
1

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 1http://www.di.uminho.pt

Model-based User Interface Testing

José Creissac Campos(a) with José L. Silva(a) & Ana C. R. Paiva(b)

(a)DI/CCTC, Universidade do Minho, Braga, Portugal
(b)FEUP, Universidade do Porto, Portugal

IFIP WG 2.7/13.4 meeting on SE-HCI Processes

Amsterdam, 24-25 of November, 2007.

Escola de Engenharia

Departamento de Informática

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 2

Motivation

� HCI and quality – focus is on the users

� Analysis of device’s UI design using models

� Testing of device models/implementation with users

� SE and quality – focus is on the device

� Analysis of device’s (internal) architectural and behavioural models

� Testing of implemented functionality

� Question: How to bridge the gap between HCI models and devices’
implementations?

� Correct by construction?

� Testing?

� Model-based testing (MBT)

� Testing (the implementation) against a model

� We present a study on the use of task models for MBT

2

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 3

Talk Plan

� Model-based software testing (MBT)

� Model-based UI testing

� CTT task models

� A process for MBT with CTT and Spec Explorer

� Discussion

� Conclusions and Future Work

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 4

Model-based software testing

� Effective testing is difficult

� process systematization, automation, tester's expertise, and a
bit of luck

� MBT compares the state and behaviour of a software product
against its model (the oracle)

� increases software testing automation and systematization.

� API MBT tools, main problems:

� gap between models and implementations

� state space explosion

� test cases generation

App.
Model
(oracle)

Test cases

Inconsistencies

3

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 5

Model Based UI testing (I)

� Specific difficulties

� Gap between UI model events and application UI events

� Generation of UI events at application level

� Need to consider complex behaviours (goals, tasks,…)

� Three challenges

� Map concrete actions to/from abstract actions

� Write adaptor code to simulate user actions

� Need for adequate models of the UI

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 6

Model Based UI testing (II)

� Paiva (2007) has developed a model-based UI testing
approach (around Spec Explorer / Spec#)

� Guidelines to model GUIs in Spec#

� GUI Mapping tool – automated mapping between the GUI model
and its implementation

� Strategies to avoid test case explosion

� However, Spec# not ideal to model GUIs

� Too much like a programming language

� Level of detail too low

� Need to find alternative modelling notations acknowledged

� Task models for model-based testing?

� Our conclusion: “Yes, but…”

4

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 7

CTT Task Models

� An hierarchical task analysis notation

� A popular task modelling language

� Tool support (TERESA)

interaction
task

application
task

abstract
task

depth first traversal
governed by the operators

user task

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 8

The Process

Task model (CTT)

namespace notepad2
{

using WindowManager;

using States;

using SaveDialog;

using FindDialog;

using OpenDialog;

using ReplaceDialog

[Action]

void Show_Notepad()

FSM model (PTS) Oracle (Spec#)

(ii)

TERESA

(iii)

TOM

(i) (iv)

5

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 9

(i) Using CTT models as oracles (I)

� Structuring the task models (FIT-based):

� Start <task>

� Enter <field> [<type>]

� Press <button> [<window>]

� Show <window>

� ShowM <window>

� Display <value> <window>

� Close [<window>]

� Pre- and post-conditions on atomic tasks help add semantics
to the model

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 10

(i) Using CTT models as oracles (II)

� Using the keywords

6

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 11

(i) Using CTT models as oracles (III)

� Adding semantics to the model (Enter direction task)

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 12

The Process

Task model (CTT)

namespace notepad2
{

using WindowManager;

using States;

using SaveDialog;

using FindDialog;

using OpenDialog;

using ReplaceDialog

[Action]

void Show_Notepad()

FSM model (PTS) Oracle (Spec#)

(ii)

TERESA

(iii)

TOM

(i) (iv)

7

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 13

(ii) Generating a FSM representation

� Presentation Task Sets (PTS) are generated by TERESA

� An automatic step, generates a XML file

� A few problems:

� Technical: disabling ([>) and suspend/resume (|>)

% Manual correction is used at the moment

� Expressiveness: modal dialogues, wizards, …

% Pre- and post- conditions used for modal windows

% Do we want to model wizards in a task model?!

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 14

The Process

Task model (CTT)

namespace notepad2
{

using WindowManager;

using States;

using SaveDialog;

using FindDialog;

using OpenDialog;

using ReplaceDialog

[Action]

void Show_Notepad()

FSM model (PTS) Oracle (Spec#)

(ii)

TERESA

(iii)

TOM

(i) (iv)

8

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 15

(iii) TOM – Generating the Spec# oracle (I)

� Spec# oracle generated from PTS + CTT

CTT: interaction task

Spec#: controllable

CTT: application task

Spec#: probe

CTT: abstract task

Spec#: -

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 16

(iii) TOM – Generating the Spec# oracle (II)

� Guidelines in (Paiva 2007) are followed

� One module for each GUI window

� State variables to describe window state/controls

� Controllable methods to describe behaviour

� Probe methods to observe state

� A window manager model is used to deal with windows

� bool IsOpen(string name) {…

� bool IsEnabled(string name) {…

� void AddWindow(string name, string parent, bool isModal) {…

� void RemoveWindow(string name) {…

� …

9

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 17

(iii) TOM – Generating the Spec# oracle

(III)

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 18

The Process

Task model (CTT)

namespace notepad2
{

using WindowManager;

using States;

using SaveDialog;

using FindDialog;

using OpenDialog;

using ReplaceDialog

[Action]

void Show_Notepad()

FSM model (PTS) Oracle (Spec#)

(ii)

TERESA

(iii)

TOM

(i) (iv)

10

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 19

(iv) Refining and using the oracle (I)

� Additional information is added to the model (manually)

� Definition of Domains for input parameters
(generalized MC/DC criterion)

� Definition of additional behavior (e.g., FindWord())

� Refinement of probe actions

� Glue code between model and implementation is created

� Matching physical actions to oracle actions

� Mapping between oracle and application

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 20

(iv) Refining and using the oracle (II)

� Test cases are generated

� Spec Explorer does this automatically

� Full transition coverage criterion was used

� The test cases are run

� Spec Explorer does this automatically

� The application is tested against the task model

� In this case, the application was not found not to conform to
the task model

11

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 21

Discussion

� Models are at a level of abstraction familiar to user interface
designers/developers

� Models not at the level of detail needed for typical MBT

% Tension between modelling how to use the system, and modelling
the system

% Annotations and pre-/post-conditions used to address this

� Task models describe idealised user behaviour (hard to test for
user error)

% Use variations of the original task model

� The cost incurred in developing the oracle is much reduced

� True!

� Can be further reduced if convention is followed from the outset

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 22

Conclusion & Future work

� Despite limitations, using task models as oracles has proven
viable

� Care must be taken regarding what they are used for, and how

� Interesting as a first validation of fitness for pourpose

� Task models and MBT as a tool for component selection!

� Future work

� Solving TERESA problems?

% Still not clear what the problems are

� Enriching task models with dialogue information?

% This would allow testing of implementation details

� Exploring fault injection into task models?

% This will allow testing system response to user error

12

Model-based User Interface Testing

IFIP WG 2.7/13.4 meeting, Amsterdam, The Netherlands, 24-25 November 2007 23

Thank you!

jose.campos@di.uminho.pt

