
Enabling JaSkel Skeletons for Clusters and

Computational Grids
J. L. Sobral, A. J. Proença

Centro de Ciências e Tecnologias da Computação, Departamento de Informática

Universidade do Minho, Braga, Portugal

Abstract— JaSkel is a skeleton-based framework to develop

efficient concurrent, parallel and Grid applications. It provides a

set of Java abstract classes that implement recurring parallel

interaction paradigms. The key feature of JaSkel is to use

aspect-oriented external tools to address distributed execution,

by injecting code to support communication middleware into

JaSkel built-in skeleton implementations. This feature, when

combined with the ability to develop nested skeletons, can help to

tailor JaSkel applications to efficiently run on a Grid of clusters

systems, by taking advantage of inter/intra-cluster and/or

intra-node communications. This paper describes the JaSkel

distributed execution tools and how they interplay with the

JaSkel framework to transparently run applications on a wide

range of computing platforms, from multi-core to computational

Grids. Results are presented to show the feasibility and

scalability of this approach.

I. INTRODUCTION

The current move from higher clock frequency CPU

devices into multi-core chips, together with the increased

availability of federations of cluster systems, stressed the

demand for concurrent and distributed applications. Current

programming environments do not yet conveniently cope with

this wide range of computing platforms. These environments

are either targeted for shared memory systems, by providing

thread-based approaches, or targeted for distributed

environments, using message passing or remote method

invocation. Adapting an application to Grid systems also

requires a significant upfront investment, which is an obstacle

to a faster embracing of Grids systems.

Developing applications for computational Grids requires

applications that are aware of the hierarchical nature of a Grid

to take advantage of multiple levels of locality: a Grid can be

built of multiple clusters, where each cluster node can have

several CPU/cores, and each level usually provides its type of

middleware for inter-task communication. For instance, each

Grid cluster usually provides a way for job submission, where

all data must be provided through files, whereas intra-cluster

communications can use more efficient inter-process

communication middleware (e.g., MPI).

Skeletons are abstractions [1], [2] modelling common and

reusable parallelism patterns. They aim to hide low-level

details from the programmer, that are platform dependent. A

skeleton based framework [3]-[5] usually provides a set of

skeletons that are efficiently implemented on a range of

computing platforms. The programmer can use the provided

skeletons to build parallel applications without being aware of

the skeletons implementation.

Skeleton based approaches are especially attractive for Grid

environments as they support composition of skeletons [6]

(i.e., skeleton nesting) that can closely match the hierarchical

nature of a Grid. For instance, a two-level farm can take

advantage of a Grid of clusters by deploying an inner farm on

each Grid cluster, and using the top level farm to coordinate

work allocation among Grid clusters.

JaSkel [5] is a skeleton framework that provides several

skeletons and supports skeleton nesting. It provides a

collection of code templates implemented as a library of Java

abstract classes. The collection aims to help programmers to

create parallel applications that can run on a wide range of

computing platforms.

JaSkel differs from other skeleton approaches [3], [4], [7],

[8] in the way it deals with distribution issues (i.e., to adapt

skeletons to a specific communication middleware): these are

solved in an orthogonal way, by code generators that support

distribution of selected skeleton classes. The JaSkel

framework presented in [5] already had built-in support for

multi-threaded codes, while this communication focuses on

complementary distribution tools and aims to show their

overall advantage in scaling applications to a wide range of

platforms and in multi-level computing systems. These

additional tools generate and launch two types of distributed

skeletons: one, where skeletons communicate through

message passing or remote method invocations; another,

where skeletons submit jobs to clusters/Grids through a

resource manager system (such as PBS). These distribution

tools, when combined with a multi-level farm, generate

application code that takes advantage of the multi-level nature

of a Grid of cluster systems.

The remainder of this paper is organised as follows. Section

2 presents related work. Section 3 provides an overview of the

skeleton-based Java framework. Section 4 describes the two

developed distribution tools. Section 5 presents performance

evaluation results and the last section draws conclusions on

the work done so far suggesting future research directions.

II. RELATED WORK

Several skeleton based approaches are described in the

literature that also support skeleton composition [2], [6], [8].

Lithium [3] and CO2P3S [4] are two Java-based skeleton

environments for parallel programming. Lithium supports

skeletons for pipeline, farm and divide & conquer, as well as

other low level skeletons (map, composition). CO2P3S is

based on generative patterns, where skeletons are generated

and the programmer must fill the provided hooks with domain

specific functionality. HOCs [7] were specifically designed

for Grid environments by supporting independent deployment

of skeleton and application specific code.

The most relevant difference between JaSkel and other

approaches is the use of external tools to adapt skeletons to a

specific distributed environment (i.e., communication

middleware). This approach presents several advantages over

competitive approaches:

• skeletons can scale to a wide range of computing

platforms, from multi-core systems to computational

Grids;

• JaSkel skeletons can combine multiple communication

middleware into a single application taking advantage

of the layered composition of clusters and Grids;

• distribution code, required to adapt skeletons to a

specific distributed environment, does not impose

performance constrains when it is not required, since it

is not include in the build;

• JaSkel skeletons do not need to provide distribution

specific hooks (e.g., skeleton factories).

Additionally, JaSkel explores class hierarchy and

inheritance along with object composition and includes

sequential and parallel skeletons. A skeleton hierarchy

overcomes some limitations of other alternatives, supporting

refinement of the provided skeletons. JaSkel includes

sequential versions of all skeletons; moving from a sequential

skeleton to a parallel implementation simply entails changing

the extended base class. This approach eases the development

in early coding phases and in debugging activities.

Most Java based approaches for parallel computing address

distributed thread execution on Java distributed machines.

Examples are cJVM [9], Hyperion [10], Jackal [11] and

JESSICA2 [12]. Java Party [13], ProActive [14] and Ibis [15]

are similar approaches but they rely on distributed objects.

ProActive and Ibis also support the deployment of

applications into Grid platforms, by including middleware that

supports Grid environments. These approaches share with

JaSkel the benefit of transparently supporting the execution of

an application on shared and distributed memory systems.

However, these approaches do not present the benefits of

skeleton approaches, namely the more structured application

development, including the support for skeleton composition.

III. JASKEL OVERVIEW

Skeleton based frameworks provide a set of pre-defined

structures (called skeletons) to develop parallel applications.

The programmer selects the skeletons better suited for his/her

concrete application, provides application specific code and

the framework takes care of concurrency and distribution

issues. By using skeletons the programmer can focus on the

computational side of their algorithms rather than on

parallelisation issues.

Current JaSkel framework provides several skeletons,

namely pipeline, farm and heartbeat. Each of these skeletons

implements a frequently occurring structure of parallel

applications. To write an application in JaSkel the

programmer must go through three steps:

1. Select the skeleton(s) that better fits the application

parallelisation.

2. Refine the skeleton abstract class, filling skeleton

hooks (i.e., abstract methods) with domain specific

code.

3. Write code to instantiate the skeletons and to start the

skeleton activity.

A JaSkel skeleton is a Java class that extends the Compute

class (Figure 1). The Skeleton method eval starts the skeleton

activity.

+compute(in : Object) : Object

Compute

+split(in : Object) : Collection

+join(in : Collection) : Object

+getResult() : Object

+eval() : void

+compute(in : Object) : Object

Farm Skeleton

«uses»

Fig. 1 The farm skeleton

Compute objects perform domain-specific computation.

The programmer must create a subclass of class Compute,

implementing the abstract method Object compute(Object

input) to provide domain-specific computations.

To create a parallel application based on a farm parallel

structure, the programmer must perform the following steps:

1. Create the worker Compute class.

2. Create the farmer class, extending Farm, implementing

methods split and join.

3. Create instances of worker and farmer class to achieve

the intended farm structure.

4. Start the skeleton activity, by calling the eval and grab

the results with getResult method.

When the eval method is called on the farmer it will

perform the following steps:

1. Split the initial data using the farmer split method.

2. Call compute method from workers with the pieces of

data returned by method split;

3. Merge the partial results using the farmer join method.

JaSkel skeletons are also subclasses of Compute and

implement the compute method (see Figure 1). This feature

supports skeleton nesting, since a skeleton can be used in any

context where a Compute instance can be used (e.g., in

multi-level farms).

Figure 2 presents a simple pseudo-code for a two-level

farm. Lines 01-06 define the Worker class, implementing the

compute method. Lines 08-16 implement an InnerFarm class

that creates its own set of Worker and provides specific split

and join methods. Lines 18-27 implement the top-level farm,

creating a set of inner farms. Lines 29-34 instantiate the

OuterFarm, start the skeleton activity and get the computed

task.

01 public class Worker extends Compute {
02 …
03 public Object compute(Object input) {
04 return /* processed input */;
05 }
06 }
07
08 public class InnerFarm extends Farm {
09 …
10 public InnerFarm() {
11 for(int i=0; i<myNumberOfInnerWorkers; i++)
12 /* … */ = new Worker();
13 }
14 Collection split(Object initialTask) { … } // inner split
15 Object join(Collection partialResults) { … } // inner join
16 }
17
18 public class OuterFarm extends Farm {
19 …
20 public OuterFarm(Object task) {
21 super(task); // save task into local structure
22 for(int i=0; i<myNumberOfOuterWorkers; i++)
23 /* … */ = new InnerFarm();
24 }
25 Collection split(Object initialTask) { … } // outer split
26 Object join(Collection partialResults) { … } // outer join
27 }
28
29 public void main() { // main function
30 Task task = … // task to compute
31 OuterFarm farmer = new OuterFarm(tasks);
32 farmer.eval(); // starts the farming process
33 Object o = farmer.getResult(); // get results
34 }
35

Fig. 2 Example of a two-level farm

JaSkel framework implements several types of farms:

sequential, concurrent and dynamic. Dynamic farms are well

suited for unbalanced problems and/or heterogeneous

platforms, as it uses a demand-driven approach to distribute

tasks among workers. Combining skeleton nesting with

dynamic farms to achieve multi-level dynamic farms is

particularly attractive to balance the load among several

clusters and/or among cluster nodes. In the example of Figure

2 this would mean to simply extend the DynamicFarm instead

of the sequential Farm (of course, the split method should also

provide a number of tasks larger than the number of workers).

IV. DISTRIBUTION ENABLING TOOLS

JaSkel has built-in support for concurrency, through several

concurrent skeletons. For instance, the ConcurrentFarm

skeleton provides concurrent execution of Compute instances.

These skeletons with built-in concurrency support can take

advantage of shared memory machines, as they rely on a

thread model which implicitly supports data sharing among

threads. However, these skeletons can not take advantage of

distributed memory machines as they rely on a shared address

space.

Support for skeleton execution on distributed memory

machines is provided by external tools. These tools transform

concurrent skeletons into skeletons that can be executed in

remote nodes. This approach has two main strong points:

skeletons and distribution middleware can be composed in a

more flexible manner and there is no need to use special hook

points (e.g., to support remote creation, in [3], [7], skeletons

must be created through object factories).

Using external tools to adapt skeletons for distributed

systems also improve the development of the skeleton

framework itself as the specificities of each middleware are

addressed by these tools, making it easier to maintain and

evolve the framework code and to adapt the framework for a

new distribution middleware.

We have implemented two types of tools, both relying on

source to source code transformations that generate AspectJ

code [16], an extension to Java that supports aspect oriented

programming [17]. Using AspectJ as the target language,

instead of Java, allowed these tools to generate less code and

to avoid changing the original skeleton code, enabling a more

flexible composition among distribution tools. More details on

using AspectJ to introduce distribution related code can be

found in [18], [19].

The first tool generates Cluster-aware distributed skeletons

based on Java RMI (more precisely UkaRMI [20], one of the

most efficient Java RMI implementations today). The second

tool converts a JaSkel skeleton to execute on computational

Grids, by implementing Compute instances as jobs that are

submitted to the resource manager of a local or remote

clusters (we will simply call this the Grid enabling tool). The

next two sub-sections present these tools in more detail. The

last sub-section shows how these tools can be used together to

deploy more Grid aware applications.

A. Cluster Enabling Tool

The purpose of the cluster enabling tool is to support

skeleton distribution among multiple JVMs residing on the

same cluster or on a local area network. This tool transforms

JaSkel Compute instances on Java RMI objects. These

potentially remote objects may reside in another JVM. The

generated code provides two base services: remote skeleton

creation and remote invocation of compute methods (and other

skeleton specific methods). The tool is based on a well known

process that performs a source code transformation [13], [21],

based on 3 classes: proxy objects (PO), implementation

objects (IO) and object managers (OM). A skeleton extending

the Compute class is referred as the IO class and a generated

aspect plays the role of the PO class. Each node has an OM

that implements local object factories to enable remote object

creations. A similar strategy implemented through a bytecode

rewriter is presented in [22]. However, the cluster enabling

tool uses the AspectJ compiler to generate bytecodes.

JVM 0 JVM 1

IO 1 b)

Call through RMI

IO

a)

PO 1

Object creation

OM OM

a)

a)

Fig. 3 Run-time system for RMI

Figure 3 illustrates the roles of PO, IO and OM objects in

remote object creations and remote method calls. Whenever a

Compute object was created in the original code the generated

aspect (i.e., PO) requests an object creation to the local OM

(JVM 0, call a) in the figure), which may locally create the IO

object or forward the request to another OM. After remote

object creation the PO transparently redirects local method

calls to the remote IO (call b) in the figure).

public class Worker extends Compute {
 public Object compute(Object obj) {
 ... // method implementation
 }
}

Fig. 4 Sample Compute class

01 public interface IWorker {
02 public Object compute(Object) throws RemoteException;
03 }
04
05 public class ObjectManager { // OM class
06 IWorker workerFactory() {
07 return(new Worker());
08 } … // register Worker to be externally visible
09 }
10
11 aspect ProxyWorker { // PO Aspect
12
13 declare parents: Worker implements IWorker;
14
15 IWorker myRemoteWorker; // reference to RMI stub
16
17 Worker around call (new Worker()) {
18 // request remote object creation
19 IObjectManager ref2OM = ... // reference to OM
20 myRemoteWorker = refOM.workerFactory();
21 return(new PWorker()); // fake local worker
22 }
23
24 Object around call (compute(Object obj)) { // RMI
25 return (myRemoteWorker.compute(obj));
26 }
27 }

Fig. 5 RMI generated code for Compute class

Figure 4 presents a simple Worker skeleton that extends the

Compute class, while Figure 5 shows a simplified example of

the AspectJ/Java RMI generated code for this class. To

improve readability, exception handling code and minor

AspectJ details are not included in the figure. The interface

IWorker (lines 01-03) is created due to Java RMI

requirements and the original worker class is declared to

implement this interface (line 13, using the declare parents

AspectJ construct). The ObjectManager is an object that

implements a (remote) Worker factory (lines 05-09).

The ProxyWorker aspect transparently requests the remote

Worker creation to the ObjectManager (lines 17-22) and

redirects the compute calls for remote execution (lines 24-26).

The PWorker class is created to implement a local proxy

(code not shown), that extends the Worker class, to avoid the

creation of multiple local farms in multi-level farms (line 21).

B. Grid Enabling Tool

The Grid enabling tool allows JaSkel skeletons to

transparently run on computational Grids. This tool transforms

JaSkel Compute instances into stand-alone applications that

can run on a remote resource. These stand-alone applications

gather the input data from a file that must be staged-in and

write the result to another file that must staged-out to the

client machine. Figure 6 shows a simplified example of the

code generated by the Grid enabling tool for this purpose.

01 public static void main(String args[]) {
02 Worker myWorker = new Worker();
03 Object myData = … // read data from file
04 Object result = myWorker.compute(myData);
05 … // save result into output file
06 }

Fig. 6 Compute stand-alone application

Code generated for the client side share the structure of the

generated code of the RMI tool; namely, it also uses PO

aspects and IO objects. OMs are no longer explicitly required,

since object instantiation is embedded into scripts that are

submitted for execution; actually, OMs role is replaced by

resource discovery mechanisms to gather available clusters in

Grid environments.

In the distribution-related code generated by the tool, POs

and IOs interact differently: the PO transforms skeleton

creation and method calls into scripts that are submitted to a

local or a remote resource manager for execution, instead of

directly performing these operations using the RMI

middleware.

On the PO side, Compute object creations and compute

method calls save the parameters into a specific file, generate

a script that when executed creates the specific Compute

object (i.e., IO) and calls its compute method. These Compute

objects get their input data from the PO generated files and,

after executing the compute method, save their results to files

that are later retrieved by the PO (see Figure 6).

Figure 7 shows a simplified example of the code generated

by this tool. The generated aspect (i.e., ProxyWorker) saves

the compute parameter into a file, generates a script (line 09),

submits this script for execution, waits for the creation of the

file with the result data and returns this data.

01 aspect ProxyWorker { // PO Aspect
02
03 Worker around call (new Worker()) {
04 return(new PWorker()); // fake local worker
05 }
06
07 Object around call (compute(Object obj))
08 … // save obj into a specific file
09 … // generate script to execute remotely
10 submitJob(/* script name*/,/* list of files */);
11 while (!myResultFile.exists()) /* sleep */;
12 return(/* read data from file */);
13 }
14 }

Fig. 7 PO generated code for Compute class

To support multiple job submission systems the process of

task submission is encapsulated into a procedure (line 10).

Currently we provide implementations for PBS, SGE and

GMarte [23]. Note that when the script is executed in a remote

cluster the generated code must also provide commands to

stage-in and stage-out the input/output files (this feature is

automatically supported in these systems).

C. Combining Distribution Tools

Providing these distribution enabling tools as separate tools

makes it possible a wide range of compositions:

1. Base JaSkel skeletons supports local execution, taking

advantage of multi-core machines;

2. Cluster enabling tool allows skeletons to run on a local

cluster;

3. Grid enabling tools allows skeletons to run a generic

Grid computational resources;

4. Combining distribution tools allows skeletons to run a

computational Grid made of a federation of clusters.

Using both of the above tools in a single application is

attractive in Grid environments to deploy parts of an

application into different clusters and to use specific

middleware among different elements of an application.

Combining these tools in an application composed of

multi-level skeleton becomes more attractive. For instance, in

a two level farm the top level can be distributed across the

cluster nodes, using the cluster enabling tool, while the lower

level can take advantage of multi-processor nodes (i.e., by

using no distribution middleware).

Combining the Grid enabling and the cluster enabling tools

with two-level or three-level skeletons can be used to

decompose an application into several parallel tasks that are

submitted for execution into multiple clusters. JaSkel skeleton

nesting, together with the injection of distribution code into

skeletons (using the previously described tools) is a suitable

way to develop this type of applications.

Figure 8 illustrates how the two-level farm from Figure 2

can be deployed on a computational Grid. Each InnerFarm is

deployed on a remote cluster. This is accomplished by

rewriting the InnerFarm and its compute method to generate

and execute a job on a remote cluster, using the Grid enabling

tool. Each worker belonging to an InnerFarm is deployed in a

node of the local cluster. In this InnerFarm, communication

between the farmer and the workers uses the RMI

communication middleware; communication between the

OuterFarm and the InnerFarm is performed through files that

are automatically generated by the Grid tool.

worker.compute

Cluster1

RMI calls Job submissions

Main program (OuterFarm)

OuterFarm.compute(…) {

 for(i=0; i<workers; i++)

 innerFarm[i].compute();

 …

}

node

Inner Farm
InnerFarm.compute(…) {

 for(i=0;i<workers;i++)

 worker[i].compute();

 …

}

worker.compute node

worker.compute

Cluster2

node

Inner Farm
InnerFarm.compute(…) {

 for(i=0;i<workers;i++)

 worker[i].compute();

 …

}

worker.compute node

Fig. 8 Deployment of multi-level skeletons

This example can be extended with a third skeleton level to

take advantage of multi-core machines. Technically the

approach can use n-level skeletons and multiple distribution

tools.

Skeletons and skeleton nesting are particularly useful to

inject distribution code by means of external tools. Since

skeletons follow well defined rules (see Figure 1) it is feasible

to provide tools to inject this code into skeletons (e.g., by

rewriting the skeleton implementation and the compute

method). Moreover, aspect-oriented techniques make more

manageable this type of approach as the original classes do

not need to be rewritten as in traditional approaches [13].

V. PERFORMANCE EVALUATION

The evaluation presented here aims to show that, by

providing external tools to adapt JaSkel skeletons to specific

communication middleware, JaSkel applications can easily

scale to a wide range of platforms, from multi-core systems to

computational Grids. We also aim to show that by combining

these distribution tools with multi-level skeletons makes it

feasible to develop applications that can take advantage of the

hierarchical nature of computational Grids. The important

point is that all these results were obtained with the same

JaSkel application (i.e., code base), using a single or a

multi-level farm and by injecting distribution code through

our tools.

Our first benchmark shows the execution time of JaSkel

skeletons using the tools presented in the previous section. We

present execution times for a reference algorithm: a parallel

ray tracer (image size of 4000x4000), from the Java Grande

Forum [24]. These results were collected on a simulated Grid

environment, consisting of two clusters with 4 nodes each

(each node is a dual Xeon 3.2 GHz 2MB L2 with 2GB RAM).

Presented values are the median of 10 runs.

0

2

4

6

8

0 4 8 12 16

Parallel Tasks

S
p
e
e
d
-U
p

JaSkel

JaSkel + RMI

JaSkel + PBS

Fig. 9 RayTracer speed-up for different communication middleware

Figure 9 shows the speed-up relative to the sequential JGF

RayTracer (on a Xeon 5130 2.0 GHz) of several JaSkel farm

implementations: the built-in concurrent farm on a quad-core

machine (JaSkel), the farm pre-processed by the Cluster

enabling tool (JaSkel + RMI), which run on a simple cluster

and the farm pre-processed by the Grid enabling tool (JaSkel

+ PBS) which run on these two clusters. The built-in JaSkel

support for concurrent farm only scales up to 4 CPU, as it can

not distribute Compute skeletons through cluster nodes. The

RMI version only scales within one cluster (up to 8 parallel

tasks). The PBS version has the advantage of supporting

skeletons that may run on multiple clusters, as it can submit

jobs to several clusters (e.g., computational Grids). However,

both the PBS and the RMI versions impose additional

overheads on a small number of nodes, since the cluster nodes

are slower than the 4-core machine. Each version also adds

some extra overheads. In the RMI case due to the less efficient

communications, when compared with a shared-memory

implementation. In the PBS case, an additional overhead is

due to job submission (including stage in and stage out of

input/output files).

TABLE I

JASKEL VS NATIVE (JGF) EXECUTION TIMES

 Multi-Thread RMI

 JGF JaSkel JGF JaSkel

1 22.0 21.8 28.1 28.3

2 11.2 11.5 14.4 14.5

4 6.2 6.3 7.6 7.6

8 - - 4.3 4.3

The overhead of these implementations, relative to native

implementations, is very low. Table I compares the execution

times of the RayTracer application (500x500 image) against

the JGF Multithread benchmark and against an equivalent

RMI implementation.

The second experiment evaluates the use of multiple

clusters and multi-level farms to take advantage of

intra-cluster/intra-node communication.

Each cluster has a different front-end, which conceptually

simulates two different organisations where cluster access is

only provided through ssh and scp. These two clusters are in

the same network, which strongly reduces the delay of

inter-cluster communication (e.g., file copy and job

submission). To further simulate a real environment, we

considered the impact of these delays and scaled down the

RayTracer image size to 500x500.

0

2

4

6

8

10

0 2 4 6 8 10 12

CPU

S
p
e
e
d
-u
p

JaSkel + PBS local

JaSkel + PBS remote + RMI

JaSkel + PBS remote

Fig. 10 RayTracer speed-ups in multi-clusters

Figure 10 presents the speed-ups obtained when running on

single cluster, locally submitting all tasks (JaSkel PBS local).

We also present results when tasks are remotely submitted

into both clusters (JaSkel PBS remote) and when we remotely

submit parallel RMI based tasks, using a two level farm

(JaSkel PBS remote + RMI). In all these versions the PBS tool

was used to generate the required code to execute JaSkel

skeletons on several nodes/clusters. On the multi-level farm

(with code very close to the provided in Figure 2) we

deployed an inner farm on each cluster, consisting of half of

the total workers (e.g., there are always two inner farms, each

using half of the CPU) that are scheduled for execution into

the same cluster. Calls to the farmer of the inner farm are

converted into tasks that are submitted to the PBS queues.

When tasks are remotely submitted on a small number of

CPU (e.g., 4), the multilevel farm introduces a small overhead

due to the need to create an additional farm level (including

additional work partition and communication). However,

when using a larger number of CPUs the use of RMI to locally

communicate within an inner farm overcomes this small

overhead by reducing the overall number of tasks submitted

for execution. A two level farm has fewer remote tasks,

leading to lower communication costs, which makes this

version attractive in computational Grids built with several

clusters of multi-core and multiprocessor machines.

These results suggest that multi-level farms and the use of

independent tools to inject distribution related code into

applications may take advantage of Grids of clusters, in a

more efficient way.

Skeleton approaches present specific benefits in this path,

as they inherently support skeleton nesting (e.g., hierarchically

composed skeletons). Moreover, applications built with

skeletons follow more well defined rules (for instance, by

extending a common base class), which makes it easier to

inject distribution related code into applications in a

transparent manner. Skeleton nesting, together with the

injection of distribution code into selected skeletons, is an

effective way to deal with different interconnection

middleware: it supports different latencies and bandwidths,

which is one of the main difficulties when developing parallel

applications targeted for a Grid of clusters environment.

VI. CONCLUSIONS

JaSkel offers a skeleton based approach to structure parallel

applications. The skeleton framework aims to improve

programmer’s productivity and, at the same time, to provide

code that efficiently execute on a wide range of platforms.

Skeleton based approaches that support skeleton nesting are

particularly well suited for computational Grids. In JaSkel it is

possible to develop applications that closely match the

hierarchical nature of computational Grids. This

communication showed that JaSkel applications can scale to a

wide range of platforms and how skeleton nesting can

improve the performance of Grid applications.

JaSkel uses a new approach to inject distribution code into

skeleton based applications. It relies on external tools,

providing a mean to fine-tune applications to the environment

where they run. This feature also helps to support multiple

levels of parallelism within an application.

Current work includes the development of a more

sophisticated runtime environment that provides adaptation of

skeletons to specific running conditions (e.g., available

compute nodes). Particularly interesting is how multi-level

skeletons can interplay with Grid meta-schedulers, such as the

GridWay.

ACKNOWLEDGMENT

This work was supported by PPC-VM project (Portable

Parallel Computing Based on Virtual Machines,

POSI/CHS/47158/2002) and AspectGrid project (Pluggable

Grid Aspects for Scientific Applications,

GRID/GRI/81880/2006), funded by Portuguese FCT and

European funds (FEDER). Performance results where

collected in the SeARCH cluster (Services & Advanced

Computing with HTC/HPC, CONC-REEQ/443/EEI/2005),

also funded by Portuguese FCT and European funds

(FEDER).

REFERENCES

[1] D. Cole, Algorithmic Skeletons: structured management of parallel
computation, Pitman/MIT Press, 1989.

[2] F. Rabhi, S. Gorlatch, S. (Eds), Patterns and Skeletons for Parallel and

Distributed Computing, Springer, 2003
[3] M. Aldinucci, M. Danelutto, P. Teti, “An advanced environment

supporting structured parallel programming in Java”, Future

Generation Computing Systems, vol. 19, 2003.
[4] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S. MacDonald, “Using

Generative Design Patterns to Generate Parallel Code for a Distributed

Memory Environment”, ACM PPoPP'03, San Diego, California, USA,
June 2003.

[5] J. Fernando, J. Sobral, A. Proença. “JaSkel: A Java Skeleton-Based

Framework for Structured Cluster and Grid Computing”, IEEE
CCGrid’06, Singapore, May 2006.

[6] J. Darlington, Y. Guo, H. To, J. Yang. “Parallel Skeletons for

Structured Composition”, ACM PPoPP’95, Santa Clara, USA, 1995.
[7] J. Gorlatch, J. Dunnweber, J. “From Grid Middleware to Grid

Applications: Bridging the Gap with HOCs, Future Generation Grids,

Springer, 2006.
[8] M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto

for skeletal parallel programming”, Parallel Computing, vol. 30 , n. 3,

March 2004.
[9] Y. Aridor, M. Factor, A. Teperman, “cJVM: A Single System Image of

a JVM on a Cluster”, International Conference on Parallel Processing,

Wakamatsu, Japan, September 1999.
[10] G. Antoniu, L. Bougé, P. Hatcher. , M. MacBeth, K. McGuigan, R.

Namyst, “The Hyperion system: Compiling multi-threaded Java

bytecode for distributed execution”, Parallel Computing, vol. 27, no.
10, September 2001.

[11] R. Veldema, R. Bhoedjang, H. Bal, “Jackal, a compiler based

implementation of Java for clusters of workstations”, ACM PPoPP’01,
Utah, USA, June 2001.

[12] W. Zhu, C. Wang, F. Lau, “JESSICA2: Distributed Java Virtual

Machine with Transparent Thread Migration Support”, IEEE Cluster
2002, Chicago, USA, September 2002.

[13] M. Philippsen, M. Zenger, “JavaParty – transparent remote objects in

Java”, Concurrency: Practice and Experience, vol.19 n.11, November
1997.

[14] F. Baude, L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel R.

Quilici, “Programming, Composing, Deploying for the Grid”, GRID
COMPUTING: Software Environments and Tools, Jose C. Cunha and

Omer F. Rana (Eds), Springer Verlag, January 2006.

[15] K. Reeuwijk, R. Niewpoort, H. Bal, “Developing Java Grid
applications with Ibis”, 11th International Euro-Par Conference,

Lisbon, Portugal, September 2005.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold,
“An Overview of AspectJ”, ECOOP 2001, June 2001.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, J. Irwin, “Aspect Oriented Programming”, ECOOP‘97, June
1997.

[18] S. Soares, L. Loureiro, P. Borba, “Implementing Distribution and
Persistence Aspects With AspectJ”, OOPSLA '02, November 2002.

[19] J. Sobral, “Incrementally Developing Parallel Applications with

AspectJ”, IEEE IPDPS 2006, Rhodes, Greece, April 2006..
[20] M. Philippsen, B. Haumacher, C. Nester, “More Efficient Serialization

and RMI for Java”, Concurrency: Practice and Experience, vol. 12 n. 7,

May 2000.
[21] J. Sobral, A. Proença, “A Run-time System for Dynamic Grain

Packing”, Euro-Par'99, Toulouse, France, September 1999, LNCS vol.

1685, Springer, 1999.
[22] M. Factor, A. Schuster, K. Shagin, “JavaSplit: a runtime for execution

of monolithic Java programs on heterogeneous collections of

commodity workstations, IEEE Cluster, Hong Kong, December 2003.
[23] J. M. Alonso, V. Hernández, G. Moltó, “GMarte: Grid Middleware to

Abstract Remote Task Execution”, Concurrency and Computation:

Practice and Experience, 18(15), 2006.
[24] J. Smith, J. Bull, J. Obdrzálek, “A Parallel Java Grande Benchmark

Suite”, SC 2001, Denver, USA, November 2001.

