
Interacção 2010

 GUI Behavior from Source Code Analysis

João C. Silva1,2 Carlos E. Silva1 José C. Campos1

João A. Saraiva1

1 Departamento de Informática/CCTC, Universidade do Minho
2 Departamento de Tecnologia, Instituto Politécnico do Cávado e do Ave

{jose.campos,jas}@di.uminho.pt, jcsilva@ipca.pt, carlosebms@gmail.com

Abstract
When developing interactive applications, considering the correctness of graphical user interfaces (GUIs) code
is essential. GUIs are critical components of today’s software, and contemporary software tools do not provide
enough support for ensuring GUIs’ code quality. GUIsurfer, a GUI reverse engineering tool, enables evaluation of
behavioral properties of user interfaces. It performs static analysis of GUI code, generating state machines that
can help in the evaluation of interactive applications. This paper describes the design, software architecture, and
the use of GUIsurfer through an example. The tool is easily re-targetable, and support is available to Java/Swing,
and WxHaskell. The paper sets the ground for a generalization effort to consider rich internet applications. It
explores the GWT web applications’ user interface programming toolkit.

Keywords
Graphical user interface, Reverse Engineering, Analysis

1 Introduction

Practice shows that the user interface layer of interactive
applications is the one more likely to suffer changes dur-
ing the life-time of an application. Available technol-
ogy to build user interfaces mostly consists of libraries
of components that are glued together in an event-based
style of programming, leading to code that is hard to un-
derstand and maintain. For example, the fact that Swing
[Walrath 04] components are based on the Model-View-
Controller (MVC) architectural pattern, does not neces-
sarily mean that the pattern is maintained at application
level. Indeed, the source code of Swing-based user in-
terfaces can quickly become a collection of method calls
accessing different parts of some common global state, re-
viving the notion of “spaghetti code”. The multitude of
technologies and frameworks being made available for de-
veloping Web applications, if anything, is making things
worst [Mikkonen 07].

Integrated Development Environments (IDEs) help devel-
opers in creating the user interfaces by allowing them to
draw the user interface, and attach methods to relevant ob-
ject/events. However, they do not necessarily promote bet-
ter code structuring and quality.

The above two issues, the need to constantly change code,
and poor code quality from the start, mean that a consider-
able effort needs to be invested into the development and
maintenance of the GUI layer of applications. Tools are
needed that can help in this process. Reverse engineering
tools, in particular, can have a role in helping analyse, un-

derstand, and manipulate source code.

Our objective consists in developing tools to automatically
extract models from GUI source code. The extracted mod-
els should specify, for example, when a particular GUI
event can occur, which are the related conditions, which
system actions are executed or which GUI state is gener-
ated next. We want to be able to reason about, and test,
this GUI model in order to analyze aspects of the original
application’s usability, and the quality of the implementa-
tion. Additionally, we want the developed tools to be lan-
guage independent. Through the use of generic techniques,
the tool enable to analyze different source code paradigms,
such object oriented or functional. This work will not only
be useful to enable the analysis of existing interactive ap-
plications, but can also be helpful when an existing appli-
cation must be ported or simply updated [Melody 96].

In previous papers [Silva 06, Silva 09] we have explored
the applicability of slicing techniques to our reverse engi-
neering needs, and developed the building blocks for the
approach. In this paper we describe our tool making use of
two Agenda interactive application as running examples.
A new module is presented, allowing us to analyze GWT-
based rich internet applications.

The paper is organised as follows: section 2 describes the
running example; section 3 describes the reverse engineer-
ing approach; section 4 describes some of the models the
tool is able to generate; section 5 discusses analysis; sec-
tion 6 discusses rich internet applications’ support; sec-
tion 8 discusses related work; and section 9 concludes with

81

Figure 1. Two agenda applications —
Java/Swing (top) and WxHaskell (bottom)

some pointers to future work.

2 The Agenda Example

Throughout the paper we will use two Agenda interac-
tive applications as running examples. The first one was
implemented with Java/Swing [Loy 02]. The second in
WxHaskell [Jones 99]. These applications implement an
agenda of contacts: they allows users to perform the usual
actions of adding, removing and editing contacts. Further-
more, they also allows users to find a contact through its
name.

Each agenda consists of four windows, named Login,
MainForm, Find and ContactEditor, as shown in Figure 1.
The initial Login window (Figure 1, top-left window) is
used to control users’ access to the agenda. Thus, a login
and password have to be introduced by the user. If the user
introduces a valid login/password and presses the Ok but-
ton, then the login window closes and the main window of
the application is displayed. On the contrary, if the user
introduces an invalid login/password, then the input fields
are cleared, a warning message is produced and the login
window continues to be displayed. By pressing the Cancel
button in the Login window, the user exits the application.

Authorized users can use the main window (Figure 1, top-
right window) to find and edit contacts (Find and Edit but-
tons). By pressing the Find button in the main window, the
user opens the Find window (Figure 1, bottom-left win-
dow). This window is used to search and obtain a particu-
lar contact’s data from his name. By pressing the Edit but-
ton in the main window, the user opens the ContactEditor
window (Figure 1, bottom-right window). This last win-
dow allows the edition of all contact data, such as name,
nickname, e-mails, etc. The Add and Remove buttons en-

Abstract
Syntax Tree

Parser/Grammar
Haskell

data type

GUI layer

La
n
g
u
a
g
e
 d

e
p
e
n
d
e
n
t

La
n
g
u
a
g
e
 in

d
e
p
e
n
d
e
n
t

GUI code slicing

 Source code

GUI layer

Business layer

Data layer

GUI abstraction

Behavioral GUI model

Figure 2. Model-based GUI reasoning pro-
cess

able edition of the e-mail addresses list of the contact. If
there are no e-mails in the list then the Remove button is
automatically disabled.

3 GUI Models from Source Code

In order to achieve our goal of developing an approach for
reverse engineering of GUI source code, we resorted to
several techniques. Figure 2 describes our approach.

Using a parser, an Abstract Syntax Tree (AST) is obtained
from the source code. Then we identify all fragments in
the abstract syntax tree that are members of the GUI layer.
This is achieved through program slicing [Tip 95]. We use
the GUI constructors to focus the slicing in the subtrees
that represent the GUI. Slicing is based on the program
dependency graph.

The GUI code slicing module extracts graphical user in-
terface AST fragments through code slicing. This is a
generic module to extract GUI fragments from any AST,
i.e. Java/Swing, wxHaskell, C#, etc. This allows us to
identify all of the program fragments that interact with
the graphical user interface. We do a traversal of the tree
(based on the program dependency graph), and detect all
GUI nodes.

In order to extract the user interface behavior from the
source code of the interactive applications, we need to con-
struct a slicing function that isolates a sub-program from
the entire program. Because we want to reuse our approach
across different programming languages and paradigms,
we need to use generic techniques that work for any AST
and not for a particular language only.

Using strategic programming [Visser 03, Visser 04] we
make use of a pre-defined set of (strategic) generic traver-
sal functions that traverse any AST using different traver-
sal strategies (e.g. top-down,left-to-right, etc). Thus, the
programmer has to focus in the nodes of interest, only.
In fact, the programmer does not need to have a knowl-

82

Interacção 2010

edge of the entire grammars/AST, but only of those parts
he is interested in (e.g., the Swing sub-language). As a re-
sult, he/she does not need full knowledge of the grammar
to write recursive functions that isolate the graphical user
interface sub-program from the entire program. We used
Haskell to develop a GUI code slicing library which con-
tains a generic set of traversal functions that traverse any
AST.

Figure 2 shows also that the GUI abstraction module uses
the GUI fragments to produce a behavioral user inter-
face description (the Behavioral GUI model). The frag-
ments relevant to the GUI reverse engineering are limited
to graphical user interface instructions, control flow infor-
mation, and methods invocation. From these fragments of
the original AST it is finally possible to extract the GUI
layer and reason about it.

The implemented prototype is language independent in
what regards the strategic programing and slicing tech-
niques. The prototype is language dependent with respect
to the grammar and program dependency graph definition.

4 GUI Models

The abstractions that we look for in the source code are
widgets that enable users to input data (user input), wid-
gets that enable users to choose between several different
options such as a command menu (user selection), any ac-
tions that are performed as the result of user input or user
selection (user action), and any widget that enables com-
munication from application to users such as a user dia-
logue (output to user). Given the user interface code of
an interactive system and this set of abstractions, we can
generate its graphical user interface abstraction.

Currently, the tool is capable of automatically generating
models of the interface. Next we describe examples that
we can automatically generate from the Agenda applica-
tions’ source code.

The first example, presented in Figure 3, is a directed
graph describing the Agenda application behavior. In-
teractive systems can be represented as directed graphs
[Melody 96]. User actions are mapped into arcs and states
are GUI application idle time. When the user performs an
action, the current state A is changed to the next state B
where there is a directed arc from A to B labeled with that
action. Arcs may point back to the same state, and the tran-
sition then does not change the state. Graph models may
be non-deterministic because of the underlying system, in
which case one of several possible next states will be ar-
rived at.

The directed graph presented in Figure 3 is useful to visu-
alize application’s windows states. Each state of this model
contains the description of all windows opened in a partic-
ular period of time. Transitions between states correspond
to events that allow to open or close windows. Each transi-
tion refers first the window’s name, it state status, the event
and respective condition. In this case, we can reason about
which windows can be opened along a session, which are
the related events, and which conditions must hold. As

an example, at the top left corner, this model specify the
Login window as the entry point for the application. Then,
from the Login window, there is one transition to the Main-
Form window through the Ok event and cond2 condition
pair (each event and condition identifiers are related to the
respective source code of the original application). The re-
ferred transition is:

Login state1 Edit cond2

The state1 identifier refers to the internal state of the Login
window. Although not illustrated in this paper, it is possi-
ble to generate models representing how the internal state
of a windows changes. From MainForm, it is possible, for
example, to open the ContactEditor window through the
Edit/cond2 pair.
In this particular case the Java and Haskell Agenda appli-
cations have the same behavior. Hence, the graph from
Figure 3 can be obtained from both. As an example, let us
consider the following Java/Swing and WxHaskell source
code which opens a new ContactEditor window:

...
private void EditActionPerformed(...) {

new ContactEditor().setVisible(true);
...

and

...
edit <- button pn [
text := "Edit",
on command := start contactEditor
]
...

This source code is abstracted to the states in Figure 3 that
make reference to the ContactEditor form.

Another example of a model generated by GUIsurfer is
presented in Figure 4. This model contains all possible
states for each application window. The model presents
also the total number of events associated to each state
transition. This is useful as a metric to detect windows
complexity.

These examples provide an indication of how the devel-
oped prototype achieves our main objective. It generates,
automatically, a GUI behavioral model directly from an ap-
plication’s source code. The behavioral model describes
window states, events, conditions and actions.

We now want to be able to reason about this GUI model.
The techniques described in this paper enable us to anal-
yse properties of the interface. For example, we can use
graph-based algorithms to compute if all states are acces-
sible from the initial one, in order to detect whether a par-
ticular window of the application will ever be displayed or
not. We can also produce valid or invalid sentences of the
language defined by the machine to use as test cases. These
test cases can be used to prove more advanced properties
of the interface. The next section will show how we can
reason about the original application’s characteristics.

83

Aveiro, 13, 14 e 15 de Outubro de 2010

Figure 3. Agenda GUI state machine

5 Analysis

The reverse engineering approach described in this paper
allows us to extract an abstract GUI behavior specification.
Now, GUI analysis can be performed.

Graphs are a mathematical concept that can be used to
model Graphical User Interfaces [Thimbleby 08]. Se-
quences of user actions are paths in a graph. A standard
graph theoretic concept is the shortest path between two
edges, which defines the most efficient way a user can
achieve a particular change of state. Graphs define inter-
active systems and usability properties.

Using graph models we extended our prototype imple-
menting graph operators. At this time we have imple-
mented intersection, union and difference of graphs. This
is particularly useful to compare versions of an application,
allowing to determine different versions have the same be-
havior.
Let us consider a new version of the Java/Swing Agenda
application without the Contact Editor form. I.e., without
the following Java/Swing instruction.

new ContactEditor().setVisible(true);

Using the difference graph operator, we are able to obtain
behavioral differences between applications. For exam-
ple, calculating the difference between the WxHaskell and
Java/Swing versions of the Agenda, we obtain the graph in
Figure 5. The obtained graph identifies the actions which

can only be executed in the WxHaskell Agenda implemen-
tation.

Additionally, we can make use of the QuickCheck Haskell
library tool. QuickCheck [Claessen 00] is a tool for test-
ing Haskell programs automatically. QuickCheck provides
combinators to define properties, observe the distribution
of test data, and define test data generators. GUIsurfer is
capable of generating a Haskell program capturing the be-
haviour of the application. Then properties may be defined
and QuickCheck may be used to test them in a large num-
ber of randomly generated cases.

6 Rich Internet Applications

RIAs are an emergent technology whose primary goal is
to develop web applications with the strengths of desktop
applications. The principal advantages of desktop appli-
cations in comparison to traditional web applications are
[Silva 10]:

• absence of page reloading;

• no need for an on-line connection;

• easy interaction with other desktop applications;

• superior interaction experience and usability;

However, traditional web applications, applications ac-
cessed through the network(internet/intranet), also have
specific advantages such as:

84

Interacção 2010

Figure 4. GUI state events number

Figure 5. Comparing version of an application (using difference operator)

• they do not require deployment/installation or updates
in every desktop;

• they provide easier access since one just needs an in-
ternet connection;

• they are easily made available in more platforms;

• concentrated information eases security and backups
processes;

RIA technologies attempt to bring together these two
worlds.

The question, then, is whether GUIsurfer can be ex-
tended to deal with this new and emerging programming
paradigm.

6.1 Google Web Toolkit

Google Web Toolkit (GWT) is a technology that allows for
the development of rich internet applications using the Java
programming language. Since GUIsurfer is already able to
reverse engineer Java/Swing programs, extending it to deal
with GWT seemed like a logical next step.

As it can be deduced by its name, GWT was developed and
introduced by Google (version 1.0 was released in May
2006). GWT is a set of development tools, programming
utilities, and widgets that enable the user to create rich in-
ternet applications. Developing the application in the Java
language allows GWT to bring all of Java’s benefits to
RIAs. Consequently, GWT aims to make the coding of
RIAs as simple as possible while allowing interaction with
existing JavaScript code.

GWT’s goal is to make it easy to develop complex cross-
browser applications. To this end, GWT provide a set
of ready-to-use user interface widgets that can be imme-
diately utilize to create new applications. Moreover, it
also provides a simple way to create original widgets by
combining the existing ones. Since GWT produced a
JavaScript application, it does not require browser plug-
ins additions, and there is also no need for an application
server if the applications runn fully on the client-side.

By making the development in the Java programming lan-
guage, GWT inherits many of Java benefits. One of these
benefits is that it provides better application management

85

Aveiro, 13, 14 e 15 de Outubro de 2010

 (when compared to plain JavaScript), thus making GWT
a proper solution for the development of Web applications
with significant size. This occurs as Java is an object ori-
ented language, therefore allowing Java projects to gener-
ally be easy to communicate and comprehend.

Another advantage of using the Java language arises as
it enables using any Java Integrated Development Envi-
ronment (IDE) during application development. A Java
IDE improves development as they provide several tools
to help developers, for instance, code completion or error
checking, and even tools to help debugging the application.
Moreover, by using the Java language, one benefits also
from Java type checking, therefore decreasing the num-
ber of application errors. There is also an improvement on
JavaScript debugging, as errors are noticed in compilation
time instead of execution time.

6.2 GWT support in GUIsurfer

RIAs have a far greater division between the interface code
and the rest of the code, since they divide the code into
client-side and server-side. This division is important since
it helps GUIsurfer perform GUI code slicing, as the code is
more partitioned. GUIsurfer possesses an architecture with
a well defined distinction between the language dependent
modules and language independent modules. The goal of
generalizing it to GWT is made easier because there’s only
the need of restructuring the language dependent modules.

Since GWT it is a Java toolkit, the same parser already
used by GUIsurfer for Java/Swing code could be used. Ide-
ally then there would only be the need to perform the slic-
ing step with a different set of GUI components (those of
GWT instead of those from Swing). However a few is-
sues arose. The first related to the genericity of the tool
and was due to GUIsurfer’s original implementation using
the addActionListener method of Swing components to
identify actions. In GWT however methods are registered
though the addClickHandler method. Solving this prob-
lem meant parameterizing GUIsurfer on the method used
to register event handler in the interface.

A second issue related to differences in the functionality of
both toolkits (Swing and GWT). Since a GWT application
is a web application, the closing window (in GWT, panels)
actions available in Java Swing are not present. Closing
a web application is an unusual action, and thus there is
no direct support in GWT for doing it, though it can be
achieved by invoking native JavaScript. Another issue oc-
curred in detecting a change from a window/panel to an-
other. In Swing this is achieved by invoking the dispose
method on a class. In GWT this is achieved by making
the visibility attribute of the panels. Again, changes were
introduced to address this situation.

Once the above issues were addressed we were able to gen-
erate similar models to those on figure 1 for a GWT version
of the Agenda application. In this first version of GWT
support, an assumption is also made that the GWT code is
structured as similar as possible to Java Swing code. Work
is currently ongoing and our goal is to loosen these restric-

tions as much as possible, and generally improve support
for panel handling.

7 A Language Independent Tool

In this section the applicability of GUISurfer to GWT and
WxHaskell code is discussed. Our retargets to Wx/Haskell
and GWT highlight successes and problems with our initial
approach. The size of the adaptations, and the time it took
to code them are distinct.

The adaptation to GWT was easier because it exploited
the same Java parser. The adaptation to Wx/Haskell was
more complex as not only the language was different and
the same parser could not be used, but also the program-
ming paradigm was different, i.e. Haskell is a functional
language. The functional paradigm is a programming
paradigm that treats computation as the evaluation of math-
ematical functions and avoids state. For the applicability of
GUISurfer to Wx/Haskell we implemented the slicing step
for functional programming analysis extracting events, re-
lated conditions and GUI actions through WxHaskell syn-
tax. This task is more complex since Wx/Haskell toolkit
has a different structure to define GUI components like
windows, event actions, etc.

Regarding the applicability of GUISurfer to GWT, we per-
formed the slicing step with the set of GUI components
from GWT, which are different those from Swing. Addi-
tional structures are different and need slicing adaptation
such the addActionListener method of Swing components
to identify actions. In GWT the respective method is regis-
tered through the addClickHandler method. Changes per-
formed to extend GUISurfer to a new programming lan-
guage, specifically GWT or WxHaskell, didn’t reflect on
architectural alterations. Hence, GUISurfer’s objective of
being a re-targetable tool was accomplished.

8 Related Work

We have described an approach to the analysis of interac-
tive systems from source code. Reverse engineering tech-
niques are used to derive models from the source code of
the user interface layer. State machines are used to capture
the behaviour of the interface. Graph theory is then used
to analyse those state machines.

Having described the approach, we now set it in the general
context of current approaches to the reverse engineering,
modelling and analysis of interactive systems.

8.1 Reverse engineering

A typical reverse engineering approach is to run the inter-
active system and automatically record its state and events.
Memon et al. [Memon 03] describe an tool which auto-
matically transverses a user interface in order to extract in-
formation about its widgets, properties and values. Chen
et al. [Chen 01] propose a specification-based technique
to test user interfaces. Users graphically manipulate test
specifications represented by finite state machines which
are obtained from running the system. Systa studies and
analyses the run-time behaviour of Java software trough a

86

Interacção 2010

reverse engineering process [Systa 01]. Running the tar-
get software under a debugger allows for the generation of
state diagrams.

Another alternative is the use of statical analysis. The
reengineering process is based on analysis of the appli-
cation’s code, instead of its execution, as in previous ap-
proaches. One such approach is the work by d’Ausbourg
et al. [d’Ausbourg 96] in reverse engineering UIL code
(User Interface Language – a language to describe user in-
terfaces for the X11 Windowing System, see [Heller 94]).
In this case models are created at the level of the events
that can happen in the components of the user interface.
For example, pressing or releasing a button.

Moore [Moore 96] describes a technique to partially auto-
mate reverse engineering character based user interfaces of
legacy applications. The result of this process is a model
for user interface understanding and migration. The work
shows that a language-independent set of rules can be used
to detect interactive components from legacy code. Merlo
[Merlo 95] proposes a similar approach. In both cases
static analysis is used.

We are using static analysis as in [Merlo 95, Moore 96,
d’Ausbourg 96]. However, we are applying it to the source
code of graphical user interfaces developed in general pur-
pose programming languages, and working on making the
approach as language independent as possible.

8.2 Modelling and analysis

State machines and graph theory are common in the
modelling and analysis of interactive systems. Horrocks
presents a proven technique for designing event-driven
software using the statechart notation [Horrocks 99]. With
statecharts it is possible to model multiple cross-functional
state diagrams within the statechart. Each of these cross-
functional state machines can transition internally without
affecting the other state machines in the statechart.

Thimbleby [Thimbleby 08] gives examples of the use of
graph theory in the modelling and analysis of a real in-
teractive device. The work described a variety of graph
theoretic properties, and discuss their significance to inter-
action design. Graph theory was also proposed for use in
human computer interaction in [Memon 01] as a means of
analysis. A representation of a GUI component, called an
event-flow graph, identifies the interaction of events within
a component.

Other work includes using graph theory for providing test
models [Lu 08, Li 07]. Automated graphic user interface
test models, which are based on the event-flow graph, are
proposed.

Our work builds on these approaches to define appropriate
models and analysis approaches to the be supported by the
GUIsurfer tool.

9 Conclusions

When developing interactive applications, considering the
correctness of the graphical user interface code is essen-
tial. GUIs are critical components of today’s software and

contemporary software tools do not provide enough sup-
port for guaranteeing GUI code quality and maintenance.
With this in mind, we are developing GUIsurfer, a tool to
reverse engineer the GUI layer of interactive applications.

This work is an approach for improving analysis tech-
niques allowing us to reason about GUI models through
graph theory. We described GUI models extracted auto-
matically from source code, and presented a methodology
to reason about the user interface model.

The approach is language-independent. We have ap-
plied the techniques to extract similar models from
Haskell/WxHaskell, Java/Swing and GWT interactive ap-
plications. Theses models enable us to reason about both
metrics of the design, and the quality of the implementa-
tion of that design. It is not possible with the actual pro-
totype to analyze every existing JAVA/Haskell code. The
system assumes source code will be structured according
to specific conventions. In this case, it is assumed the code
is generated with the conventions used by the NetBeans or
WxHaskell integrated development environments (IDEs).
To consider other kind of source code structuring, some
adjustments would need to be made. Given that IDEs such
as Netbeans are widely used, and automatically generate
most of the user interface code, we do not believe this to
be a major restriction.

Our objective has been to investigate the feasibility of the
approach. We now plan to expand the tool at two lev-
els. On the one hand, we will work on improving the
GUIsurfer’s support to the above mentioned programming
languages, and exted it to new languages (for example, di-
rectly supporting the analysis of JavaScript code).

On the other hand, we plan to work on incrementing
GUIsurfer’s models generation capabilities to allow new
types of analysis. Currently it produces state models, a
type of dialog models. We want to investigate the feasibil-
ity of generating task models because they would allow for
a more user centered evaluation of the system’s design.

Acknowledgements

GUIsurfer development is being carried out in the con-
text of the CROSS and SSaaPPP projects, supported by
the Portuguese Research Foundation (FCT) under con-
tracts: PTDC/EIA-CCO/108995/2008 and PTDC/EIA-
CCO/108613/2008.

João C. Silva is supported by PhD grant SFRH/BD/30729-
/2006 from FCT.

References

[Chen 01] J. Chen e S. Subramaniam. A gui en-
vironment for testing gui-based appli-
cations in java. Proceedings of the
34th Hawaii International Conferences
on System Sciences, 2001.

[Claessen 00] Koen Claessen e John Hughes.
Quickcheck: A lightweight tool for
random testing of haskell programs. Em
ICFP, ACM SIGPLAN, 2000, 2000.

87

Aveiro, 13, 14 e 15 de Outubro de 2010

 [d’Ausbourg 96] Bruno d’Ausbourg, Guy Durrieu, e
Pierre Roché. Deriving a formal model
of an interactive system from its UIL de-
scription in order to verify and to test its
behaviour. Em DSV-IS 96. 1996.

[Heller 94] Dan Heller e Paula M. Ferguson. Motif
Programming Manual, volume 6A de X
Window System Seris. O’Reilly & Asso-
ciates, Inc., second edição, 1994.

[Horrocks 99] Ian Horrocks. Constructing the User
Interface with Statecharts. Addison-
Wesley, Harlow, England, 1999.

[Jones 99] Simon Peyton Jones, John Hughes,
Lennart Augustsson, et al. Report
on the programming language haskell
98. Relatório técnico, Yale University,
Fevereiro 1999.

[Li 07] Ping Li, Toan Huynh, Marek Reformat,
e James Miller. A practical approach
to testing gui systems. Empirical Softw.
Engg., 12(4):331–357, 2007.

[Loy 02] Marc Loy, Robert Eckstein, Dave Wood,
James Elliott, e Brian Cole. Java Swing,
2nd Edition. O Reilly, 2002.

[Lu 08] Yongzhong Lu, Danping Yan, Songlin
Nie, e Chun Wang. Development of
an improved gui automation test system
based on event-flow graph. Em CSSE
’08: Proceedings of the 2008 Interna-
tional Conference on Computer Science
and Software Engineering, páginas 712–
715, Washington, DC, USA, 2008. IEEE
Computer Society.

[Melody 96] Moore Melody. A survey of representa-
tions for recovering user interface spec-
ifications for reengineering. Relatório
técnico, Institute of Technology, Atlanta,
1996.

[Memon 01] Atif M. Memon, Mary Lou Soffa, e
Martha E. Pollack. Coverage criteria
for gui testing. Em ESEC/FSE-9: Pro-
ceedings of the 8th European software
engineering conference held jointly with
9th ACM SIGSOFT international sym-
posium on Foundations of software en-
gineering, páginas 256–267, New York,
NY, USA, 2001. ACM.

[Memon 03] Atif Memon, Ishan Banerjee, e Adithya
Nagarajan. GUI ripping: Reverse engi-
neering of graphical user interfaces for
testing. Relatório técnico, University of
Maryland,USA, 2003.

[Merlo 95] E. Merlo, P. Y. Gagne, J.F. Gi-
rard, K. Kontogiannis, L.J. Hendren,
P. Panangaden, e R. De Mori. Reengi-
neering user interfaces. IEEE Software,
12(1), 64-73, 1995.

[Mikkonen 07] Tommi Mikkonen e Antero Taivalsaari.
Web applications - spaghetti code for the
21st century. Relatório Técnico SMLI
TR-2007-166, Sun Labs, June 2007.

[Moore 96] M. M. Moore. Rule-based detection for
reverse engineering user interfaces. Pro-
ceedings of the Third Working Confer-
ence on Reverse Engineering, pages 42-
8, Monterey, CA, november 1996.

[Silva 06] J.C. Silva, José Creissac Campos, e Jo
ao Saraiva. Combining formal methods
and functional strategies regarding the
reverse engineering of interactive appli-
cations. Em DSV-IS 2006, Dublin, Ir-
land. Springer, 2006.

[Silva 09] J.C. Silva, José Creissac Campos, e Jo
ao Saraiva. A generic library for gui rea-
soning and testing. SAC ACM, Honolulu,
USA, March 2009.

[Silva 10] Carlos Eduardo Silva. Reverse engineer-
ing of rich internet applications. Re-
latório técnico, Universidade do Minho,
2010.

[Systa 01] T. Systa. Dynamic reverse engineering
of java software. Relatório técnico, Uni-
versity of Tampere, Finland, 2001.

[Thimbleby 08] Harold Thimbleby e Jeremy Gow. Ap-
plying graph theory to interaction de-
sign. páginas 501–519, 2008.

[Tip 95] Frank Tip. A survey of program slic-
ing techniques. Journal of Programming
Languages, september 1995.

[Visser 03] Eelco Visser. Program transforma-
tion with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9.
2003.

[Visser 04] Joost Visser e João Saraiva. Tutorial
on strategic programming across pro-
gramming paradigms. Em 8th Brazil-
ian Symposium on Programming Lan-
guages, Niteroi, Brazil, May 2004.

[Walrath 04] Kathy Walrath, Mary Campione, Ali-
son Huml, e Sharon Zakhour. The JFC
Swing Tutorial: A Guide to Constructing
GUIs. Prentice-Hall, 2nd edição, 2004.

88

