
TOM: a Model-Based GUI Testing framework

Miguel Pinto, Marcelo Gonçalves, Paolo Masci, and José Creissac Campos

HASLab/INESC TEC & Dep. Informática/Universidade do Minho, Braga, Portugal

Abstract. Applying model-based testing to interactive systems enables the sys-
tematic testing of the system by automatically simulating user actions on the user
interface. It reduces the cost of (expensive) user testing by identifying implemen-
tations errors without the involvement of human users, but raises a number of
specific challenges, such as how to achieve good coverage of the actual use of the
system during the testing process. This paper describes TOM, a model-based test-
ing framework that uses a combination of tools and mutation testing techniques
to maximize testing of user interface behaviors.

Keywords: Model-based testing; User Interfaces; Tool support.

1 Introduction

User interface testing is an important aspect of interactive computing systems devel-
opment, and a range of techniques can be useful in this context. Analysis techniques
based on user experiments are mostly concerned with assessing the quality from the
users’ perspective (e.g. satisfaction, reliability, learnability, efficiency – cf. the notion
of usability [7]). They can be used to explore a limited number of scenarios, and do not
allow developers to identify all potential user interface problems. Model-based verifica-
tion tools provide an alternative perspective, and enable the exhaustive analysis of core
usability aspects such as mode visibility and consistency of response to user actions
(cf. [4]). However, usability properties proved over the models are “inherited” by the
final system implementation only if the final system faithfully implements the models.

Model-based Testing (MBT) [18] is a technology that can help bridge this gap be-
tween model-based verification and a system’s implementation. It is a black-box testing
technique that compares the behavior of an implemented system (called SUT, System
Under Test) with that prescribed by a model of the same system (the Oracle). One ad-
vantage of MBT is that it facilitates full automation of the testing process, from test
case generation to test execution.

Several authors have explored a range of approaches for using MBT on user inter-
faces: based on reverse engineered models [6,1] or purpose built models [15] represent-
ing the UI behavior; using Oracles that capture the control dialogues implemented in the
UI (e.g., to capture normative interactions between users and system [3,17]); or using
predefined patterns to generate test cases based on given Oracles [12,13]. Different al-
ternatives have also been explored for executing test cases: using code instrumentation,
UI automation frameworks, or higher-level co-execution tools.

Memon was among the first to apply MBT to graphical user interfaces [11]. He
developed the GUITAR [14] testing framework, which supports a variety of model-
based testing techniques. The framework uses a reverse engineering process to generate

Post-print of the paper published in Formal Aspects of Component Software (FACS 2017), 
volume 10487 of Lecture Notes in Computer Science, pages 155-161. Springer, 2017. The final 
publication is available at Springer via: http://dx.doi.org/10.1007/978-3-319-68034-7_9.



Fig. 1. TOM framework: conceptual architecture

a model of the SUT. One limitation of GUITAR and other similar tools (see [9] for a
recent survey of similar tools) is that oracles focus on the SUT, making it harder to select
test cases that are relevant from the user’s perspective. In this work, we introduce TOM,
a model-based testing framework that aims to address this gap by enabling automatic
generation of user relevant test cases.
Contribution. The specific contributions of this paper are: (i) a presentation of the
architecture and prototype implementation of the TOM framework; (ii) an example ap-
plication of the framework to an existing Web application.

2 The TOM framework

The framework adopts a modular approach to better support the exploration of different
model-based testing techniques. It is divided into two layers (see Figure 1): the Adapter
Layer, and the Core Layer.

The Adapter Layer is the interface between the core of the framework, and the
oracles and test automation frameworks. It includes a set of Model Loaders responsible
for importing a UI model, and a set of Test Cases Exporters necessary for generating
test cases. A number of other components support the user during the configuration
process and while running the test cases: a Values Editor is provided to support editing
of values to be used as inputs; a Mapping Editor links a state machine model of the UI
to the graphical UI of the SUT; a Mutations Editor allows users to define the type of
mutations to be introduced in the test cases; and a Results Analyzer presents test results.

The Core Layer uses a graph representation of the SUT to perform the generation
of test cases. The generation process uses a directed graph produced by the Adapter
Layer. Each node in the graph represents a dialogue unit in the interface (e.g. a modal
window, or a page in a Web application), and contains information about the actual
content of the dialogue unit and the validations checks to be performed over it. Edges

2



represent changes to the interface in response to user actions (e.g. button clicks). A Path
Generator component in the Core Layer generates Abstract test cases as paths over the
directed graph. These paths represent normative usage scenarios of the system. These
usages are specified in a way that is independent of any specific implementation, as they
are expressed over the graph. They are converted into concrete test cases by a Test Cases
Generator component in the Core Layer. This component uses two additional sources
of information (provided by the Adapter Layer): a mapping between the state machine
and the graphical UI of the SUT, and input values for specific UI widgets. Finally,
a Mutations component generates additional test cases with the aim of achieving fault
coverage. The considered fault classes are based on Reason’s use error types [16] (slips,
lapses and mistakes). Mutations are introduced in the normative usage scenarios, either
randomly or according to user defined criteria, to check the impact of these use errors.

Prototype Implementation. We have implemented an Adapter Layer for Web appli-
cations1 as a Google Chrome extension (see Figure 2, left). The Adapter captures the
user interaction with a Web page to create a first version of the model. It then supports
editing the model (to add new states and transition not covered in the capture phase, de-
fine the values to be used and the validations to check), as well as the mapping between
the final model and the graphical user interface. A companion component exports test
cases to Selenium WebDriver, a tool to automate testing of web pages.

The directed graph representing the UI model is expressed in SCXML [19]. The
main tags are: <state>, used to represent dialogue units; and <transition>, used to
represent events. <state> tags have a type that defines the characteristics of the dia-
logue unit. An example state type is ‘Form’, which represents a modal window where
a number of input fields must be input before the interaction can proceed. Validation
checks are declared in the state using <onentry> and <onexit> tags, which are as-
sessed when entering or leaving a state, respectively. Example validation checks in-
clude: displayed? (checks whether a given element is visible); is_selected (checks
whether an element in a drop-down list or check-box is selected); enabled? (checks
whether an element is enabled); attribute (checks the value of an attribute of an
HTML element); and regex (checks whether an element contains a value that matches a
regular expression). Transition tags can use a <step> attribute to decompose a logically
atomic action into its constituent physical actions. Example transitions are <select>
(the action of selecting an option in a drop-down menu); <submit> (the action of end-
ing a dialogue unit) and <error> (events triggered in the case of errors).

The Path Generator module converts the SCXML file into a graph using the JGraphT
Java library. JGraphT provides a number of traversal algorithms (from calculating the
shortest path between two nodes using Dijkstra’s algorithm to calculating all paths),
which can be used on the graph to yield abstract test cases. Test case generation is
controlled by defining a start and an end state, and upper bounds on the number of
visits/traversals to nodes/edges on the graph.

The Mutation component simulates use errors as follows: Slip errors are a change
of the order of execution of normative user actions; Lapses are an elimination of an
action; and Mistakes are a change of a value in a form. While these formulations are

1 Available at http://gitlab.inesctec.pt/jccampos/ise-public-builds.

3



Fig. 2. TOM Web editor (left) and OntoWorks (right)

rather simple, they are sufficient for assessing the utility of the mutation approach used
in the TOM framework.

3 Demonstrative Example

This section presents an example use of TOM to test OntoWorks, a Web application sup-
porting online editing and querying of ontologies (see Figure 2, right). Features include:
visualization and execution of queries; loading, removing, editing and visualization of
ontologies; association of queries to ontologies.
Building the model. The TOM Editor was used to aid build the system model. The
final model consisted of 15 states and 24 transitions. A screen-shot of the editor while
building the model is in Figure 2: it shows the “home” state, which includes two tran-
sitions and a login form. Transitions for the home state lead to states “About us” and
“Sign up”. Modeling the OntoWorks system in the TOM Editor took about 5 hours,
a significant reduction compared to a previous manual modeling effort which took 27
hours. The bottleneck of the manual modeling effort was the cost of mapping each el-
ement of the state machine to the web page. In the current model of the system there
are 102 such mappings, mostly obtained automatically. After constructing the model,
validation checks were added to the states. This was manually done with support from
the tool (e.g., to identify elements in the page). In total, 61 validation checks were de-
fined, 57 when entering the web page and 4 when leaving. The "displayed?" validation
was the most used (27 times). Three user-defined mutations were configured, which are
specifically targeted at Web applications: pressing the back button; refreshing the page;
double-clicking a user interface element.
Generation of test cases. The predefined AllDirectedPaths algorithm from JGraphT
was used to traverse the graph. To ensure that the algorithm traverses all nodes and edges
at least once, the following constraints were defined: the number of visits to nodes is
at most 1, and the number of visits to edges is at most 2. A total of 273 paths were

4



generated, which are automatically converted into concrete test cases for OntoWorks
using the exporter for Selenium WebDriver. Starting from these paths, TOM generated
2,730 additional test cases based on the identified mutation strategies. The test cases
were run in Google Chrome. In case of error, a screen-shot of the web page was saved.
Results. A total of 935 step failures were obtained during the execution of the tests.
The tests highlighted a latent implementation problem in the OntoWorks application (a
same identifier was used twice in the same page, when it should have been unique),
and gave us important insights on how to improve the generation and execution of test
cases. These aspects are now discussed.
Positive and negative tests. Careful analysis of the test results revealed that several test
failures were actually desired behavior of the system. For example, swapping the order
of input in the user name and password fields prevents the login process. This indicates
that we need to introduce the notions of “positive” and “negative” tests (i.e., tests that
should be considered as passed if the interaction succeeds vs. tests that should be con-
sidered as passed if the interaction fails). Whether it will be possible to automatically
categorize mutated tests into positive/negative tests needs to be explored.
Cascading errors. While our main goal was to detect as many errors as possible in
a single test, we observed that a failed step in a test case tends to propagate to the
remainder steps of the test case, causing the subsequent steps to fail too. The three
steps that failed in the non-mutated tests category are an example of this. The problem
happens in the login form: the user name input field is being reported as not visible. This
error occurs because Selenium is attempting to populate a form field that is hidden at
runtime. Manual inspection of the form, however, showed the field visible on the form.
After inspection of the code it was realized that there were two elements with the same
identifier in the same page, when they should have been unique. Therefore the failure in
the test highlighted a latent implementation error. Subsequent failures in the test where
due to the fact that the login process had failed, and not because of problems with the
SUT. A redesign of the test case generation module is currently under way, that flags a
test as failed as soon as a step in the sequence fails.

4 Conclusion

This paper described the TOM framework, which aims at supporting the model-based
testing of interactive computing system. The architecture and main functionalities of the
framework were introduced, including all steps necessary for the creation of the user
interface model and the generation and execution of test cases. A layer supporting MBT
of Web application was also developed and an example illustrating its application was
described. The example makes use of TOM Editor, a model editor for web applications.
The example application allowed us to identify a number of lines for future work: from
the need to better consider the role of mutations in the test case generation process,
to fine-tuning the executable test cases generation process. The definition of coverage
criteria is also a topic for future work. The framework was developed in a modular and
structured way, allowing the addition of new features. We plan to explore further the
integration with task modeling tool-sets such as HAMSTERS [2], taking advantage of

5



information task models might have about use error to improve the test cases generation
and mutation processes (see [5]). Other extensions under development include interface
modules for Alloy [8] and the PVSio-web [10] prototyping tool.
Acknowledgments. Work financed by the ERDF (European Regional Development Fund) through
the COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826.

References

1. D. Amalfitano, A.R. Fasolino, P. Tramontana, B.D. Ta, and A.M. Memon. MobiGUITAR:
Automated model-based testing of mobile apps. IEEE Software, 32(5):53–59, 2015.

2. E. Barboni, J.-F. Ladry, D. Navarre, P. Palanque, and M. Winckler. Beyond modelling:
An integrated environment supporting co-execution of tasks and systems models. In Proc.
EICS’10, pages 165–174. ACM, 2010.

3. A. Barbosa, A.C. Paiva, and J.C. Campos. Test case generation from mutated task models.
In Proc. EICS ’11, pages 175–184. ACM, 2011.

4. J. C. Campos and M. D. Harrison. Interaction engineering using the IVY tool. In Proc.
EICS’09, pages 35–44, New York, NY, USA, 2009. ACM.

5. J.C. Campos, C. Fayollas, C. Martinie, D. Navarre, P. Palanque, and M. Pinto. Systematic
automation of scenario-based testing of user interfaces. In Proc. EICS’16, pages 138–148.
ACM, 2016.

6. A. Gimblett and H. Thimbleby. User interface model discovery: Towards a generic approach.
In Proc. EICS’10, pages 145–154. ACM, 2010.

7. International Organization for Standardization. ISO 9241-11: Ergonomic requirements for
office work with visual display terminals (VDTs) - part 11: guidance on usability. Interna-
tional Organization for Standardization, 1998(2):28, 1998.

8. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.
9. V. Lelli, A. Blouin, B. Baudry, and F. Coulon. On model-based testing advanced GUIs.

In Proc. 2015 IEEE 8th Intl. Conf. Software Testing, Verification and Validation Workshops
(ICSTW), 11th Workshop on Advances in Model Based Testing (A-MOST). IEEE, 2015.

10. P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. PVSio-web 2.0:
Joining PVS to HCI. In Computer Aided Verification, volume 9206 of Lecture Notes in
Computer Science, pages 470–478. Springer, 2015.

11. A.M. Memon. A Comprehensive Framework For Testing Graphical User Interfaces. PhD
thesis, University of Pittsburgh, 2001.

12. R. Moreira and A.C. Paiva. PBGT Tool: An integrated modeling and testing environment for
pattern-based GUI testing. In Proc. ASE 2014, pages 863–866. ACM, 2014.

13. I.C. Morgado and A.C. Paiva. The iMPAcT tool: Testing ui patterns on mobile applications.
In Proc. ASE 2015, pages 876–881, 2015.

14. B. Nguyen, B. Robbins, I. Banerjee, and A. Memon. GUITAR: an innovative tool for auto-
mated testing of GUI-driven software. Automated Software Engineering, 21(1), 2014.

15. A.C. Paiva. Automated Specification-Based Testing of Graphical User Interfaces. PhD thesis,
Engineering Faculty of Porto University, Dep. of Electrical and Computer Engineering, 2007.

16. J. Reason. Human Error. Cambridge University Press, 1990.
17. J.L. Silva, J.C. Campos, and A.C. Paiva. Model-based user interface testing with Spec Ex-

plorer and ConcurTaskTrees. Electronic Notes in Theor. Comp. Science, 208:77–93, 2008.
18. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan

Kaufmann Publishers Inc., 2007.
19. W3C. State Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C

Recommendation, September 2015.

6


