
Using the Ontology Paradigm to Integrate Information Systems
Oveia: Expanding the Topic Maps frontier

Giovani R. Librelotto
University of Minho
Dept. of Informatics

Braga, Portugal
grl@di.uminho.pt

Weber Souza
UNEB

Dept. Ciências Exatas
Salvador, Brasil

wsouza@nexen.com.br

José C. Ramalho
University of Minho
Dept. of Informatics

Braga, Portugal
jcr@di.uminho.pt

Pedro Rangel Henriques
University of Minho
Dept. of Informatics

Braga, Portugal
prh@di.uminho.pt

Abstract—Ontology based websites are one possible im-
plementation of the Semantic Web. There are several
languages for ontology specification: RDF, OWL, Topic
Maps. Topic Maps follow a structure formally specified
what makes them a good choice for semantic website spec-
ification. The process of ontology development based in
topic maps is complex, time consuming, and it requires a
lot of human and financial resources, because they can have
a lot of topics and associations, and the number of informa-
tion resources can be very large. To overcome this problem
a new environment is proposed, Oveia. Oveia is composed
by four components which have relevant contributions to
the Semantic Web area. This paper describes these compo-
nents in detail. Two components representing a metadata
extractor: heterogeneous data integration (through XSDS
specifications) and an homogeneous intermediate data rep-
resentation for the extracted metadata (datasets). The
Ontology builder who builds an ontology from metadata
stored in a set of datasets (construction rules are specified
in a new domain specific language: XS4TM). The Ontol-
ogy builder stores the result in XTM files or in relational
databases according to the Topic Map structure. Finally,
Ulisses, the navigational component, generates web inter-
faces through which is possible to move inside the topic
map and among information resources.

Keywords: Semantic Web, Ontology, Topic Maps,
Ontology Extraction, Conceptual Navigation.

I. Introduction

Typically, on a daily basis a lot of data is produced in
an institution or in a company. To satisfy the storage
requirements, these organizations use most of the times
relational databases, which are quite efficient to save and
to manipulate structured data.

On the other side, The Topic Maps paradigm –
ISO/IEC 13250 – is an attractive choice to represent com-
plex structures of knowledge. Topics and associations
compose a structured semantic network over information
resources. This hierarchical topic network is known as
ontology.

Topic Maps are being nowadays increasingly accepted
as an excellent option when it is necessary to organize
information according to different points of view simulta-
neously. Topic Maps are designed to manage the infoglut,

building valuable information networks from an overabun-
dance of information; the approach enables the structur-
ing of unstructured information resources of any kind. A
topic map can be seen as a collection of interconnected
electronic indexes.

According to [8], Topic Maps is more high-level than
RDF (Resource Description Framework) [4]. In RDF re-
sources have properties that have values (which may be
other resources). In topic maps, topics have characteris-
tics of various kinds: names, occurrences and roles played
in associations with other topics. The essential semantic
distinction between these different kinds of characteristic
is absent in RDF. This difference in level of semantics also
accounts for the fact that a useful generic browser – like
Ulisses – can be built for topic maps, but not for RDF.

An ontology extractor supported by Topic Maps was
presented in [5]. This environment processes a set of XML
documents – belonging to the same family (DTD or XML-
Schema) – with a processor (TM-Builder) created from
an ontology specification in XSTM (XML Specification
for Topic Maps). This TM-Builder process generates an
XML Topic Map (XTM). So, this platform is fundamen-
tally XML based.

So, when the information resource is not a XML doc-
ument, a conversion of this source to an XML file was
necessary. This task is not the best way to do the extrac-
tion because the data synchronization is complex; when
the resource is modified, it was necessary to regenerate
the XML file with the new content.

A Topic Map Builder (named Oveia) was developed to
avoid the database dump and data synchronism between
the database and the dumped XML file. Oveia extracts
the data directly from information resources. In this way,
the generated topic map is stored in a database struc-
tured accordingly [2], in addition to allow the storage in
an XTM file. This target database is called OntologyDB
and its design follows the standard Topic Maps concepts
and some rules published in [10] to do the conversion be-
tween XML models and relational databases.

The extracted ontology is specified in XS4TM (XML
Specification for Topic Maps). This language has the
same objective that XSTM but it has several upgrades.
XS4TM covers all XTM elements, and it follows closely
the concepts present at XTM. XS4TM is designed for on-
tology extraction in heterogeneous information resources.

In section II there is an overview about Semantic Web
and Topic Maps. It briefly introduces the subject and it
shows some of its characteristics. The proposed architec-
ture and its main characteristics are presented in section
III. The section IV presents the conceptual navigator,
called Ulisses. The Oveia application to a concrete case
study is discussed in section V. The comparison with re-
lated work is found in section VI. A synthesis of the paper
and hints for future work are presented in the section VII.

II. Topic Maps

Everyday thousands of new information resources are
linked to the web. This way the web is growing very
fast, making search tasks more and more difficult. To
solve the problem several initiatives were undertaken and
a new area of research and development emerged: the one
called Semantic Web.

When the authors refer to the Semantic Web they are
thinking about a network of concepts. Each concept has
a group of related resources and can be related to other
concepts, though it can use this concept network to nav-
igate among web resources or simply among information
resources. From the undertaken initiatives one became an
ISO standard: Topic Map ISO 13250 [2].

Topic Maps is a formalism to represent knowledge
about the structure of a set of information resources and
to organize it in topics.

A topic, in its most generic sense, can be anything. A
person, an entity, a concept, really anything regardless of
whether it exists or has any other specific characteristics.
It constitutes the basis for the topic maps creation.

A topic can have one or more occurrences. An occur-
rence represents the information that is specified as rele-
vant to a given topic. One or more addressable informa-
tion resources of a given topic, constitutes the occurrence.

Occurrences and topics exist on two different layers (do-
mains), but they are connected. Occurrences establish the
routes from the topics to the information resources, pro-
viding the reason why that route exists from a topic to
an information object.

These topics also have associations that represent and
define relationships between them. As described in
ISO/IEC 13250 [2], a topic association specifies a relation-
ship among specific topics (e.g. that Professor is supervi-
sor of Student or Student studies at University). A topic
association is a link between topics, each of which plays

a role as a member of that association. This is impor-
tant because a relationship that holds between topics is
probably interesting even without the given context that
the topic and its associations were created for (e.g. City
is located in Country, that a city is located in a country
relation is valid in most contexts).

Information about the topics can be inferred by examin-
ing the associations and occurrences linked to the topic.
A collection of these topics and associations is called a
topic map.

Topic Maps can be seen as a description of what there
is about a certain domain, by formally declaring topics,
and by linking the relevant parts of the information set
to the appropriate topics [7].

A topic map expresses someone’s opinion about what
the topics are, and which parts of the information set
are relevant to which topics. Charles Goldfarb [3] usu-
ally compares Topic Maps to a GPS (Global Position-
ing System) applied to the information universe. Talking
about Topic Maps is talking about knowledge structures.
Topic Maps are the basis for knowledge representation
and knowledge management.

Enabling to create a virtual map of information, the
information resources are kept in their original form and
so they are not changed. Then, the same information
resource can be used in different ways, for different topic
maps. As it is possible and easy to change the map itself,
information reuse is achieved.

Topic Map architecture was also designed to al-
low merging between topic maps without requiring the
merged topic maps to be copied or modified, enabling an
incremental growth.

XML Topic Maps (XTM) 1.0 specification [9] was de-
veloped by topicmaps.org which is an independent consor-
tium of parties developing the applicability of the topic
map paradigm (ISO/IEC 13250:2000) to the World Wide
Web by leveraging the XML family of specifications.

III. Oveia

The ontology extractor – Oveia – is based on ISO/IEC
13250 Topic Maps [2], like the TM-Builder [5]. The Oveia
extracts information fragments from heterogeneous infor-
mation resources according to an ontology specified in
XS4TM (XML Specification for Topic Maps) language.
Such as TM-Builder, Oveia has a language to specify
the extraction. This new language, called XS4TM, was
designed to cover all the concepts in the Topic Maps
paradigm. This topic map extractor is an upgrade of the
TM-Builder introduced in the previous section.

This extractor interacts with a information system that
holds the set of information about a particular world, like
an university, an academic department, a workshop, or a
library.

In this new generation of the TM-Builder, the system
core is a processor that extracts the topics and associa-
tions from information resources and builds a topic map.
As illustrated in figure 1, the processor takes as input
two specifications defined by the user: the description
in XS4TM and the XSDS (XML Specification for Data-
sources).

The extractor stores the generated topic map in an
XTM file or in a relational database (OntologyDB) that
contains just the pieces of information in agreement with
the XS4TM specification. The OntologyDB ’s structure is
presented in section III.A.7).

Initially, the Oveia was developed to extract topic maps
from relational databases. But the present version is
based on a more general model that allows the extraction
from several data sources, supported by the concept of ex-
traction drivers. An extraction driver should be defined
for each different data source (database, XML document,
CSV file, HTML page, etc). To make this possible it was
created an intermediary representation for data sources
that was named datasets. An extraction driver is a bridge
from the data sources to this intermediate representation.

A new XML language, named XSDS, was added to the
architecture to specify the extraction process. XSDS spec-
ification defines transformations and filters over the infor-
mation resources. This can be done because it uses the
query language appropriate for each resource to select the
desired entities.

A. Architecture

The extraction process in the Oveia architecture starts
with the physical information resources, and an XSDS
specification that defines which data will be retrieved
by the Dataset Extractor ; this extractor generates the
datasets in agreement with XSDS specification. The
XS4TM processor takes the generated datasets and an
ontology specification in XS4TM language and generates
a topic map.

The Oveia architecture is shown in figure 1 and it
is composed mainly by seven components: the dataset
extractor receives an XSDS specification describing the
metadata in the information resources that will be useful
in the ontology construction; so, this extractor generates
the intermediate representation (called datasets). These
datasets contain the metadata (in a homogeneous way)
extracted from information resources. The XS4TM pro-
cessor takes these datasets and an XS4TM specification;
this specification defines which metadata are topics, which
are their occurrences, and what describes the association
between them. Finally, the XS4TM processor generates a
topic map that can be stored in an OntologyDB (section
III.A.7)) or in an XTM file.

The following subsections describe this architecture in
detail.

1) Information Resources: This component is com-
posed by data resources: databases, XML documents,
web pages, etc, that are kept unchanged, this is, Oveia
does not modify these sources, it just copies the relevant
information components to build the topic map.

These data sources are mapped to an intermediate (uni-
versal) representation, called dataset. This mapping is de-
scribed in a XSDS specification. There is a specific driver
to extract data for each kind of information resource. This
driver (section III.A.4)) will interprete the XSDS specifi-
cation and will retrieve the desired fields/elements build-
ing the intended representation.

2) XSDS Specification: A XSDS specification is an
XML document that gives precise information about each
information resource that should be scanned to extract
topics and associations. In a formal way, the Context
Free Grammar (CFG) shown below defines the abstract
language XSDS:

resources = datasources datasets
datasources = datasource+
datasource = @extractorDriver @name parameter+
parameter = @name
datasets = dataset+
dataset = @name @database

extractorDriver = br.uneb.dcet.tmbuilder.drivers.DataBase
| br.uneb.dcet.tmbuilder.drivers.XMLFile

A XSDS specification is separated in two parts: data-
sources and datasets.

The first one defines the path to the physical resources.
Each resource is defined in a datasource element. This
element has an attribute called extractorDriver that in-
dicates which extractor driver will be used by Dataset
Extractor. If the extraction is from a database, it is nec-
essary to define several parameters, like database’s user
and password, the URL connection and the JDBC driver.
If the resource is an XML file, the only needed parameter
is the path to this document in the file system tree. So,
each driver has its own attributes.

The second part of this specification is composed by the
datasets. A dataset declares which data (record fields, or
DTD elements) are to be extracted from each datasource.
It is possible to declare several datasets for one single
datasource. The extraction data is expressed in the query
language adequate to the type of source in use: SQL will
be used to extract information from a relational database
while XPath will be used for the extraction of XML ele-
ments and attributes.

3) Datasets: Intermediate Representation: The
datasets compose the intermediate representation that
contains the extracted data from the information re-
sources. Each dataset has a relation to an entity in these
resources and it is represented through a table, where
each line is a record following the structure specified

INFORMATION
RESOURCES

RELATIONAL

DATABASES

XML, TXT, CSV, HTML, ...

INTERMEDIATE
REPRESENTATION

DATASET

DATASET

DATASETD
A

TA
S

E
T

 E
X

T
R

A
C

T
O

R

X
S

4T
M

 P
R

O
C

E
S

S
O

R

DECLARAÇÃO DE TIPOS DE TÓPICOS

DECLARAÇÃO DE INTÂNCIAS

XSDS.XML

DATASOURCES SPECIFICATION

DATASETS SPECIFICATION

ONTOLOGY SPECIFICATION

INSTANCES SPECIFICATION

DECLARAÇÃO DE TIPOS DE TÓPICOS

DECLARAÇÃO DE INTÂNCIAS

XS4TM.XML

ONTOLOGY SPECIFICATION

INSTANCES SPECIFICATION

APPLICATION LEVEL

USER LEVEL

Group

Professor

Course

Degree
Department

catalog
(instances)

ontology

INFORMATICS

...

...

...
...

...

...

...

...

...

...

...

...

......
...

... ...

AI

OS

PhD

Msc

teaches /
is taught by

has title /is title of

work at /

employs

is member o
f /

has member

ONTOLOGY DB

TM

XTM

ONTOLOGY GENERATED

OUTPUT

Fig. 1: Oveia Architecture.

in XSDS. The datasets representation guarantees that
Oveia sees an uniform data structure that represents all
the participating data resources.

The dataset declaration is composed by a query to ex-
tract the data from information resources. Each dataset
has an unique identifier. This identifier will be used
throughout the architecture to reference a particular
dataset.

The fundamental idea is that all objects have labels
that describe their meaning. For instance, the following
object represents a member’s category: <1, PhD>, where
the string ”1” is a identifier of this category, and ”PhD”
is a human-readable label. The datasets are very sim-
ple, while providing the expressive power and flexibility
needed for integrating information from disparate sources.

4) Dataset Extractor: The Dataset Extractor is a pro-
cessor that extracts data from information resources and
creates the datasets, in agreement with an XSDS spec-
ification. This component processes an XSDS specifica-
tion, which specifies both the information resources (data-
sources) and the respective piece of information that will
be extracted, and it generates an intermediate represen-
tation (datasets).

This intermediate representation is composed by a set
of tables that contains the information extracted from the
datasources. These tables have only the data selected in
datasets elements of the XSDS specification.

The Dataset Extractor has several extraction drivers
that, as told above, are the module (program) responsi-
ble for the information extraction from the datasources.
There is an extraction driver for each kind of datasource.

Two extractor drivers were developed: to connect with
databases (br.uneb.dcet.tmbuilder.drivers.DataBase);
and to deal with XML documents
(br.uneb.dcet.tmbuilder.drivers.XMLFile). The imple-

mentation of new extraction drivers for other information
resources will happen in a demand driven way.

5) XS4TM Specification: XML Specification for Topic
Maps (XS4TM) is a domain specific language conceived
to allow XML designers to specify the process of ontology
extraction from information resources; in our case, from
an intermediate representation called dataset.

XSTM and XS4TM have the same aim (to specify topic
maps extraction), but they have some differences. The
main difference between them is the grammar: XSTM
has a particular grammar defined by the authors, while
XS4TM has a grammar based in XTM DTD.

A specification in XS4TM is composed by two parts:

Ontology: the definition of the ontology requires in
XS4TM the same effort as in XTM; it is necessary
to specify every single topic type, association type,
occurrence role type, ...;

Instances: the instances definition describes each topic
and association that will be extracted from the infor-
mation resource.

The XS4TM’s Context Free Grammar is based in XTM
1.0 DTD1. The ontology and instances elements have the
same syntax that the topicMap element in XTM model.

The XS4TM language is intended to make the specifi-
cation of Topic Maps extraction more flexible. However,
the use of XS4TM is not much more difficult because this
language is an extension of the XTM standard; this is,
the DTD that defines XS4TM includes and augments the
XTM DTD. In XS4TM, the ontology is specified like in
XTM: with the same elements and attributes. So, if the

1http://www.topicmaps.org/xtm/1.0/#dtd

designer knows XTM syntax, he does not need to learn
another syntax to specify ontology in XS4TM.

The XTM and XS4TM syntaxes have a singular dif-
ference. The topic and association elements, children of
instances element, have the dataset attribute instead of
id attribute. This new attribute references the dataset
(specified in XSDS) that contains the information neces-
sary to construct the topics and associations. This differ-
ence should be highlighted because in XTM each single
topic is specified with a topic element; in XS4TM the au-
thors are referencing a dataset inside each topic element,
this will have the effect of creating a topic for each data
item in the dataset.

6) XS4TM processor: This component uses the
XS4TM specification and retrieves the information it
needs to build the ontology from the datasets. It is an
interpreter that takes advantage of the information orga-
nization in datasets (an internal universal representation
for data elements) and generates all the associations
between the relevant topics according to XS4TM.

The XS4TM processor is one of the most important
components of Oveia. Its behavior can be described in
three steps: reads the the XS4TM specification and ex-
tracts from the datasets the topics and associations found;
creates the topic map; finally, stores this generated topic
map into an OntologyDB or an XTM file.

7) Oveia Output: Ontology Database or XTM file: As
previously told, the user can choose the output format
that best fits his application: a single XTM file or a rela-
tional database.

XTM files can grow exponentially. Huge XTM files
are space and time consuming making their processing
a hard task, specially from the web server side; and the
performance tends to be worse as the interaction activity
grows. So, in real cases it is crucial to find other ways to
store very big ontologies. Therefore, it was decided to use
also database technology.

The Topic Maps model is not hierarchic and it maps
quite well into the relational model. This way it was de-
cided to create a relational model for Topic Maps, named
OntologyDB, following the structure mapping adopted in
[10]. This model is easy to understand and implement,
systematically and cleanly. The generated topic map is
then stored in a relational database according to this
model.

OntologyDB represents the target topic map, contain-
ing the topics and association inferred from the informa-
tion resources, automatically generated by Oveia; appro-
priate SQL-based tools are available to navigate over it.

In a pratical way, there is a processor that stores an
XTM document into an OntologyDB. This processor also
allow the conversion in the opposite direction: extract
XTM documents from an OntologyDB.

IV. Ulisses - the navigational component

At this point this paper says that ontologies specified
with Topic Maps are a set of records, each record rep-
resents a concept, it points to some resources (physical
information records) and participates in several relations
(associations). So, using these relations between concepts
to query and navigate among information concepts (first)
and then through information resources (secondly) seems
the right way to do it.

The main idea about navigation can be described as:
when the navigator is positioned at a certain concept it
offers the user a particular view of the topic map from
that concept, the resources it points to, and all the con-
cepts related to it; if the user chooses one of the related
concepts the position changes to that concept and the
view will change accordingly; if the user chooses one of
the resources the system will show that resource view.

In order to use web browsers as Topic Map navigators
all the views discussed above are HTML pages automati-
cally generated from the Topic Map source.

A new version of Ulisses is under development, actually
adapted to each one of the possible output formats. Like
Omnigator2, it enables the navigation over an information
system using concepts and relations; however, different
drivers are provided to deal with XTM documents or an
OntologyDB.

In this perspective Ulisses can be seen as a website
generator. It was conceived to be a simple way of creating
full sites, with design, content and topical links.

Ulisses was created as a direct consequence of creat-
ing a similar framework in XSLT for the XTM paradigm.
When this language was developed, and as the need for a
good prototyping-tool emerged at his work, the time was
right to look for a way of making all these come together.
Ulisses was created out of three reasons:

• Be an effective prototyping tool in his domain, and
lowering the time from prototype to production.

• To create a tool that uses Topic Maps, and that is
easily distributed, installed and used by all.

• To bridge the technical languages and methods of
technicians, programmers, designers and information
architects.

Ulisses offers a framework for making rapid changes to
a whole site, be it page setup, content, topics, relations
or added/deleted pages. Since Ulisses is parsed through
a standards-compliant XSLT parser, the result, through
careful auditing of all accompanying HTML, is produc-
tion ready. This simply means that you can quickly cre-
ate prototypes, and simply expand them using the same

2http://www.ontopia.net/omnigator/models/index.jsp

tool to go into a production environment. This radically
decreases development cost and time.

Topic Maps is used in Ulisses for all structures, re-
lations, content preparation, resources and occurrences,
naming and ontological expression. This means that any
other topic maps able tool out there can grab the topic
map file from Ulisses and view its full metadata map [1].

V. Case study

To illustrate all the ideas so far introduced and to de-
scribe the TM building process, this section presents a
case-study where the main subject is an academic depart-
ment. The department is composed by research groups,
courses, projects, members, categories, courses, etc.

This case study starts with a MySQL database which
contains all the information about the department. So,
it is necessary to declare this information resource in an
XSDS specification. In XSDS language, the datasource
element declares the parameters needed to make the con-
nection to the database, and the extractorDriver attribute
points to the extractor driver that shall be used in this
case. The XSDS specification below defines the depart-
ment’s database as a datasource called DB DI and the
chosen extraction driver to connect with this database.

<resources>
<datasources>
<datasource name="DB_DI"
extratorDriver="br.uneb.dcet.tmbuilder.drivers.DataBase">
<parameter name="connectionURL">

jdbc:mysql://localhost/department
</parameter>
<parameter name="user">root</parameter>
<parameter name="password"/>
<parameter name="jdbcDriver">

org.gjt.mm.mysql.Driver
</parameter>

</datasource>
<datasource> ... </datasource>
...

</datasources>
<datasets>
<dataset name="DI-Members" database="DB_DI">

SELECT CodMember,Name,URL,Category FROM Members_table
</dataset>
<dataset name="DI-Categories" database="DB_DI">

SELECT CodCat, Description FROM Categories_table
</dataset>
<dataset> ... </dataset>
...

</datasets>
</resources>

The dataset DI-Members, also included in the example
above, declares the extraction of the following fields from
the database table Members table: CodMember, Name,
URL, and Category. These fields will be mapped to topics
in XS4TM specification.

XS4TM language is divided in two parts: ontology and
instances. The first one is shown in the code below.

<xs4tm xmlns="http://www.topicmaps.org/xtm/1.0/"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xtm="http://www.topicmaps.org/xtm/1.0/">

<ontology>
<topic id="DI">
<baseName>
<baseNameString>Department of Informatics
</baseNameString>

</baseName>
</topic>
<topic id="Members">
<instanceOf>
<topicRef xlink:href="#DI"/>

</instanceOf>
<baseName>
<baseNameString>Members</baseNameString>

</baseName>
</topic>
...

</ontology>
<instances>...</instances>
</xs4tm>

The Topic Maps abstract concepts (topic types, associ-
ation types, occurrence role, ...) are defined in the ontol-
ogy element. The instances element specifies the topics
and associations that are built with data found in the
datasets.

In the specification below, there is a topic definition.
For each tuple found in DI-Members dataset a new topic
in the resulting TM will be built. All these built topics are
instances of Members topic. The base name is filled with
the Name field from the DI-Members dataset. As well the
resourceRef element (that is instance of Website) is filled
it in with the URL field.

<instances>
<topic dataset="DI-Members">
<instanceOf>
<topicRef xlink:href="#Members"/>

</instanceOf>
<baseName>
<baseNameString>@DI-Members.Name</baseNameString>

</baseName>
<occurrence>
<instanceOf>
<topicRef xlink:href="#Website"/>
</instanceOf>
<resourceRef xlink:href="@DI-Members.URL"/>

</occurrence>
</topic>
<association dataset="DI-Members">
<instanceOf>
<topicRef xlink:href="#Members-Category"/>

</instanceOf>
<member>
<roleSpec>
<topicRef xlink:href="#category-of"/>
</roleSpec>
<topicRef xlink:href="@DI-Categories.CodCat"/>

</member>
<member>
<roleSpec>
<topicRef xlink:href="#member-of"/>
</roleSpec>
<topicRef xlink:href="@DI-Members.Category"/>

</member>
</association>
...

</instances>

The association element defines an association between
members and categories. The XS4TM processor compares
the Category fields from DI-Members dataset with Cod-
Cat fields from DI-Categories; for each combination a new

association will be created. All the built associations will
be instances of Members-Category topic; this association
type should be declared in ontology element, like shown
below.

<ontology>
...
<topic id="Members-Category">
<baseName>
<baseNameString>Members and Category</baseNameString>
</baseName>
<baseName>
<scope>
<topicRef xlink:href="#member-of"/>

</scope>
<baseNameString>is member of</baseNameString>
</baseName>
<baseName>
<scope>
<topicRef xlink:href="#category-of"/>

</scope>
<baseNameString>category of</baseNameString>
</baseName>
</topic>
...

</ontology>

The department’s database has 44 tables representing
members, documents, categories, courses, etc. The XSDS
file describes this database and its datasets have 115 lines.
The XS4TM document for this case has 1562 lines; in this
document there are 109 topics in the ontology specifica-
tion; in the instances specification there are 53 topics and
46 associations definitions.

The final result was a topic map (stored in Ontolo-
gyDB) with 440 topics and 422 associations; the same
topic map could have 17240 lines in the XTM format.
This topic map construction task was concluded in 1:53
minutes. The average time for each element (topic or as-
sociation) was 0,1311 seconds.

The environment which was implemented in this exper-
iment is composed by an Intel PC Pentium II, 600MHz
and 512 MB Ram. All services such as MySQL database
(source), OntologyDB managed by Microsoft SQL Server
2000, and our prototype was carried out at the same ma-
chine.

VI. Related Work

Numerous other projects have the similar goals than
Oveia has. TSIMMIS3 is a project that aims to provide
tools for accessing, in an integrated fashion, multiple in-
formation sources, and to ensure that the information ob-
tained is consistent.

TSIMMIS was developed to extract properties from un-
structured objects allowing the combination between sev-
eral sources and the browsing of information; it gives a
centralized view of the information that is distributed in
the information system. Oveia was developed to allow a
conceptual navigation over the heterogeneous information

3http://www-db.stanford.edu/tsimmis/tsimmis.html

systems. This conceptual navigation is driven by an ontol-
ogy specified from metadata extracted from information
systems.

KAON4 is an open-source ontology management infras-
tructure targeted for business applications. The KAON
REVERSE tool is one of the component of KAON en-
vironment. An important focus of KAON is on inte-
grating traditional technologies for ontology management
with those used in business applications, such as relational
databases. This tool has the same aim as Oveia. The ta-
ble I shows the comparison between the Oveia and the
KAON REVERSE.

Table I
KAON REVERSE x Oveia

KAON Reverse Oveia

Language Java Java

APIs Yes Yes

Reverse Yes No
Engineering

Specification Tree (GUI) XML Document

Ontology Relational DB
Extraction Relational DB via JDBC, XML,
Source via JDBC extensible to

other sources

Ontology RDF Topic Maps
Representation

GUI Yes No

Final Result RDF Document OntologyDB
and XTM file

According to table I, KAON REVERSE has advantages
concerning the use of a graphical interface for the speci-
fication of the ontology. It also allows the use of reverse
engineering of data sources to help creating the mapping.
On the other side, Oveia is more flexible concerning data
source formats and the specification process. To represent
the ontology, KAON REVERSE adopts RDF (XML file);
Oveia generates ontologies and stores them in an ontology
database (OntologyDB) or in an XTM file.

VII. Conclusion

This paper describes the integration of information sys-
tems using the ontology paradigm. The proposal is an ar-
chitecture for the automatic construction of Topic Maps
with data extracted from information systems. This en-
vironment, called Oveia, is an upgrade of TM-Builder [5],
an ontology extractor handling just XML.

The Oveia contributions to the area can be summarized
as follows:

1. XSDS allows the integration of heterogeneous data
sources; this component provides an abstraction of

4http://kaon.semanticweb.org/

information resources based on the concept of extrac-
tion drivers making Oveia independent from source
formats because only the driver knows the source spe-
cific structure;

2. Intermediate Representation as Datasets is a pro-
posal for a normalized way of representing different
and heterogeneous data structures;

3. XS4TM supports ontology extraction process; This is
one of the most important contributions to the area,
since it optimizes specification and reduces time to
setup topic maps based applications;

4. Ulisses supports conceptual navigation over XTM
files and OntologyDB databases; all the features in
this navigator are being formally specified; from this
specification it will be possible to derive a generic
navigator generator.

Currently Oveia is being used in several scenarios:

E-Learning In this context, Oveia is being use to inte-
grate the output of some content provider applica-
tions [6];

General websites Personal webpages, departmental
websites, ...

Systems Integration To generate an homogeneous
view of heterogeneous information systems.

A. Future Work

Merging is the process of joining two topic maps or
joining two topics. It is a built-in feature of the Topic
Maps standard because the merging of indices was one of
the requirements underlying the development of the Topic
Map paradigm. The process of merging two topic maps is
not implemented in this version of Oveia. The next step
will be its implementation.

In addition, there is a plan to build a constraint lan-
guage that will allow constraint specifications over the
information systems and the ontology represented in a
topic map.

Talking about Ulisses, another family of navigators is
under development: graphical SVG5 and X3D6 naviga-
tors.

The Oveia does not have a friendly interface to create
XS4TM specifications. The development of a XS4TM or
a XSDS specification still is a hard task. To facilitate this
task, a friendly user-interface is also under development.

A module that extracts relationships from the
databases metadata will be built. This module will sup-
port the reverse engineering of a database (like in KAON).

5Scalable Vector Graphics – http://www.w3.org/TR/SVG/
6Web 3D Consortium – http://www.web3d.org/

So, it will be possible to generate the XSDS specification
automatically.

VIII. References

[1] K. Ahmed and D. Ayers and M. Birbeck and
J. Cousins and D. Dodds and J. Lubell and M. Nic
and D. Rivers-Moore and A. Watt and R. Worden and
A. Wrightson. Professional XML Meta Data. Wrox
Programmer to Programmer Series, 2001.

[2] M. Biezunsky and M. Bryan and
S. Newcomb. ISO/IEC 13250 – Topic
Maps. In ISO/IEC JTC 1/SC34,
http://www.y12.doe.gov/sgml/sc34/document/0129.pdf,
December, 1999.

[3] C. Goldfarb and P. Prescod. XML Handbook. Prentice
Hall, 2001.

[4] O. Lassila and R. Swick. Resource Descrip-
tion Framework (RDF) Model and Syntax Spec-
ification. In World Wide Web Consortium,
http://www.w3.org/TR/REC-rdf-syntax, February,
1999.

[5] G. Librelotto and J. Ramalho and P. Henriques. TM-
Builder: Um Construtor de Ontologias baseado em
Topic Maps. In Procs. XXIX Conferencia Latinoamer-
icana de Informática, La Paz, Boĺıvia, 2003.

[6] G. Librelotto and J. Ramalho and P. Henriques.
ADRIAN – a platform for e-learning content produc-
tion. In Procs. Second International Conference on
Multimedia and Information & Communication Tech-
nologies in Education, Badajoz, Spain, 2003.

[7] J. Park and S. Hunting and D. Engelbart. XML Topic
Maps: Creating and Using Topic Maps for the Web.
Prentice Hall, 2003.

[8] S. Pepper. Ten Thesis on Topic
Maps and RDF. In Ontopia,
http://www.ontopia.net/topicmaps/materials/rdf.html,
August, 2002.

[9] S. Pepper and G. Moore. XML Topic Maps
(XTM) 1.0. In TopicMaps.Org Specification,
http://www.topicmaps.org/xtm/1.0/, August, 2001.

[10] K. Williams and M. Brundage and P. Dengler
and J. Gabriel and A. Hoskinson and M. Kay and
T. Maxwell and M. Ochoa and J. PaPa and M. Van-
mane. Professional XML Databases. Wrox Program-
mer to Programmer Series, 2000.

