
ADRIAN
E-Learning Content Production

(creating online exams)

Giovani Rubert Librelotto ∗

Universidade do Minho, Departamento de Informática
Braga, Portugal, 4710-057

grl@di.uminho.pt

Jośe Carlos Ramalho
Universidade do Minho, Departamento de Informática

Braga, Portugal, 4710-057
grl@di.uminho.pt

Pedro Rangel Henriques
Universidade do Minho, Departamento de Informática

Braga, Portugal, 4710-057
{jcr, prh}@di.uminho.pt

May 13, 2004

Abstract

Universities and other institutions related to education are investing time
and resources in E-learning initiatives. This leads to an increasing number of
course offers in E-learning format. There are environments, called Learning
Management Systems (LMS), designed to help teachers in the management
of their courses. Basically a LMS provides functionalities to manage student
records, to facilitate communication between students and between students
and teacher, to control accesses and produce statistics, schedules, evaluation
and an open platform to help teachers make lecture content available online.
However they do not dictate what kind of technology or format should be
used to prepare those contents. Although this issue can be seen as an ad-
vantage in certain contexts it leads to a format anarchy and makes support
for content production impossible. Here is where ADRIAN comes into the
scene providing support for content production.

ADRIAN is composed by several components: one component to help
producing lessons and lab guided sessions; one component for the production
of tests and exams; one component to support the production of multimedia

∗Bolsista CNPq - Brasil

1

presentations; and one component to generate interfaces that integrate all
the material produced (content parts) by the other components or developed
elsewhere by the teacher.

The whole system is being developed with XML (eXtended Markup Lan-
guage) using descriptive markup for content, and related technologies like
XSL (eXtended Stylesheet Language) for content transformations. This way
we ensure the portability and platform independence of the system.

The last mentioned component, the integration component, is based on
ontologies; the user is asked to define an ontology for his course. After that
the system generates automatically the web interface that integrates all the
courseware components.

We start by describing the ADRIAN architecture (a more detailed de-
scription was published at M-ISCTE conference) and then we present the
Tests and Exams Production application.

The main idea behind Tests an Exams is that structure is not free. This
ADRIAN’s component enforces a specific structure specified in an XML
Schema. This is the way to achieve normalization in the content production.
However to convince teachers to use we provide all the editing and trans-
formation tools. The user only has to use an interface to introduce content.
After that the system takes care of the electronic publishing: producing paper
and web versions and in this case (tests and exams) managing the interaction
between students solving the online exam and the system.

In this paper we characterize the different kinds of exams and present the
steps towards the XML Schema definition. Then we describe this application
lifecycle and the implementation we have.

1 Introduction

Today the web provides an excellent channel to distribute information and to access
it. Its application in learning environments was a question of time. Today is the
reality.

The first experiences we have made of using the web for teaching purposes
date back to 1994. Back then we were using mailing-lists to interact with students
and web pages to make available all kinds of information.

Nowadays the demand for E-learning courses and materials is growing every-
day. The possibility of being able to follow a course from the comfort of one’s
home is attractive to many people that can not be present at the time the lectures
occur. On the side of the institution, E-learning courses have also some advan-
tages like space economy and a lower resource occupation. Although this physical
economy, E-learning demands more resources; preparing lectures and managing
student records consumes time and human resources.

Here is where the so called Learning Management Systems (LMS) appeared.
There is a considerable number of these systems in use throughout the world, some
of them are considered as references: Blackboard, Luvit, WebCT, Lotus Learning
Space, TWT,... Some of them came out of academic experiences while others
were developed by the software industry. Basically a LMS provides functionalities

to manage student records, to facilitate communication between students and be-
tween students and teacher, to control accesses and produce statistics, schedules,
evaluation and an open platform to help teachers make lecture content available
online. However they do not dictate what kind of technology or format should
be used to prepare those contents. Although this issue can be seen as an advan-
tage in certain contexts it leads to a format anarchy and makes support for content
production impossible.

ADRIAN is being created in a special context: the authors are computer sci-
ence teachers, part of them belong to the campus E-learning task force and they
have the responsibility of several courses that should be offered in E-learning for-
mat. Each component of ADRIAN started as an individual project. These projects
gave birth to a set of prototypes that are now being further developed for real cases
use. In parallel we were developing another project called METAMORPHOSIS
[clei03,coopmedia03] aiming at exposing and integrating information systems on
the web through the use of ontologies to specify the different knowledge views.
When we joined the set of prototypes we have developed for E-learning content
production with the help of METAMORPHOSIS, ADRIAN was born.

For the moment, ADRIAN is composed by four modules to assist the creation
of: tests and exams; guided lessons and guided lab sessions; multimedia presenta-
tions; and an interface to glue all the others. In the following sections we start by
explaining the integration of the three content production modules. Then we will
describe each of the individual modules.

2 ADRIAN architecture

Figure 1 illustrates ADRIAN’s operational architecture.
In the architecture illustrated by figure 1 we can distinguish four major parts:

Content Provider Applications: Currently this part comprehends three applica-
tions:

Xlessons: to produce lectures: lecture notes, laboratorial guided sessions,
exercise sheets, ...

Xexams: to assist teachers in the production of tests and exams: multiple
choice, true and false, development, progressive, ...

Xslides: to assist the production of slide based presentations.

Content Repository: Normally it will be a subtree in the server filesystem. At
present this structure should be frozen and known to the other applications.
An ongoing project will take care of these restrictions enabling the user to
dynamically change the Content Repository structure. The structure we have
defined and that we are using is presented in figure 2.

Figure 1: E-Learning platform

Ontology: This part corresponds to an abstract specification of the Content Repos-
itory structure. The content provider still has to specify this by hand. There
is an ongoing project to compute most of the ontology automatically. The
idea is to crawl in the Content Repository structure collecting superclass-
subclass relationships and the list of all documents produced so far and to
generate the corresponding ontology. At the end the user will be able to add
new relationships to the ontology. This ontology represents the input to the
Interface Generator, a tool that we have developed that generates a complete
website to access and navigate among a set of resources described through
an ontology specification.

Interface: This part corresponds to a website from where the user can access all
the produced documents.

In the following sections we describe with more detail each of these compo-
nents.

3 Content Provider Applications

Our content provider applications share a common philosophy: they are based
on the principles of structured documentation and they use descriptive markup to
structure the documents that are produced. With this statement we mean that the
format of the content being produced is not free. It has a textual representation
and has its structure completely described through the use of markup and formally
specified with a grammar.

Figure 2: Content Repository structure.

The advantages of descriptive markup are well documented in the bibliography
published so far [MA96] [Meg98] but we can enumerate the most important ones:

Portability: since the markup is descriptive it has no operational meaning; it is
possible to move documents between different systems and application with-
out any changes.

Flexible formatting: descriptive markup leads to a complete separation between
content and form; in order to visualize a document one has to associate it
with visual form specification; later on if one wants to change the look of
it information, only needs to change this specification the content remains
unchangeable.

Longevity: since there are no ties with operational systems and software platforms
it is easy to use and reuse this information in tomorrow systems.

In order to clarify this technological choice, the following subsection explains
some inherent to the descriptive markup paradigm.

3.1 Descriptive Markup

The idea of using descriptive markup in an electronic publishing environment dates
back to the 1960’s. However it was only in 1986 that SGML [GM02] [Gol90] has
emerged as an ISO standard (ISO 8879). SGML is a meta-language with which is
possible to define specific markup languages. Although it has some advantages its
complexity led to a small community of users. To overcome this problem XML
[HM01] [Meg98] was presented to the public in 1998. XML is a lot lighter, easy
to process and new tools and environments appear everyday.

An XML document is a logic structure, a hierarchy of components. Each com-
ponent can be differentiated from the others through the use of markup that is added
to the document. According to this perspective a document has two types of infor-
mation: data and markup. The following example shows a piece of a document
that specifies a lab guided session.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <AulaPr ática>
3 <meta>
4 <disciplina>Processamento Estruturado de Documentos</disciplina>
5 <data>2003.10.01</data>
6 <objectivos>
7 <para>O objectivo principal desta ficha é familiarizar o aluno com o XPath.</para>
8 <para>Para ...</para>
9 </objectivos>

10 <recursos>
11 ...
12 </recursos>
13 </meta>
14 <corpo>
15 <introduç ão>
16 <para>Para, ...
17 </para>
18 ...
19 </intriduç ão>
20 ...
21 </corpo>
22 </AulaPr ática>

This example only presents two components of an XML document. An XML
document has three possible components:

XML declaration: All XML documents must begin with this declaration:

1 <?xml version="1.0" encoding="ISO-8859-1"?>

DTD (Document Type Definition) or Schema: A grammar that specifies what markup
is required, what is optional, where it is required and where is optional. This
grammar defines the markup language, in other words, a DTD or Schema
defines an XML dialect.

The document: This component corresponds to the document itself. It is com-
posed by text, markup, and optionally a reference to a DTD or Schema.

An XML document that follows a DTD or Schema is said to be a valid docu-
ment according to that DTD or Schema. An XML document that does not follow
any DTD or Schema is said to be a well formed document.

Figure 3 gives an idea of XML documents lifecycle. This figure illustrates
the methodology followed to develop the three applications being discussed in this
section.

Figure 3 illustrates the structured documents life cycle with 5 stages: anal-
isys, edition, validation, storage and formatting. The analisys stage corresponds to
the study of a kind of documents. This stage is expected to produce a DTD or a
Schema [MA96] [KJO+01] that completely defines the structure for a certain class
of documents. After there is a small cycle between two stages: the user edits a
document and asks the editor to test its conformance with the DTD; if there are
reported errors the user will correct them until the document passes the validity

Figure 3: XML documents lifecycle.

check. This stage (2 stages: edition+validation) will produce valid XML docu-
ments. With an XML valid document one can store it [Wil00] or process it in
order to obtain a specific output. There are many solutions for storage that will
not be discussed here. The transformation process is normally specified in an XSL
stylesheet [Tid01] (XSL is an XML syntax that is used to specify transformation
processes in a declarative/functional way).

Let’s see how these concepts were applied to the three content provider appli-
cations.

3.2 Tests and Exams

This is probably the most complex type of document in the ADRIAN framework.
In an E-Learning context we normally refer to online exams. There are two species
of online exams: static (the exam is just displayed inside an ordinary web page (this
situation is common to most of other types of documents) and dynamic (the exam
is displayed but students are expected to interact with it, they can solve the ques-
tions and have immediate feedback from the system). ADRIAN supports dynamic
exams and that is the kind of exams that is presented in the following.

Dynamic exams can be divided in the following types:

Multiple choice: each question has a set of answers; the student must pick the
right one;

True and False: each question has a set of answers; for each answer the student
must give a true or false answer.

Development: the student has a blank area to develop his answer to the question.

The ADRIAN tests and exams application is being developed to support all
these three kinds of exams.

Further more, functionally we can classify exams in one of the following types:

One attempt: the student has only one attempt to solve the exam (this is the tra-
ditional approach);

Time limit: the student has to solve the exam inside a specific time interval;

Progressive: the exam is presented by levels; to access the following level the
student has to reach a minimum in the current level;

Random: the system scrambles the questions; the order in which questions are
presented is always different.

An exam does not need to strictly belong to one of those types. It can be a
mixed of all or some of those types. In order to achieve this we deal individually
with each question. Questions are the building blocks of our exams. To give an idea
of the structure defined for tests and exams some parts of the DTD [SdCVMR03]
are shown below:

1 <!ELEMENT question (description, choices?)>
2 <!ATTLIST question
3 numberQ ID #REQUIRED>
4

5 <!ELEMENT choices (choice+)>
6

7 <!ELEMENT description (para+)>
8 <!ATTLIST description
9 tbox (small | medium | big) #IMPLIED>

10

11 <!ELEMENT choice (para+)>
12 <!ATTLIST choice
13 answer (true | false) #REQUIRED>
14 ...

A document instance would look like:

1 ...
2 <body>
3 <questions>
4 <question numberQ="Q1">
5 <description>
6 <para>No Tratado de Roma assinado em 1957 pelos seis
7 Estados-membros de ent ão, ficava expresa a intenç ão em realizar:</para>
8 </description>
9 <choices>

10 <choice answer="false">
11 <para>uma uni ão aduaneira;</para>
12 </choice>
13 <choice answer="false">
14 <para>uma uni ão aduaneira, um mercado comum e uma
15 uni ão econ ómica;</para>
16 </choice>
17 <choice answer="true">
18 <para>uma uni ão aduaneira e um mercado interno;</para>
19 </choice>
20 <choice answer="false">
21 <para>um mercado comum, uma uni ão econ ómica e uma uni ão
22 econ ómica e monet ária.</para>
23 </choice>
24 </choices>
25 </question>
26 ...

Figure 4: One slide screenshot.

27 </questions>
28 </corpo>
29 </exame>

In this example we are looking at a multiple choice question. The teacher cre-
ates this document where together with the question he also provides the answers.
This way it is possible to write a processor for automatically evaluate student’s an-
swers. Currently four types of outputs are generated: a web version of the exam
enabling students to solve it being located anywhere, a PDF version of the exam
so teachers and students can obtain a print copy of the exam, a web version with
student answers (only for the teacher and with all possible automatic evaluations)
and a PDF version of the exam in the same context. The automatic evaluation pro-
cess will not be detailed here but its domain is composed by all the questions with
answers provided by the teacher (excluding development questions).

3.3 Slide based Presentations

This application follows the same approach as the previous one. An XML Schema
was defined for this kind of documents together with two transformation specifica-
tions: one to generate a website that drives the slide presentation (figure 4) and the
other to generate a PDF version of the slides.

Figure 5 presents a structure diagram of the markup language defined for this
application.

Figure 5: Slide schema diagram.

3.4 Lessons and Laboratory Guided Sessions

This application is being used in three different courses to support practical lessons
and laboratory guided sessions. For those courses the paper circuit was eliminated
being replaced by web pages accessible from anywhere (what raises another prob-
lem called copyright). The same approach was followed to develop the application
thus we present a small document instance and the corresponding web page to give
you a glimpse of this application.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <AulaPr ática>
3 <meta>
4 <disciplina>Processamento Estruturado de Documentos</disciplina>
5 <data>2003.10.01</data>
6 <objectivos>
7 <para>O objectivo principal desta ficha é familiarizar o aluno com o XPath.</para>
8 <para>Para atingir esse fim, o aluno ir á utilizar o XPath para realizar queries
9 sobre alguns documentos XML.</para>

10 </objectivos>
11 <recursos>
12 <documento url="http://www.di.uminho.pt/˜jcr/XML/didac/xmldocs/poema.xml">
13 Poema: "Soneto J á Antigo", de Álvaro de Campos
14 </documento>
15 ...
16 </recursos>
17 </meta>
18 ...
19 <exerc ı́cio>
20 <t ı́tulo>Queries sobre o poema</t ı́tulo>
21 <enunciado>
22 <para>Faça o download do poema.</para>
23 <para>Crie um documento baseado no DTD acima com
24 express ões XPath que respondam às seguintes al ı́neas:</para>
25 <al ı́neas>
26 <al ı́nea>Seleccione o terceiro verso da última quadra.</al ı́nea>

Figure 6: Practical lesson screenshot.

27 <al ı́nea>Seleccione todos os nomes.</al ı́nea>
28 <al ı́nea>Seleccione os versos do segundo terceto.</al ı́nea>
29 <al ı́nea>Seleccione os nomes ou lugares começados pela letra L.</al ı́nea>
30 </al ı́neas>
31 </enunciado>
32 </exerc ı́cio>
33 ...

4 Content Repository / Content Management System

All the documents being produced have to be stored somewhere. Besides that for
each XML document being created there are pipeline transformations that have
to be executed in order to have the web versions or the PDF versions. The ideal
solution would be a Content Management System. The project that aims the de-
velopment of that system is just starting so only a small idea of it can be given: in
this starting project we will use the COCOON framework from Apache; with CO-
COON a web interface will be created enabling the user to create any of the three
kinds of documents described above; the back-end will automatically generate all
the versions: web pages, PDF, abstracts, ... The whole process of transformation
and deployment of XML documents will be transparent to the user.

For the moment documents are stored in a particular filesystem subtree as the
one presented in figure 2. The user must be aware of this structure and sometimes

he will to do some management ”by hand”.

5 Ontology

In another project, calledMetamorphosis[LRH03a] [LRH03b], ontologies are be-
ing used to integrate and to expose heterogeneous information systems on the web.
The main idea is to make it simple and fast. To achieve this information systems re-
main untouched,Metamorphosisonly extracts a small subset of metadata from the
information system in question. This metadata is used to build a semantic network
with concepts and relations. These concepts and relations represent knowledge and
will be used later to navigate semantically among information resources.

From the various possible formalisms Topic Maps [BBN99] [PH03] [PM01]
were chosen due to their abstraction level. They are abstract enough to represent
almost everything and strict enough in order to make possible the creations of pro-
cessors and navigation tools.

The next subsection explain the Topic Maps approach and give an idea of the
navigation tools developed so far.

5.1 Topic Maps

Topic Maps is a formalism to represent knowledge about the structure of an in-
formation resource and to organize it in ”topics”. These topics have occurrences
and associations that represent and define relationships between them. Information
about the topics can be inferred by examining the associations and occurrences
linked to the topic. A collection of these topics and associations is called a topic
map.

Topic Maps can be seen as a description of what is about a certain domain, by
formally declaring topics, and by linking the relevant parts of the information set
to the appropriate topics [Rat03].

A topic map expresses someone’s opinion about what the topics are, and which
parts of the information set are relevant to which topics. Charles Goldfarb [GP01]
usually compares Topic Maps to a GPS (Global Positioning System) applied to
the information universe. Talking about Topic Maps is talking about knowledge
structures. Topic Maps are the basis for knowledge representation and knowledge
management.

Enabling to create a ”virtual map” of information, the information resources
stay in its original form and so they are not changed. Then, the same information
resource can be used in different ways, for different topic maps. As it is possible
and easy to change the map itself, information reuse is achieved.

Topic Map architecture was also designed to allow merging between topic
maps without requiring the merged topic maps to be copied or modified.

XML Topic Maps (XTM) is basically an XML document (or set of documents)
in which different element types, derived from a basic set of architectural forms, are

used to represent topics, occurrences of topics, and relationships (or associations)
between topics.

As example we present a small part of a Topic Map that deals with the concepts:
person, student, teacher, game, squash, player, grl, jcr, prh.

1 ...
2 <topic id="Person">
3 <baseName>
4 <baseNameString>Person</baseNameString>
5 </baseName>
6 </topic>
7 <topic id="jcr">
8 <instanceOf>
9 <topicRef xlink:href="#Person"/>

10 </instanceOf>
11 <baseName>
12 <baseNameString>Jos é Carlos Ramalho</baseNameString>
13 </baseName>
14 <occurrence>
15 <scope>
16 <topicRef xlink:href="#email"/>
17 </scope>
18 <resourceData>jcr@di.uminho.pt</resourceData>
19 </occurrence>
20 </topic>
21 ...
22 <association id="jcr-squash-association">
23 <instanceOf>
24 <topicRef xlink:href="#squash-game"/>
25 </instanceOf>
26 <member>
27 <roleSpec>
28 <topicRef xlink:href="#Player"/>
29 </roleSpec>
30 <topicRef xlink:href="#jcr"/>
31 </member>
32 <member>
33 <roleSpec>
34 <topicRef xlink:href="#Game"/>
35 </roleSpec>
36 <topicRef xlink:href="#Squash"/>
37 </member>
38 </association>
39 ...

5.2 Web Interface

ADRIAN has a web interface generator that takes a Topic Map as input and gen-
erates a website that enables the navigation in the Topic Map and the access to the
resources pointed by the Topic Map occurrences.

Figure 7 gives one of the views of the example Topic Map presented above.

6 Conclusion

As stated along the paper ADRIAN is not completed, it is a prototype. However
some parts of it are already being used in E-Learning contexts.

Figure 7: Web Interface snapshop.

There are several small teams developing components for ADRIAN:

Tests and Exams:a second version is being developed; it will support more types
of questions and more interaction with students.

Practical lessons:until now this is the component with more users; however they
all come from the computer science area; a second version is being devel-
oped to cope with lessons from other scientific areas.

Content Management System:a complete Content Management System is be-
ing developed in order to make it easier for teachers.

SVG Interface: The current web interface is text based. A graphical one is under
development using SVG (standard vector graphics).

The daily use of some of the available components let us conclude that ADRIAN
can augment content production productivity.

Looking at the state of the art we can split content production in two differ-
ent stages: metadata and the content itself. Until now the community has been
concerned with the metadata about what is designated byLearning Object. Several
standards were worked out and some of them are in use by the biggest groups of in-
terest in this area: IMS EML [EML03] and LOM 1484 [LOM03]. These metadata
standards were developed for the overall community so they are quite big what can
give rise to a poor application. In our Content Provider Applications we have in-
cluded a small amount of metadata and we have centralized our markup languages

in content. Now we are starting a new project aiming at the integration of our
applications with those metadata standards. The main idea is to keep it as simple
as possible for the end-user, in this case teachers. There are other projects like
EUME Onto [aMLaESaXV03], that are integrating this metadata standards with
other content standards like Docbook [WM99]. In our opinion initiatives like these
will give birth to systems too complex to use since there are no effort in trying to
simplify the final markup language.

References

[aMLaESaXV03] Ricardo Amorim Manuel Lama Eduardo Sanchez Xosé Vila.
An educational ontology based on metadata standards. In2nd
European Conference on e-Learning, 2003.

[BBN99] Michel Biezunsky, Martin Bryan, and Steve
Newcomb. ISO/IEC 13250 - Topic Maps.
ISO/IEC JTC 1/SC34, December, 1999.
http://www.y12.doe.gov/sgml/sc34/document/0129.pdf.

[EML03] http://eml.ou.nl/eml-ou-nl.htm, 2003.

[GM02] Lars Marius Garshol and Graham Moore. The Standard Appli-
cation Model for Topic Maps. InISO/IEC JTC 1/SC34 N0356.
http://www.y12.doe.gov/sgml/sc34/document/0356.htm,
December, 2002.

[Gol90] Charles Goldfarb.The SGML Handbook. Clarendon Press, Ox-
ford, 1990.

[GP01] Charles F. Goldfarb and Paul Prescod.XML Handbook. Pren-
tice Hall, 4th edition, 2001.

[HM01] Elliote Rusty Harold and W. Scott Means.XML in a Nutshell.
O’Reilly & Associates, 2001.

[KJO+01] K.Cagle, J.Duckett, O.Griffin, S.Mohr, F.Norton, N.Ozu,
I.Rees, J.Tennison, and K.Williams. Professional XML
Schemas. Wrox Press, 2001.

[LOM03] http://ltsc.ieee.org/wg12/, 2003.

[LRH03a] Giovani Rubert Librelotto, José Carlos Ramalho, and Pe-
dro Rangel Henriques. Geração autoḿatica de interfaces web
para sistemas de informação: Metamorphosis. InCOOPMedia
2003, ISEP, Porto, Portugal, 10.08 2003.

[LRH03b] Giovani Rubert Librelotto, José Carlos Ramalho, and Pe-
dro Rangel Henriques. Tm-builder: Um construtor de ontolo-
gias baseado em topic maps. InCLEI’03, La Paz, Boĺıvia, 09.29
2003.

[MA96] Eve Maler and Jeanne Andaloussi.Developing SGML DTDs:
From Text to Model to Markup. Prentice-Hall, 1996.

[Meg98] David Megginson.Structuring XML Documents. Prentice-Hall,
1998.

[PH03] J. Park and S. Hunting.XML Topic Maps, volume ISBN 0-201-
74960-2. Addison Wesley, 2003.

[PM01] Steve Pepper and Graham Moore. XML Topic Maps
(XTM) 1.0. TopicMaps.Org Specification, August, 2001.
http://www.topicmaps.org/xtm/1.0/.

[Rat03] H. Holger Rath. White Paper: The Topic Maps Handbook. Em-
polis, 2003. http://www.empolis.com/download/
docs/whitepapers/empolistopicmapswhitep%
aper_eng.pdf .

[SdCVMR03] Daniel Edgar Pinto Soares, Maria da Conceição Vieira Mota,
and Jośe Carlos Ramalho. Xexam: uma linguagem de su-
porte para exames online (e-learning). InXATA2003 - XML:
Aplicaç̃oes e Tecnologias Associadas, Vila Verde - Portugal,
02.13-14 2003.

[Tid01] Doug Tidwell. XSLT. O’Reilly, Agosto 2001.

[Wil00] Kevin Williams. Professional XML Databases. Wrox Press,
2000.

[WM99] Norman Walsh and Leonard Muellner.Docbook: The Definitive
Guide. O’Reilly, 1999.

