
1

����������	
���	������	�������	�����������	���
	�����
���	
���
�
��
����

Marta H. Jacinto1, Giovani R. Librelotto2, José C. Ramalho, Pedro R. Henriques
�����������	
��
��	�������
�
������������
�	
����	

������
��
�������
�
������ �
�
!��"�
�
#	���"��

�����$%�����	&���%$�%$��'
("��'%��'���)&��$�����	$��

1 Currently working for ITIJ — the Computer Department of the Ministry of Justice
2 Sponsored by CNPq grants 200339/01-0 - Brazil

�����
���

*�����	���
 ����+����
 ����
 +���
 ����
 ��
 ����	��
 �	

���
 ��	�����	�
 ��	��"�
 �����
 �
 �	�"
 ����
 �"	$

�����������
 ���
 ���
 �������
 "�	,��"
 	
 ��	�����	�

�-�����
����-
���
�����
	
�.�����"
����+����
+��'
���-

�����'
��	�����	�
��
�	�
��	���
	�
���
�	��
�	��������

���������
 	�
 ��
 ���
 �������
 ����	��/
 ����
 ��
 +��	���

��������-
 �	
 �.�	��
 ��
 ���	
 ��	����
 �-����
 	�
 �	

�����	��
���
���������$
0����
 ���1�
��	���
+�
�.������

��
 �
 ���
 ���
 ���
 ,�-'
 ���
 ��
 ����
 ���	����2��
 ��

�	���+��$

��
 ���
 ����
 -����'
3�4
,��
��������
��
 ���
�������

	����
 	�
 ��	�����	�
 ������������	�$
 0���
 ��
 ���'

�����-'
 �	
 �,	
 ���	��$
5�
 	��
 ����'
3�4
�	�������

���
 �����-
 ��.����
 ����'
 ����������
 ���
 �����������
 	

��-
 ����,���
 	�
 �	�,���
 ����	���$
 5�
 ���
 	����

����'
 �	��
 ���
 �	��
 ��+���
 �	����
 �		��
 ���

������+��'
�	
����
�����
�����	����"
3�4
�	�������$

0��
�����
 	���
	�
 ���
���
3�4
��
��
 ���������"�

	����
 +��,���
 ����+���
 ����"�����
 �-�����
 ���

��������
 ��
 3�4
 ���"��"�'
 �!�4'
 ����
 ���	,�
 ���

�������	�
 	
 ���
 ���������
 ���
 ���
 �	�����
 	
 �

������	���
����+���$
��
���	
����	�����
�
����	�	�	"-
�	

�	�����
 �
 ����+���
 ���	
 �
 �!�4
 �	������
 ���
 �,	

�		��
 ����
 ���	,
 �����	����"
 �!�4
 �	�������'
 ���	

674
���
+��1$

�!�4
 ���
 ���
 �,	
 �	������	�
 �����	��

8�+�9�:�+��
 ���
 �+��:�+�9�;
 ��	�����
 ���
 +����
 �	

����	��
 ���
 ����
 	
 ����"���"
 �
 ���"��"�
 �	
 �����-

����+���
 �����	�����	��
 ���
 �����	���"
 �
 "������	�

�	
 ���	��������-
 ��	����
 ���
 �����������
 ��	����	��/

,�
�����
���
�����
,���
���
��	�	���
	
����
�
�-����$

����	���������	�

The work reported in this paper started some time ago
in the context of a national research project called
���������. This project aims at the definition of a
schema to describe a multimedia archive, handling data
in different formats like: text, image, sound, and video.
While one of the partners conceived and defined the
model in UML and used a relational database to
implement the information repository, our participation

was guided by the XML approach and the link between
both.
In the sequence of this project, we pursued the
investigation in this promising area. The idea of using
the XML technology came out from the need to
establish a dialogue between some applications
supporting similar information in different formats. As it
will be seen, XML supplies a neutral platform for the
information description. As the information was stored
in relational databases, we have decided to start creating
tools to export the information from a database into
XML, and to import XML documents into any
relational database management system. These two tools
enabled us to transform data from one database into
another using XML as the intermediate representation.
This methodology is not specific of the metamedia
application that was in its origin. In fact, it is generic
and may be applied to other situations where the
interchange of information between different
applications is needed.
The article starts with a contextualization about XML
and its importance in the information world (section 2).
In section 3, we will address the problem of the
relationship between XML and relational databases
(RDBs). The discussion will focus the concepts of
structured and half-structured information. In the
following section (section 4, the core of the paper), the
DBML language is introduced, as well as the
transformations of a DB into an XML document
(�+�9�:�+��: SQL => DBML phase) and the reverse
process that rebuilds the DB from an XML description
(�+��:�+�9�: DBML => SQL phase). The article
finishes with a section that briefly synthesizes the
presented work, enhancing the results achieved, and
describes the goals for future work; in this concluding
section we propose a generation system to automatize
the transference of data between databases that can be
applied to update legacy systems.

����	������

This section describes the XML standard approach to
documents’ markup (method and metalanguage). It

2

gives a perspective of its usefulness in the integration
with other traditional applications.

���������

XML, Extensible Markup Language, is a subset of

the Standard Generalized Markup Language (SGML)
defined in the ISO standard 8879:1986. XML was
designed to make it easy to interchange structured
documents over the Internet. XML files always clearly
mark the start and the end of each of the logical parts
(called elements) of an interchanged document. It also
defines how Internet Uniform Resource Locators can be
used to identify component parts of XML data streams.

 Defining the role of each valid element of a text
using a formal model, known as Document Type
Definition (DTD), XML users can check that each
component of a concrete document occurs in a valid
place within the interchanged data stream.

An XML DTD allows computers to check, for
example, that users do not accidentally enter a third-
level heading without having entered first a second-level
heading, something that can not be checked using the
HyperText Markup Language (HTML).

However, unlike SGML, XML does not require the
presence of a DTD. If no DTD is available, either
because all or part of it is not accessible over the
Internet or because the user failed to create it, an XML
system can assign a default definition for undeclared
components.

XML allows users to provide processing control
information to support programs, such as document
validators and browsers; bring multiple files together to
form compound documents; identify the places where
illustrations are to be incorporated into text files, and
the format used to encode each illustration.

It is important to note, however, that XML is not a
predefined set of tags (similar to those defined in
HTML) to markup all the existing documents. XML
was not designed to be a standard way of coding text: in
fact it is impossible to devise a single coding scheme
that would be suitable for all applications.

Instead, XML is a formal language that can be used
to pass information about the component parts of a
document; that is, XML is a metalanguage to define
special purpose markup systems. XML is flexible
enough to allow the description of any logical text
structure (a form, letter, report, book, dictionary or
database, etc.).

��������: ������		��������	 ��	������	!���
���	�
������"#
�

Nowadays, in the area of information systems,
almost all phases of an application’s life cycle are
automatized. At this point, a problem emerged from the
great variety of support applications, each one having its
format, usually proprietary.

Let us take, for instance, a functional architecture
consisting of a case tool like *���	���
 *	�� (to draw
UML diagrams), a development tool like <�����
="�
	�

>���, a database management system like 674�
6�����:���, documentation generated in PDF, and a
repository of software components written in C.

If we want all the applications to dialogue with each
other, we will have to develop �?��� converters, where
� is the number of different applications. On the other
hand, if we have a neutral intermediate representation,
we only need �?: converters.

This fact is not new and motivated the creation of a
specific group inside the OMG (Object Management
Group) to study the problem [7]. As a result of this
effort, a standard called XMI (XML Metadata
Interchange) was proposed [3]. XMI is not more than an
XML language.

After studying that proposal, we verified that it was
very complex and it was still in an embryonic state for it
only establishes a meta-information skeleton that shall
involve the information to be interchanged. In what
concerns the information itself, nothing is implied, the
user is supposed to do what he/she wants.

This lack of a simple and clean way to describe a
DB structure in XML and to translate automatically a
DB into an XML document in both directions,
motivated the work described in this article.

$������
	������%���
������������
���	#
�

As it will be shown, concerning information
representation, XML is more embracing than a RDB.
This means that it is always possible to represent the
information contained in a RDB in an XML document,
but the reverse is not always true.

To justify this point of view we will discuss and
compare two important concepts: ����������

��	�����	� and ��������������
��	�����	�.

$����&�����������	!���
���	�
�
RDBs can be pointed as the best example of structured
information. In a RDB, the information is structured in
tables which are, by its turn, organized in lines (records)
and columns (record fields or attributes).

This rigid structure provides some advantages such
as: the access is easy and fast; the information can be
validated and reused for different kinds of results.

Nevertheless, this organization has some drawbacks.
For the present work, the most important one is the lack
of order in the record fields; in the description of the
structure of a RDB, nothing indicates their order. For
the typical database applications, this aspect does not
matter; yet, when we are storing data which obeys to a
linear order, and this order has to be preserved, we face
a problem.

$����'
�!(&�����������	!���
���	�

3

��
Usually, the concept of half-structured information
appears associated to documents. In the context of
descriptive markup, of which XML is a practical
application, a document has a logical structure made
explicit by the inclusion of marks in the text. Although a
document, as a whole, is a structured piece of
information, many of its parts are half-structured, that is,
they are composed by unstructured text and tagged-
elements interleaved in an almost free way.

To clarify these concepts, we present the DTD for a
class of documents known as poem (Example 1).

<!ELEMENT poem (title, author, body, date) >
<!ELEMENT title (#PCDATA)>
<!ELEMENT autor (#PCDATA)>
<!ELEMENT body (quatrain|tercet)+>
<!ELEMENT quatrain (verse, verse, verse,
verse)>
<!ELEMENT tercet (verse, verse, verse)>
<!ELEMENT verse (#PCDATA|name)*>
<!ELEMENT name (#PCDATA)>
<!ELEMENT date (#PCDATA)>

)*
������%��+��!���
�������������

This specification describes the structure that the

documents of type poem must follow: the poem has a
title, followed by the author, the body and, finally, the
date; the title, the author and the date are free text
components; the body is, by its turn, a structured part
composed by one or more 9�������� or �������, that are
made up of verses.

Apparently we are before a rigid structure. But this
is false: there is an element which definition allows a
mixed-content; a ����� is made up of free text in the
middle of which ���� elements may occur, in any
number and position.

These mixed-content elements and the free text
elements allow us to state that an XML document is a
half-structured information container.

At this point we may conclude that there are two
impediments to the transposition of the information
from any XML document into a RDB. The first one is
the existence of elements with a mixed-content. The
other one has to do with the nature of text. A text has a
linear order which we need to keep; changing this order
will either change or destroy its meaning.

The RDBs do not have efficient mechanisms to deal
with linear order nor with half-structured data. On the
other hand, the XML coexists with structured
information, half-structured information, and even linear
orders. We are, therefore, before a strong candidate for
the constitution of an information interchange platform.

Another factor that supports the use of XML as an
interchange platform is the huge amount of available
tools to validate and process XML documents; also the
fact that new tools can be easily developed.

,���	�����	-�����������	���!����
	��
�	��������

The conversion problem shall be divided in two
parts: the conversion of a RDB into XML; and the
conversion of a specific XML (�!�4
 �
 ����
 !���

���1��
4��"��"�) into a RDB.

The second can be solved generically. The XML is a
neutral format and provided the DBML document
contains all the information needed, it is possible to
generate the SQL text that replicates the original RDB
in any Database Management System (DBMS) that
accepts SQL.

To solve the first sub-problem there are two basic
approaches, besides, it can only be generalized in
methodological terms. Once DBMSs use different
internal representations, it is necessary to create a
specific �	������ for each one of the internal
representations. In the work here reported, we
developed a �	������ for the SQL-Server2000, but
plan, in short term, to define �	������� for Access,
Oracle, MySQL and PostGres.

As discussed in [10], we have two basic choices to
represent a RDB in XML: the first one (adopted in this
project) consists in the definition of a generic DTD that
contains the appropriate elements to describe the data
and also the DB structure (that is, the tables and the
columns – names and properties); on the opposite side,
the second approach consists in the definition of a
specific DTD for each DB – that DTD will contain the
necessary elements to represent the data already with
the specific table and column names and the DTD itself
describes the DB structure (there are elements which
names describe the tables and columns for that specific
DB).

In the first case, the conversion process is more
complex and heavier because the XML document that
will be produced is longer (before representing the
values stored in the record fields of the DB tables, the
description of the DB itself must be generated).
However, the DTD is always the same (defined just
once) and all the tools can be re-used. In the second
alternative, the conversion is more efficient (we just
need to translate the data) but a new DTD must be
tailored for each different DB structure.

In the next subsections, we will illustrate the
proposed methodology, with a small example: both the
conversion and the DBML language developed will be
introduced.

,����.����
������	������

Whenever we intend to represent an entity in XML,
we must remember that, we not only want to represent
the information itself but also to describe its properties
(the so-called meta-information). In that case, we want
also to describe the way data is stored in the RDB.

A RDB has two components: structure and
information. Our final XML document will have,
therefore, two parts, one to describe the structure of the
RDB and the other one to store the information of that

4

RDB. Therefore, the XML skeleton of the final
document will be:
�
<?xml version="1.0" encoding="iso-8859-1"?>
<DB name="XXX" date="today">
 <STRUCTURE>
 ...
 </STRUCTURE>
 <DATA>
 ...
 </DATA>
</DB>

)*
������%�����& �����	%�-�	��
������������
�
The conversion of a RDB into XML will, then,

consist of two parts:
� &��������% To fill the first part of the XML

document it will be necessary to access the
structural information of the RDB and to convert
that information into an adequate XML text. Each
Database Management System has a particular way
to keep the structural description of a database.
Thus, it will be necessary to create a converter for
each platform. In the rest of this paper, we assume
SQL-Server2000 as the working platform.

� �
�
% The transference of information from a RDB
to XML may be a more generic process. Every
Database Management System allows to download
the information of a database to a pure text file
using pre-defined field and record separators.
Therefore, the conversion problem to solve is the
one of converting data from those text files to the
second part of the final XML document.

Lee Buck [4] and Ronald Bourret [1] describe two
possible approaches to data codification. However,
there is no information available on the structure
description; even in commercial projects, like CARD,
nothing is said about the philosophy and methodology
adopted. In our case, we decided to develop an XML
markup language (DBML) to describe the structure. We
develop these two topics in the following subsections.�

,������ &��������� �	������	��As told previously, this
conversion consists in processing the text description of
the database structure generated by the RDBMS. These
descriptions have the general form shown bellow.

... CREATE TABLE [dbo].[District] (
 [code] [int] NOT NULL
 [name] [nvarchar] (50) ...
 [country] [int] NOT NULL
) ON [PRIMARY] GO ... ALTER TABLE
[dbo].[Districts] WITH NOCHECK
ADD

CONSTRAINT [PK_Districts] PRIMARY KEY
CLUSTERED

 (
 [code]
) ON [PRIMARY]

GO ...

)*
�����$%��	���	
������������	��!�
����

Christiansen and Torkington [5] developed, in Perl,

a parser which, from a file like the one shown above,
generates the correspondent description in XML.

In Example 4, we describe the translation scheme
adopted by the parser.

+
����% Each table is mapped into an element
named 0=!4@, which has an attribute A=�@.

<TABLE NAME="Districts">
 ...
</TABLE>

)*
�����,%�����& �����	%�+
�����

����	�%� Each column will be mapped to a

�54��A element that also has a A=�@ attribute,
where the column’s name is saved. Other properties like
the data type for the values of that column and the
characteristic of being empty or not, are stored in
attributes 0B#@ and A�44 associated to the �54��A
element.

As a table contains more than one column, it is
necessary to include in the XML document another
element, �54��A6, to aggregate all the �54��A
instances.

<COLUMNS>
 <COLUMN NAME="code" TYPE="int" NULL="no"/>
 ...
</COLUMNS>

)*
�����/%�����& �����	%�����	��

0���
�"�
	�� .����-	� 1�"�% Keys are defined

inside a table definition; so it will be described as a sub-
element of the 0=!4@ element. An aggregate element,
C@B6, has to be introduced to gather the various keys of
a table. The set of C@B6 shall also be divided into
Primary and Foreign Keys; so #C@B and DC@B were
introduced as sub-elements of C@B6.

Moreover, a primary key in the relational model may
be single (just one column) or compound (more than
one column). To distinguish these two cases, an
attribute 0B#@ was associated to #C@B element, as
shown below.

As foreign keys (just of single type) relate one table
with another one, the #C@B element, shall be associated
to the attributes �A (identifier of the destination table)
and *@D (identifier of the linked fields in the
destination table).

...
 <KEYS>
 <PKEY TYPE="simple">
 <FIELD NAME=""/>
 </PKEY>
 <PKEY TYPE="compound">
 <FIELD NAME=""/>
 <FIELD NAME=""/>
 </PKEY>
 <KEY NAME="" REF=""/>
 ...
 </KEYS>

)*
�����2%�����& �����	%�0���
�"�1�"��

To illustrate the translation schema just described

we will use the structure of the classical DB of Products
and Suppliers that contains three tables: two represent

5

the entities Products and Suppliers and the third
implements the AEA relation “suppliers” between them.

The primary key for tables Products and Suppliers is
single and implemented by the field (column) CODE, in
both cases; there are no more keys. Concerning the third
table, p2s, its primary key is composed and the field
elements are �	��� and �	���; it also has two foreign
keys, �	��� and �	��� that establish the links to the
other two tables. The result of the conversion is shown
in the Example 7.

<?xml version="1.0" ?>
 <DB>
 <STRUCTURE>
 <TABLE NAME="products">
 <COLUMNS>
 <COLUMN NAME="code" TYPE="nvarchar"
 SIZE="10" NULL="no"/>
 <COLUMN NAME="description" TYPE="nvarchar"
 SIZE="50" NULL="no"/>
 ...
 </COLUMNS>
 <KEYS>
 <PKEY TYPE="simple">
 <FIELD NAME="code"/>
 </PKEY>
 </KEYS>
 </TABLE>
 <TABLE NAME="p2s">
 <COLUMNS>
 <COLUMN NAME="cod-p" TYPE="nvarchar"
 SIZE="10" NULL="no"/>
 <COLUMN NAME="cod-s" TYPE="nvarchar"
 SIZE="10" NULL="no"/>
 </COLUMNS>
 <KEYS>
 <PKEY TYPE="composite">
 <FIELD NAME="cod-p"/>
 <FIELD NAME="cod-s"/>
 </PKEY>
 <FKEY NAME="cod-p" IN="products"
 REF="code"/>
 <FKEY NAME="cod-s" IN="suppliers"
 REF="code"/>
 </KEYS>
 </TABLE>
 <TABLE NAME="suppliers">
 <COLUMNS>
 <COLUMN NAME="code" TYPE="nvarchar"
 SIZE="10" NULL="no"/>
 <COLUMN NAME="name" TYPE="nvarchar"
 SIZE="60" NULL="no"/>
 ...
 </COLUMNS>
 <KEYS>
 <PKEY TYPE="simple">
 <FIELD NAME="code"/>
 </PKEY>
 </KEYS>
 </TABLE>
 </STRUCTURE>
 <DATA>
 ...
 </DATA>
</DB>

)*
�����3%�+���0��������
	��&������������
&�����������
	��
�����	��������

,������ �
�
� �	������	�� As it was told in the

beginning of this section, the transference of a DB to a
DBML document has two parts: the structure
description that was explained in the previous
specification; and the data description that will be

discussed now. There are two approaches, studied and
published [4, 1]:

4�
�
���������%�Each line of the table is mapped into
one element and the values of its columns (fields) are
mapped into attributes of that element;

4�
������	��%�Each line of the table is mapped into
one element and the values of its columns (fields) are
mapped into child elements, one for each value.

The two proposals might look equivalent [6], and
are in terms of the information representation, but
concerning the processing, the options are quite
different. The processing of an XML documents is
structure-oriented, and the structure is given by the
elements. The attributes play a secondary roll. So, the
second approach seems to be much more effective.
Thus, in this project, the choice was the second one -
<��
��������.

To convert the information from a RDB, into
DBML, the following translation schema is used:

1. For each table, an element with the correspondent
name is created.

2. For each line (record), an element with the table
name and the suffix “-REG” is created.

3. For each column (field) an element with the
column name is created. Its content will be the value of
that field. Empty fields give origin to elements without
content.

The next example (Example 8) illustrates the data
conversion principle, using the same Products.Supliers
database.

...
 <DATA>
 <products>
 <products-REG>
 <code> a122 </code>
 <description> milk </description>
 ...
 </products-REG>
 <products-REG>
 ...
 </products-REG>
 </products>
 ...
 </DATA>
...

)*
�����5%�+���0��������
	��&�������������
�
����
�����

�
,����.��������6����7��	���
�����

Given a DBML document, describing a database
structure and content, the problem of regenerating the
original database is solved by generating a SQL file.

The SQL statements will then be interpreted by a
DBMS and the unique DB will be created.

There are two approaches to XML processing:
0�������
�% using a programming language like

Omnimark, Balise [9] or XML::DT (a Perl module) [8].
����
�
����% using XSLT [2], a declarative

language (defined in XML) and designed for XML
transformations.

6

In the context of this project, we have experimented
both approaches. So we developed a conversor in
XML::DT, as well as another one in XSL.

The second solution has the advantage of being
implemented in a neutral and standard platform (an XSL
stylesheet is an XML document). It can, therefore, be
ported and installed in various operating systems, and
also, it satisfies a great community of XML users with
some background in XSL. It is possible to have a
complete software package to process DBML
developed inside of the same paradigm. Below, we
show part of the XSL stylesheet used.

... <xsl:template match="DATA">
 <!-- For each Table -->
 <xsl:for-each select="child::*">
 <!-- For the first Record -->
 <xsl:for-each select="child::*">
 <xsl:if test="position()=1">
 <!-- For each Field -->
 <xsl:for-each select="child::*">
 <xsl:value-of select="name()"/>
...

)*
�����8%�������	���&9��+�
	��
���	%�0
����!�
�&����"��������

So that conversion, in the inverse direction of the

one discussed above, from DBML into SQL, is just a
traditional-case of XML documents processing: nothing
specially new should be developed.

The final result in SQL looks like the following:

INSERT INTO products (code, description, ...)
 VALUES(’a122’, ’milk’, ...)
INSERT INTO products (code, description, ...)
 VALUES(’a115’, ’milk’, ...)

)*
������:%���������&9��+�
	��
���	%�&9������
;�	��
����

In the same way that we developed a processor and a

stylesheet to transform a DBML document into SQL
code, it is possible to develop processors and stylesheets
for different purposes like the transformation of the
database in another one with a different structure or
filtered content. This project seems to be challenging
and very useful in the information systems area; it will
be presented in section 5 as future work.

/���	������	

The work presented in this paper was developed in

the ��������� context. In that context, some of the
technics and tools developed so far are being applied to
support the information interchange between different
applications.

The concrete results of the work here reported are:
� a descriptive markup language, DBML, to describe

the structure and the content of a database (in the
paper we just presented fragments of DBML
documents, along the discussion of the mapping –
conversion – process, but that language is formally
defined by an appropriate DTD);

� a methodology to export a relational database to a
DBML document;

� a processor that converts a database (exported in
SQL by the SQL-Server 2000) into a DBML
document;

� a processor that converts DBML documents back
into SQL code.

The possibility to transform both the content and
structure of a database, when these are represented in a
DBML document, points out a new research direction:
as future work, we intend to develop a DB transformer
generator, as described in the diagram of Figure 1. We
will define an XML language, XDBTL, to describe the
desired transformation; then we will develop a generator
to compile that description in order to produce an XSL
stylesheet to translate the DBML file (corresponding to
the source DB) into the new DBML file (corresponding
to the target DB).

.�-�����%����+��
	�����+�
	�!������;�	��
����

2����!���	����

[1] R. Bourret. 3�4
 ���
 ����+����.
http://www.rpbourret.com/xml/XMLAndDatabases.htm, Nov.
2000.
[2] N. Bradley. 364
�	�����	�. Addison-Wesley, 1999.
[3] S. Brodsky. 3��
 	����
 ���������	�
 ���������"�. IBM
white papers, 1999.
[4] Lee Buck. “Data models as an XML Schema development
method”, 3�4
FF, Phyladelphia, Dec. 1999.
[5] T. Christiansen and N. Torkington. #���
 �		1+		1.
O’Reilly, 1998.
[6] E. Kimber. ����"���"
�
�0�E
@�������
	�
�����+����G
http://www.oasis-open.org/cover/attrKimber9711.html.
[7] OMG. 3��
 ��	�����	�
 	
 3�4
 6�����. Request for
Proposal, 2000.
[8] J.C. Ramalho and J.J Almeida. “XML::DT - a Perl down-
translation module”, 3�4
@��	��HFF, Granada - Spain, April
1999.
[9] AIS Software. Balise and XML.
http://xml.coverpages.org/baliseWhitePaper.html, 1998.
[10] M.H. Jacinto.I<�����JK	
 6��L�����
 ��
 �	������	�

3�4I, MSc Thesis, Universidade do Minho - Portugal, 2002.
(to be published)

