a Grid of cluster systems. 

The remainder of this paper is organised as follows. Section 

2 presents related work. Section 3 provides an overview of the 

skeleton-based Java framework. Section 4 describes the two 

developed distribution tools. Section 5 presents performance 

evaluation results and the last section draws conclusions on 

the work done so far suggesting future research directions. 

II. RELATED WORK 

Several skeleton based approaches are described in the 

literature that also support skeleton composition [2], [6], [8]. 

Lithium [3] and CO2P3S [4] are two Java-based skeleton 

environments for parallel programming. Lithium supports 

skeletons for pipeline, farm and divide & conquer, as well as 



other low level skeletons (map, composition). CO2P3S is 

based on generative patterns, where skeletons are generated 

and the programmer must fill the provided hooks with domain 

specific functionality. HOCs [7] were specifically designed 

for Grid environments by supporting independent deployment 

of skeleton and application specific code. 

The most relevant difference between JaSkel and other 

approaches is the use of external tools to adapt skeletons to a 

specific distributed environment (i.e., communication 

middleware). This approach presents several advantages over 

competitive approaches: 

• skeletons can scale to a wide range of computing 

platforms, from multi-core systems to computational 

Grids; 

• JaSkel skeletons can combine multiple communication 

middleware into a single application taking advantage 

of the layered composition of clusters and Grids; 

• distribution code, required to adapt skeletons to a 

specific distributed environment, does not impose 

performance constrains when it is not required, since it 

is not include in the build; 

• JaSkel skeletons do not need to provide distribution 

specific hooks (e.g., skeleton factories). 

Additionally, JaSkel explores class hierarchy and 

inheritance along with object composition and includes 

sequential and parallel skeletons. A skeleton hierarchy 

overcomes some limitations of other alternatives, supporting 

refinement of the provided skeletons. JaSkel includes 

sequential versions of all skeletons; moving from a sequential 

skeleton to a parallel implementation simply entails changing 

the extended base class. This approach eases the development 

in early coding phases and in debugging activities. 

Most Java based approaches for parallel computing address 

distributed thread execution on Java distributed machines. 

Examples are cJVM [9], Hyperion [10], Jackal [11] and 

JESSICA2 [12]. Java Party [13], ProActive [14] and Ibis [15] 

are similar approaches but they rely on distributed objects. 

ProActive and Ibis also support the deployment of 

applications into Grid platforms, by including middleware that 

supports Grid environments. These approaches share with 

JaSkel the benefit of transparently supporting the execution of 

an application on shared and distributed memory systems. 

However, these approaches do not present the benefits of 

skeleton approaches, namely the more structured application 

development, including the support for skeleton composition. 

III. JASKEL OVERVIEW 

Skeleton based frameworks provide a set of pre-defined 

structures (called skeletons) to develop parallel applications. 

The programmer selects the skeletons better suited for his/her 

concrete application, provides application specific code and 

the framework takes care of concurrency and distribution 

issues. By using skeletons the programmer can focus on the 

computational side of their algorithms rather than on 

parallelisation issues. 

Current JaSkel framework provides several skeletons, 

namely pipeline, farm and heartbeat. Each of these skeletons 

implements a frequently occurring structure of parallel 

applications. To write an application in JaSkel the 

programmer must go through three steps: 

1. Select the skeleton(s) that better fits the application 

parallelisation. 

2. Refine the skeleton abstract class, filling skeleton 

hooks (i.e., abstract methods) with domain specific 

code. 

3. Write code to instantiate the skeletons and to start the 

skeleton activity. 

A JaSkel skeleton is a Java class that extends the Compute 

class (Figure 1). The Skeleton method eval starts the skeleton 

activity. 
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Fig. 1  The farm skeleton 

 

Compute objects perform domain-specific computation. 

The programmer must create a subclass of class Compute, 

implementing the abstract method Object compute(Object 

input) to provide domain-specific computations. 

To create a parallel application based on a farm parallel 

structure, the programmer must perform the following steps: 

1. Create the worker Compute class. 

2. Create the farmer class, extending Farm, implementing 

methods split and join. 

3. Create instances of worker and farmer class to achieve 

the intended farm structure. 

4. Start the skeleton activity, by calling the eval and grab 

the results with getResult method. 

When the eval method is called on the farmer it will 

perform the following steps:  

1. Split the initial data using the farmer split method. 

2. Call compute method from workers with the pieces of 

data returned by method split; 

3. Merge the partial results using the farmer join method. 

JaSkel skeletons are also subclasses of Compute and 

implement the compute method (see Figure 1). This feature 

supports skeleton nesting, since a skeleton can be used in any 

context where a Compute instance can be used (e.g., in 

multi-level farms). 

Figure 2 presents a simple pseudo-code for a two-level 

farm. Lines 01-06 define the Worker class, implementing the 

compute method. Lines 08-16 implement an InnerFarm class 

that creates its own set of Worker and provides specific split 

and join methods. Lines 18-27 implement the top-level farm, 



creating a set of inner farms. Lines 29-34 instantiate the 

OuterFarm, start the skeleton activity and get the computed 

task. 

 

01 public class Worker extends Compute { 
02  … 
03  public Object compute(Object input) { 
04   return /* processed input */; 
05  } 
06 } 
07 
08 public class InnerFarm extends Farm { 
09  … 
10  public InnerFarm() { 
11   for(int i=0; i<myNumberOfInnerWorkers; i++) 
12    /* … */ = new Worker(); 
13  } 
14  Collection split(Object initialTask) { … }  // inner split 
15  Object join(Collection partialResults) { … } // inner join 
16 } 
17 
18 public class OuterFarm extends Farm { 
19  … 
20  public OuterFarm(Object task) { 
21   super(task);       // save task into local structure 
22   for(int i=0; i<myNumberOfOuterWorkers; i++) 
23    /* … */ = new InnerFarm(); 
24  } 
25  Collection split(Object initialTask) { … }  // outer split 
26  Object join(Collection partialResults) { … } // outer join 
27 } 
28 
29 public void main() { // main function 
30  Task task = … // task to compute 
31  OuterFarm farmer = new OuterFarm(tasks); 
32  farmer.eval(); // starts the farming process 
33  Object o = farmer.getResult(); // get results 
34 } 
35 

Fig. 2  Example of a two-level farm 

JaSkel framework implements several types of farms: 

sequential, concurrent and dynamic. Dynamic farms are well 

suited for unbalanced problems and/or heterogeneous 

platforms, as it uses a demand-driven approach to distribute 

tasks among workers. Combining skeleton nesting with 

dynamic farms to achieve multi-level dynamic farms is 

particularly attractive to balance the load among several 

clusters and/or among cluster nodes. In the example of Figure 

2 this would mean to simply extend the DynamicFarm instead 

of the sequential Farm (of course, the split method should also 

provide a number of tasks larger than the number of workers). 

IV. DISTRIBUTION ENABLING TOOLS 

JaSkel has built-in support for concurrency, through several 

concurrent skeletons. For instance, the ConcurrentFarm 

skeleton provides concurrent execution of Compute instances. 

These skeletons with built-in concurrency support can take 

advantage of shared memory machines, as they rely on a 

thread model which implicitly supports data sharing among 

threads. However, these skeletons can not take advantage of 

distributed memory machines as they rely on a shared address 

space. 

Support for skeleton execution on distributed memory 

machines is provided by external tools. These tools transform 

concurrent skeletons into skeletons that can be executed in 

remote nodes. This approach has two main strong points: 

skeletons and distribution middleware can be composed in a 

more flexible manner and there is no need to use special hook 

points (e.g., to support remote creation, in [3], [7], skeletons 

must be created through object factories).  

Using external tools to adapt skeletons for distributed 

systems also improve the development of the skeleton 

framework itself as the specificities of each middleware are 

addressed by these tools, making it easier to maintain and 

evolve the framework code and to adapt the framework for a 

new distribution middleware. 

We have implemented two types of tools, both relying on 

source to source code transformations that generate AspectJ 

code [16], an extension to Java that supports aspect oriented 

programming [17]. Using AspectJ as the target language, 

instead of Java, allowed these tools to generate less code and 

to avoid changing the original skeleton code, enabling a more 

flexible composition among distribution tools. More details on 

using AspectJ to introduce distribution related code can be 

found in [18], [19]. 

The first tool generates Cluster-aware distributed skeletons 

based on Java RMI (more precisely UkaRMI [20], one of the 

most efficient Java RMI implementations today). The second 

tool converts a JaSkel skeleton to execute on computational 

Grids, by implementing Compute instances as jobs that are 

submitted to the resource manager of a local or remote 

clusters (we will simply call this the Grid enabling tool). The 

next two sub-sections present these tools in more detail. The 

last sub-section shows how these tools can be used together to 

deploy more Grid aware applications. 

A. Cluster Enabling Tool 

The purpose of the cluster enabling tool is to support 

skeleton distribution among multiple JVMs residing on the 

same cluster or on a local area network. This tool transforms 

JaSkel Compute instances on Java RMI objects. These 

potentially remote objects may reside in another JVM. The 

generated code provides two base services: remote skeleton 

creation and remote invocation of compute methods (and other 

skeleton specific methods). The tool is based on a well known 

process that performs a source code transformation [13], [21], 

based on 3 classes: proxy objects (PO), implementation 

objects (IO) and object managers (OM). A skeleton extending 

the Compute class is referred as the IO class and a generated 

aspect plays the role of the PO class. Each node has an OM 

that implements local object factories to enable remote object 

creations. A similar strategy implemented through a bytecode 

rewriter is presented in [22]. However, the cluster enabling 

tool uses the AspectJ compiler to generate bytecodes. 
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Fig. 3  Run-time system for RMI 

Figure 3 illustrates the roles of PO, IO and OM objects in 

remote object creations and remote method calls. Whenever a 

Compute object was created in the original code the generated 

aspect (i.e., PO) requests an object creation to the local OM 

(JVM 0, call a) in the figure), which may locally create the IO 

object or forward the request to another OM. After remote 

object creation the PO transparently redirects local method 

calls to the remote IO (call b) in the figure). 

 

public class Worker extends Compute { 
 public Object compute(Object obj) { 
  ... // method implementation 
 } 
} 

Fig. 4  Sample Compute class 

01 public interface IWorker { 
02   public Object compute(Object) throws RemoteException; 
03 } 
04 
05 public class ObjectManager {  // OM class 
06  IWorker workerFactory() { 
07   return( new Worker() ); 
08  } … // register Worker to be externally visible 
09 } 
10  
11 aspect ProxyWorker {   // PO Aspect 
12 
13  declare parents: Worker implements IWorker; 
14 
15  IWorker myRemoteWorker; // reference to RMI stub  
16 
17  Worker around call (new Worker())  {  
18      // request remote object creation 
19   IObjectManager ref2OM = ... // reference to OM 
20   myRemoteWorker = refOM.workerFactory(); 
21   return( new PWorker() );  // fake local worker 
22  } 
23 
24  Object around call (compute(Object obj)) {  // RMI  
25   return (myRemoteWorker.compute(obj)); 
26  } 
27 } 

Fig. 5  RMI generated code for Compute class 

Figure 4 presents a simple Worker skeleton that extends the 

Compute class, while Figure 5 shows a simplified example of 

the AspectJ/Java RMI generated code for this class. To 

improve readability, exception handling code and minor 

AspectJ details are not included in the figure. The interface 

IWorker (lines 01-03) is created due to Java RMI 

requirements and the original worker class is declared to 

implement this interface (line 13, using the declare parents 

AspectJ construct). The ObjectManager is an object that 

implements a (remote) Worker factory (lines 05-09). 

The ProxyWorker aspect transparently requests the remote 

Worker creation to the ObjectManager (lines 17-22) and 

redirects the compute calls for remote execution (lines 24-26). 

The PWorker class is created to implement a local proxy 

(code not shown), that extends the Worker class, to avoid the 

creation of multiple local farms in multi-level farms (line 21). 

B. Grid Enabling Tool 

The Grid enabling tool allows JaSkel skeletons to 

transparently run on computational Grids. This tool transforms 

JaSkel Compute instances into stand-alone applications that 

can run on a remote resource. These stand-alone applications 

gather the input data from a file that must be staged-in and 

write the result to another file that must staged-out to the 

client machine. Figure 6 shows a simplified example of the 

code generated by the Grid enabling tool for this purpose. 

 
01 public static void main(String args[]) { 
02  Worker myWorker = new Worker(); 
03  Object myData = … // read data from file 
04  Object result = myWorker.compute(myData); 
05  … // save result into output file 
06 } 

Fig. 6  Compute stand-alone application 

Code generated for the client side share the structure of the 

generated code of the RMI tool; namely, it also uses PO 

aspects and IO objects. OMs are no longer explicitly required, 

since object instantiation is embedded into scripts that are 

submitted for execution; actually, OMs role is replaced by 

resource discovery mechanisms to gather available clusters in 

Grid environments. 

In the distribution-related code generated by the tool, POs 

and IOs interact differently: the PO transforms skeleton 

creation and method calls into scripts that are submitted to a 

local or a remote resource manager for execution, instead of 

directly performing these operations using the RMI 

middleware. 

On the PO side, Compute object creations and compute 

method calls save the parameters into a specific file, generate 

a script that when executed creates the specific Compute 

object (i.e., IO) and calls its compute method. These Compute 

objects get their input data from the PO generated files and, 

after executing the compute method, save their results to files 

that are later retrieved by the PO (see Figure 6). 

Figure 7 shows a simplified example of the code generated 

by this tool. The generated aspect (i.e., ProxyWorker) saves 

the compute parameter into a file, generates a script (line 09), 

submits this script for execution, waits for the creation of the 

file with the result data and returns this data. 

 

 



01 aspect ProxyWorker {   // PO Aspect 
02 
03  Worker around call (new Worker())  {  
04   return( new PWorker() );  // fake local worker 
05  } 
06 
07  Object around call (compute(Object obj))  
08   … // save obj into a specific file 
09   … // generate script to execute remotely  
10   submitJob(/* script name*/,/* list of files */); 
11   while ( !myResultFile.exists() ) /* sleep */; 
12   return(/* read data from file */); 
13  } 
14 } 

Fig. 7  PO generated code for Compute class 

To support multiple job submission systems the process of 

task submission is encapsulated into a procedure (line 10). 

Currently we provide implementations for PBS, SGE and 

GMarte [23]. Note that when the script is executed in a remote 

cluster the generated code must also provide commands to 

stage-in and stage-out the input/output files (this feature is 

automatically supported in these systems). 

C. Combining Distribution Tools 

Providing these distribution enabling tools as separate tools 

makes it possible a wide range of compositions: 

1. Base JaSkel skeletons supports local execution, taking 

advantage of multi-core machines; 

2. Cluster enabling tool allows skeletons to run on a local 

cluster; 

3. Grid enabling tools allows skeletons to run a generic 

Grid computational resources; 

4. Combining distribution tools allows skeletons to run a 

computational Grid made of a federation of clusters. 

Using both of the above tools in a single application is 

attractive in Grid environments to deploy parts of an 

application into different clusters and to use specific 

middleware among different elements of an application. 

Combining these tools in an application composed of 

multi-level skeleton becomes more attractive. For instance, in 

a two level farm the top level can be distributed across the 

cluster nodes, using the cluster enabling tool, while the lower 

level can take advantage of multi-processor nodes (i.e., by 

using no distribution middleware). 

Combining the Grid enabling and the cluster enabling tools 

with two-level or three-level skeletons can be used to 

decompose an application into several parallel tasks that are 

submitted for execution into multiple clusters. JaSkel skeleton 

nesting, together with the injection of distribution code into 

skeletons (using the previously described tools) is a suitable 

way to develop this type of applications. 

Figure 8 illustrates how the two-level farm from Figure 2 

can be deployed on a computational Grid. Each InnerFarm is 

deployed on a remote cluster. This is accomplished by 

rewriting the InnerFarm and its compute method to generate 

and execute a job on a remote cluster, using the Grid enabling 

tool. Each worker belonging to an InnerFarm is deployed in a 

node of the local cluster. In this InnerFarm, communication 

between the farmer and the workers uses the RMI 

communication middleware; communication between the 

OuterFarm and the InnerFarm is performed through files that 

are automatically generated by the Grid tool. 
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Fig. 8  Deployment of multi-level skeletons 

This example can be extended with a third skeleton level to 

take advantage of multi-core machines. Technically the 

approach can use n-level skeletons and multiple distribution 

tools. 

Skeletons and skeleton nesting are particularly useful to 

inject distribution code by means of external tools. Since 

skeletons follow well defined rules (see Figure 1) it is feasible 

to provide tools to inject this code into skeletons (e.g., by 

rewriting the skeleton implementation and the compute 

method). Moreover, aspect-oriented techniques make more 

manageable this type of approach as the original classes do 

not need to be rewritten as in traditional approaches [13]. 

V. PERFORMANCE EVALUATION 

The evaluation presented here aims to show that, by 

providing external tools to adapt JaSkel skeletons to specific 

communication middleware, JaSkel applications can easily 

scale to a wide range of platforms, from multi-core systems to 

computational Grids. We also aim to show that by combining 

these distribution tools with multi-level skeletons makes it 

feasible to develop applications that can take advantage of the 

hierarchical nature of computational Grids. The important 

point is that all these results were obtained with the same 

JaSkel application (i.e., code base), using a single or a 

multi-level farm and by injecting distribution code through 

our tools. 

Our first benchmark shows the execution time of JaSkel 

skeletons using the tools presented in the previous section. We 

present execution times for a reference algorithm: a parallel 

ray tracer (image size of 4000x4000), from the Java Grande 

Forum [24]. These results were collected on a simulated Grid 



environment, consisting of two clusters with 4 nodes each 

(each node is a dual Xeon 3.2 GHz 2MB L2 with 2GB RAM). 

Presented values are the median of 10 runs. 
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Fig. 9  RayTracer speed-up for different communication middleware 

Figure 9 shows the speed-up relative to the sequential JGF 

RayTracer (on a Xeon 5130 2.0 GHz) of several JaSkel farm 

implementations: the built-in concurrent farm on a quad-core 

machine (JaSkel), the farm pre-processed by the Cluster 

enabling tool (JaSkel + RMI), which run on a simple cluster 

and the farm pre-processed by the Grid enabling tool (JaSkel 

+ PBS) which run on these two clusters. The built-in JaSkel 

support for concurrent farm only scales up to 4 CPU, as it can 

not distribute Compute skeletons through cluster nodes. The 

RMI version only scales within one cluster (up to 8 parallel 

tasks). The PBS version has the advantage of supporting 

skeletons that may run on multiple clusters, as it can submit 

jobs to several clusters (e.g., computational Grids). However, 

both the PBS and the RMI versions impose additional 

overheads on a small number of nodes, since the cluster nodes 

are slower than the 4-core machine. Each version also adds 

some extra overheads. In the RMI case due to the less efficient 

communications, when compared with a shared-memory 

implementation. In the PBS case, an additional overhead is 

due to job submission (including stage in and stage out of 

input/output files). 

 

TABLE I 

JASKEL VS NATIVE (JGF) EXECUTION TIMES 

 Multi-Thread RMI 

 JGF JaSkel JGF JaSkel 

1 22.0 21.8 28.1 28.3 

2 11.2 11.5 14.4 14.5 

4 6.2 6.3 7.6 7.6 

8 - - 4.3 4.3 

 

The overhead of these implementations, relative to native 

implementations, is very low. Table I compares the execution 

times of the RayTracer application (500x500 image) against 

the JGF Multithread benchmark and against an equivalent 

RMI implementation. 

The second experiment evaluates the use of multiple 

clusters and multi-level farms to take advantage of 

intra-cluster/intra-node communication. 

Each cluster has a different front-end, which conceptually 

simulates two different organisations where cluster access is 

only provided through ssh and scp. These two clusters are in 

the same network, which strongly reduces the delay of 

inter-cluster communication (e.g., file copy and job 

submission). To further simulate a real environment, we 

considered the impact of these delays and scaled down the 

RayTracer image size to 500x500. 
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Fig. 10  RayTracer speed-ups in multi-clusters 

Figure 10 presents the speed-ups obtained when running on 

single cluster, locally submitting all tasks (JaSkel PBS local). 

We also present results when tasks are remotely submitted 

into both clusters (JaSkel PBS remote) and when we remotely 

submit parallel RMI based tasks, using a two level farm 

(JaSkel PBS remote + RMI). In all these versions the PBS tool 

was used to generate the required code to execute JaSkel 

skeletons on several nodes/clusters. On the multi-level farm 

(with code very close to the provided in Figure 2) we 

deployed an inner farm on each cluster, consisting of half of 

the total workers (e.g., there are always two inner farms, each 

using half of the CPU) that are scheduled for execution into 

the same cluster. Calls to the farmer of the inner farm are 

converted into tasks that are submitted to the PBS queues. 

When tasks are remotely submitted on a small number of 

CPU (e.g., 4), the multilevel farm introduces a small overhead 

due to the need to create an additional farm level (including 

additional work partition and communication). However, 

when using a larger number of CPUs the use of RMI to locally 

communicate within an inner farm overcomes this small 

overhead by reducing the overall number of tasks submitted 

for execution. A two level farm has fewer remote tasks, 



leading to lower communication costs, which makes this 

version attractive in computational Grids built with several 

clusters of multi-core and multiprocessor machines. 

These results suggest that multi-level farms and the use of 

independent tools to inject distribution related code into 

applications may take advantage of Grids of clusters, in a 

more efficient way. 

Skeleton approaches present specific benefits in this path, 

as they inherently support skeleton nesting (e.g., hierarchically 

composed skeletons). Moreover, applications built with 

skeletons follow more well defined rules (for instance, by 

extending a common base class), which makes it easier to 

inject distribution related code into applications in a 

transparent manner. Skeleton nesting, together with the 

injection of distribution code into selected skeletons, is an 

effective way to deal with different interconnection 

middleware: it supports different latencies and bandwidths, 

which is one of the main difficulties when developing parallel 

applications targeted for a Grid of clusters environment. 

VI. CONCLUSIONS 

JaSkel offers a skeleton based approach to structure parallel 

applications. The skeleton framework aims to improve 

programmer’s productivity and, at the same time, to provide 

code that efficiently execute on a wide range of platforms. 

Skeleton based approaches that support skeleton nesting are 

particularly well suited for computational Grids. In JaSkel it is 

possible to develop applications that closely match the 

hierarchical nature of computational Grids. This 

communication showed that JaSkel applications can scale to a 

wide range of platforms and how skeleton nesting can 

improve the performance of Grid applications. 

JaSkel uses a new approach to inject distribution code into 

skeleton based applications. It relies on external tools, 

providing a mean to fine-tune applications to the environment 

where they run. This feature also helps to support multiple 

levels of parallelism within an application. 

Current work includes the development of a more 

sophisticated runtime environment that provides adaptation of 

skeletons to specific running conditions (e.g., available 

compute nodes). Particularly interesting is how multi-level 

skeletons can interplay with Grid meta-schedulers, such as the 

GridWay. 
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