Rendered by

Constraint Specification Languages:
comparing XCSL, Schematron and
XML -Schemas

Marta Henriques Jacinto <marta.jacinto@itij.mj.pt>
Giovani Rubert Librelotto <grl@di.uminho.pt>
José Carlos Leite Ramalho <jcr@di.uminho.pt>

Pedro Rangel Henriques <prh@di.uminho.pt>

Abstract

After being ableto mark-up text and validate its structure according to agrammar, we may start
thinking it would be natural to be ableto validate some non-structural issuesin XML documents
like rel ationships between elements bel onging to different contexts, invariants over datamodels,
constraints over attribute values and relationships between attributes.

XML Schemas are abig step in that direction. However, they only allow users to specify prim-
itive constraints like data typing and data format.

Currently, we can find two approaches that represent acomplement to DTDs or XML Schemas
- XCSL and Schematron - and allow us to specify constraints and to validate the instances of a
family of documents against that set of rules. Both are implemented on top of XSL. Both use a
kind of an XML envelopeto hide XSL specification. XSLT pattern language isthe corelanguage
of both systems. With al these resemblancesiit is easy to conclude that they are quite similar.
However they differ in some fundamental concepts.

These two constraint specification languages together with XML Schemas were hardly tested
and benchmarked with an huge test suite. The most significant results will be discussed in this

paper.

Wewill try to answer questionslike: Do they do the samejob? Arethere somekind of constraints
that are easier to specify with one of them? Do you need different background to use the tools?
Isit possible to use them in similar situations (the same DTD, the same XML instances)? May
we use them to produce an equal result? How do XCSL and Schematron relate to XML
Schemas? What is the intersection area of these three? What kind of constraints each one of
these threeis able to specify? What kind of constraints each one of these three can not specify?

In this article, we will use that test suite and show, step-by-step, the way we handled several
kinds of constraintsin many different instances.

Table of Contents

.. B
... €]
P.1. XML Constraint Specification Language (XCTSLYc.evvevreereeereeeeeessessesseessessssessessssssesessessessessens €]
B2 SCREMIBIION ...ttt n et en s en et s e eneen s 3]
D3I WBC XML SCHEMES ...t sn st sssessesnsen s snsans 3]
B. Case Study 1: FISCAl CEITITICAIEcveeeeeeeeeeeeseeseeeeeseeeeessessesseenees e sessssss s en s s e sessssssss s s es s es s sn s s sesesnes 3]
B.L. ConsStraining WITN XTSIeuveeeeeeeeeseeeeseessesesesess s sessess s es s s sss s s ess s ses s s s enesnsans i
B-2. Constraining With SCREMEITONcc.veuieeieeceeeeseeseeseeee e seesse s ese s ssesne s s s sse s 3]
(SIS o [T i
H. Case Study 2: 2nd Conference for ADIVOICEccueeevieerereeeeeeteteee ettt st ee et sees s sebeaesessebenens i1

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

4.1, ConstraiNiNg WIth XCSLccooiieiiceeeeeeeeeee ettt ettt ettt ettt ettt n et en s s s s s
A4.2. Constraini n§ with Schematroﬂ ...
A.3. Summarﬂ ..
B CaSE SHUAY 3. POBM ..ottt et ee e et e e e e e s et eeee e e e eeeee e e s eeesseeeenees e s esseeeeeeeeeeeeeeeeeeeeeeneeeennens
E.l. ConstraiNiNg WIth XCSLccceueeeieieieeeeeee ettt ettt sttt en s s s s e
...
..
B-Case StUAY 4: DAEDASAccourveereeeeeeeeeeeeeeeeseeeseeeeeeeesseeseeeeeseesees s ses s es s ssses s s sessees s sessees e
E.l. Constraini n§ with XCSEI ...
...
..
..
Ei inoﬁrihﬂ ...
Gloswrﬂ ..

RRRRERRNRERERERE

1. Introduction

As a descendant of SGML, XML allows the specification of the documents' structure. This way, the documents
will be syntactically validated. However, being sure documents are correctly written from a syntactic point of
view, does not assure the static semantics correctness. From the publisher's point of view, it is desirable not to
produce invalid documents. Having this problem in mind, we have been working on a solution. That solution is
based on the approach followed to specify programming languages: we use a specification language to define a
set of contextual conditions over the textual contents of elements and the attribute values that should be satisfied
by an XML instance. Those conditions restrict the set of syntactically correct documentsto the set of semantically
valid ones.

Concerning Content Constraining, we can classify constraints as belonging to one of the four categories defined
below:

Domain range checking This is the most common constraint. We need this type of
constraint when we want a certain content/value to be between
apair of values (inside acertain domain). Normally, thiskind
of constraint is used when datais of type date or numeric.

Dependencies between two elementsor attributes ~ We have cases where an attribute val ue depends on the value
of another element or attribute located in a different branch
of the document tree. These are clearly context dependent
constraints.

Pattern matching against a Regular Expression Sometimeswe need to guarantee that content follows acertain
format (as in the case of dates. there are more than 100
formats, or telephone numbers).

Complex constraints Wecall thislast kind of constraints complex because we group
here al the remaining constraints, usually weird: they require
anested loop behaviour or complex nested calculations. Most
of the examples covered in this paper belong to this family
of constraints.

This clear separation and the experience gained working with XML documents allowed the consolidation of our
approach to deal with the semantic specification problem abovereferred: the XCSL - XML Constraint Specification
Language.

Besides, another solution now exists - Schematron.

Moreover, the W3C consortium proposed the use of XML-Schemasin order to validate documents, instead of the
former option: DTDs. XML-Schemasimprovethevalidation degree, still, not all semantic problems can be solved.

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

In this context, we started studying each of them: XCSL, Schematron and XML-Schemasin order to compare the
achieved results.

We use section to briefly introduce those technologies.

In the sections [Section 3, [Section 4, [Section § and [Section § we show four complete case-studies. Each section
begins with the description of the problem itself: a class of documents we want to create for a special purpose with
aset of particular contextual constraints; we introduce the DTD designed to define the structure of that family of
documents, and one XML instance. Afterwards we show, with the first tool we are evaluating, XCSL, the way we
handled all the problems the particular case-study raises. Finally, we do exactly the same study with the second
tool we are evaluating, Schematron. Shortly, the results obtained while using XML-Schemas will be reported.

In section we present the paper revision, its purpose and the conclusions we can infer from the reported
work in the form of answers to the questions enumerated in the abstract.

2. Schema L anguages addr essed in this paper

XML Constraint Specification Language (KCSL.]), is a domain specific language conceived to allow XML
designers to restrict the content of XML documents. It is a simple, and small language useful to write contextual
constraints over the textual value of XML elements.

Schematron, on the other hand, has the same purpose.

Both are XML languages; so it becomes possible to add semantic restrictions to XML documents using an XML
diaect. These approaches offer document designers a complete XML framework to couple with syntax and
semantics. The benefits of such approaches are obvious.

Having so much in common, we ought to compare these two proposal s through the use of case-studies, so that we
can identify both similarities and main differences between them.

2.1. XML Constraint Specification Language (XCSL)

The Constraint Specification Language is formally defined in [RAM 2000] and in other published articles. This
exercise of formalization helped us to find the core structure of the language.

A specification in XCSL is composed by one or more tuples. Each tuple has three parts[RAM 2001]:

Context Selector Asthe name suggests, thisisthe expression that selects the context where
we want to enforce the constraint.

Context Condition The condition we want to enforce.
Action The action we want to trigger every time the condition does not hold.

In amore formal notation we can write:

Constrai nt Spec = Constraint+
Constraint = (ContextSel ector, ContextCondition, Action)

We could use a grammar to define the language, but as we stated before, we decided to use XSLT to specify the
constraints; in order to be coherent, we needed an XML wrapper for XSLT expressions (like in XSL). So, each
XCSL specificationisdefined asan XML instance and the X CSL languageis defined by aDTD; the present version
of the DTD that specifies XCSL (named xcdl.dtd) is shown below.

IAMAN Rendar X CONT

http://www.renderx.com

Figure 1. XCSL Schema Diagram

o]

Nowadays, XML Schema has overcome the DTD approach to define classes of XML instances. We also made
that upgrade; however, as the XML Schema is much more verbose than the correspondent DTD, we decided to
include here the DTD and just a diagrammatic description of the XML schema. That diagram is shown in Figure
Figure), as obtained with the XML Spy 4.1, from Altova.

<?xm version="1.0" encodi ng="UTF-8"?> <I-- XCSL: XM
Constraint Specification Language --> <! ELEMENT CS
(CONSTRAI NT) +> <! ATTLI ST CS
DTD CDATA #| MPLI ED
DATE CDATA #| MPLI ED
VERS| ON CDATA #| MPLI ED
>
<! ELEMENT CONSTRAI NT (SELECTOR, LET*, CC, ACTION)> <! ELEMENT
SELECTOR EMPTY> <! ATTLI ST SELECTOR
SELEXP CDATA #REQUI RED
>
<! ELEMENT LET EMPTY> <! ATTLI ST LET
NAME CDATA #REQUI RED
VALUE CDATA #REQUI RED
>
<! ELEMENT CC (#PCDATA | VARl ABLE)*> <! ELEMENT VARI ABLE
EMPTY> <! ATTLI ST VARI ABLE
SELEXP CDATA #REQUI RED
>
<! ELEMENT ACTI ON (MESSAGE*) > <ELEMENT MESSAGE (#PCDATA |
VALUE) *> <! ELEMENT VALUE EMPTY> <! ATTLI ST VALUE
SELEXP CDATA #REQUI RED
>

Figure 2. XCSL Workflow

DTD or

XML Schema §I
OK/
Syntactic Error
XML Instance |

OK/
Semantic Error

XCSL Instance

Stylesheet

Figure Eigure 4 showsthe X CSL Workflow. Thisisthe processto validate documents semantics driven by X CSL
Constraint Specifications.

Rendered by

http://www.renderx.com

Rendered by

2.2. Schematron

Schematron is an XML schema language which was designed and implemented by Rick Jelliffe at the Academia
Sinica Computing Centre, Taiwan. It combines powerful validation capabilities with a simple syntax and imple-
mentation framework.

At Schematron's design and specification time, there were several aims, from which we highlight: to promote
natural language descriptions of validation failures; to allow a more human-readable answer asthe validation result;
aim for ashort learning curve by layering on existing tools (XPath and X SLT); support workflow by providing a
system which understands the phases through which a document passesin itslifecycle.

Schematron is described in many papers, for instance in [DOD 2001]. Its DTD and XML-Schema can be found
in http://mmww.asce.net/xml/schematron/.

Validating XML instances using Schematron involvestwo steps. Thefirst oneisto compilethe constraints document
into a run-time validator. The second one is running each instance against that specific validator.

Two options are available: Topologi Schematron Validator - the two steps process is transparent to the user, and
all that he/she needsis to provide the constraints document and the XML instances; and schematron-report - the
user explicitly has to engage both the steps.

While schematron-report is processed in the command-line invoking a tool like Saxon, (as we do with XCSL);
Topologi Schematron Validator is awindows-based interactive environment.

2.3. W3C XML Schemas

XML Schemawas created once the syntax of DTDs fell short of the requirements of the XML users. The aims of
the W3C XML Schema Working Group were to create alanguage that would be more expressive than DTDs and
written in XML Syntax. In addition, it would also allow authors to place restrictions on the elements’ content and
attribute values in terms of primitive datatypes found in most languages.

While using DTDs, to specify constraints, even if very simple, we need to use a constraining language (such as
XCSL or Schematron) and, consequently, need two documentsto completely validate an XML instance. Constraining
with XML-Schemas, on the other hand, means, for a particular set of constraints, using only one document to
validate XML instancesinstead of using both aDTD and a constraint document. Unfortunately, the range of con-
straints we can validate with XML-Schemas is far from the set we specified above.

To validate XML instances against a XML-Schema, several parsers are available. Those parsers are similar to the
traditional XML validators; but now, instead of aDTD they are driven by an XML-Schema.

3. Case Study 1: Fiscal Certificate

Let us suppose that someone in Portugal asks for afiscal certificate, which is a certificate of the goods declared
by someone's relatives by the time of his or her death (thisis compulsory so that the goods can be inherited). That
document should include the identification of the dead one and both the dates: the one of that person’s death and
the certificate requirement's; these are required fields (obvioudly, the current date shall be the most recent). Moreover,
people must ask for thiskind of certificate in the finance department of the last residence area of the dead one, so
we should enforce that congruence too. The correspondent DTD for such a document, could be:

<! ELEMENT fcert (header, body, ending)> <! ELEMENT header
(#PCDATA | department)*> <! ELEMENT departnent (#PCDATA) >
<I ATTLI ST depart nent

pl ace CDATA "0101"
>
<! ELEMENT body (requester, request)> <! ELEMENT requester
(#PCDATA | nanme | CF | address)*> <! ELEMENT nane (#PCDATA) >

IAMAN Rendar X CONT

http://www.renderx.com

<! ELEMENT CF (#PCDATA)> <! ELEMENT address (#PCDATA) >
<! ELEMENT request (#PCDATA | affinity | nane | date | village
parish | municipality)*> <IELEMENT affinity (#PCDATA) >
<! ELEMENT date (#PCDATA)> <! ATTLI ST date
val ue CDATA "19000101"
>
<! ELEMENT vi | | age (#PCDATA)> <! ELEMENT pari sh (#PCDATA) >
<! ATTLI ST pari sh
pl ace CDATA "010101"
>
<! ELEMENT nuni ci pal ity (#PCDATA)> <! ATTLI ST nunicipality
pl ace CDATA "0101"
>
<! ELEMENT endi ng (#PCDATA | place | date)*> <! ELEMENT pl ace
(#PCDATA) >

One XML instanceis as follows:

<?xm version="1.0" encodi ng="1SO 8859-1"7?> <! DOCTYPE f cert
SYSTEM "fcert_cm dtd"> <fcert>
<header >
Dear Sir, Chief of the Finance Departnment of
<depart ment place="110504">Li sbon's 4th Fi sca
</ header >
<body>
<r equest er >
<nanme>Ri ta Santos </nanme>
t axpayer Ner.
<CF>31988455</ CF>
with the address
<addr ess>Pedras tortas Street,
</ addr ess>
</ request er>
<r equest >
requests your Excellency to certify if,

Pari sh</ depart nent >

Ner 7 - 5423 Ranhol as

on behal f of the death

<nane>Fr ancel esti na Pereira e Sant os</ nane>
who died on the
<dat e val ue="19990913">13th of Septenber 1999</date>

pari sh of

<parish place="100611">Salir de Matos</parish>
nmuni ci pal ity of

<muni ci pal ity place="1006">Cal das da Rai nha</ nmunici pality>
and naried she was with

</request >

</ body>

<endi ng>
Ask that her request be granted
<pl ace>Cal das da Rai nha</ pl ace>
<dat e val ue="19991020">20th of October 1999</dat e>
The requester

</ endi ng>

</fcert>

Thisparticular XML isvalid from astatic and semantic point of view. Any XML parser isableto check its structure
against the given DTD. However if the current date was before the death's date, the document wasinvalid and the
DTD doesn't provide the means to verify that.

Rendered by

http://www.renderx.com

Rendered by

3.1. Constraining with XCSL

In order to be able to specify the first constraint, we added an attribute value to the date element which will keep
thedatein astandard format "yyyymmdd". The semantic constraint isthe following (we only show the CONSTRAINT
element astherest istrivial)

<CONSTRAI NT>
<SELECTOR SELEXP="//request/date"/>
<CC>
@al ue < /fcert/ending/date/ @al ue
</ CC
<ACTI ON>
<MESSAGE>

The date of the death pointed out:
<VALUE SELEXP="/fcert/body/request/date"/>,
is posterior to the request date:
<VALUE SELEXP="/fcert/endi ng/date"/>
</ MESSAGE>
</ ACTI ON>
</ CONSTRAI NT>

We compare the value of those two attributes: the first belonging to the body sub-tree (date of death) and the other
one belonging to the ending sub-tree (date of the request). As the date 19990913 occurred before 19991020, the
XML instance would be correctly validated. If this was not the case, an error message would be emitted; for
instance, if thefirst attribute value was 20010803 and the second one was 20010607, the following error message
would be triggered:

<err-nessage>
The date of the death pointed out: 3rd of August 2001,
is posterior to the request date: 7th of June 2001
</ err-nessage>

In order to be sure that the request is delivered in the appropriate Finance Department, we specified the following
constraint.

<CONSTRAI NT>
<SELECTOR SELEXP="//fcert/body/request"/>
<CC>
pari sh/ @! ace = /fcert/header/departnent/ @l ace
or
muni ci pal i ty/ @l ace = /fcert/header/departnent/ @l ace
</ CC
<ACTI ON>
<MESSAGE>
The request for this certificate shall not be
delivered in this departnent
<VALUE SELEXP="/fcert/header/departnment"/>,
but in the departnent in charge of the
<VALUE SELEXP="parish"/>"'s parish,
<VALUE SELEXP="runi cipality"/>"s municipality.
</ MESSAGE>
</ ACTI ON>
</ CONSTRAI NT>

Where we want to ensure that the place attribute of the department element is equal to the same place attribute of
one of the elements parish or municipality.

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

To define such aconstraint, we compare the value of each place attribute bel onging to the body sub-tree (simplified
by writing just the request element, descendant of the body element, once the first one is unique in the whole
document) - with the place attribute belonging to the header sub-tree (place of the Department). As in this case
the person is willing to deliver the request in a department which local attribute is not equal to the parish's one
nor to the municipality's one, the following error message would be displayed:

<err-message>
The request for this certificate shall not be
delivered in this departnent
Li sbon's 4th Fiscal Pari sh,
but in the department in charge of the
Salir de Matos's parish, Caldas da Rainha's nunicipality.
</ err-nessage>

Moreover, when using DTDs we can not enforce order nor cardinality of elements allowed to occur in mixed
content. Therefore, we will need a set of constraints that enforce both the order and cardinality inside the mixed
content of the elements header, requester, request and ending.

Concerning the requester element, we want to force each sub-element to appear only once and the order of
appearance to be: name, CF (tax payer number) and address. The respective constraint is:

<CONSTRAI NT>
<SELECTOR SELEXP="//fcert/body/requester"/>
<CC
(count (nanme) = 1) and
(count(CF) = 1) and
(count (address) = 1) and
name(nane[1]/fol l owi ng:: *) ='CF' and
name(CF[1] /fol l owi ng: : *) ='address'

</ CC
<ACTI ON>
<MESSAGE>
Ei t her -requester- sub-el enments occur in a wong order,
ei ther they occur a wong nunmber of tines.
</ MESSAGE>
</ ACTI ON>

</ CONSTRAI NT>

The number of occurrences of each of the elements name, CF and address, sub-elements of the requester element
is counted and compared to 1. Besides, we verify that the name element is followed by a CF element, followed
by an address element. The instance we presented would produce ho errors, given that every element occurs only
once and in the expected order.

The constraints for the other three elements are similar.

3.2. Constraining with Schematron

Remember that the particular XML instance shownin would be validated correctly for its structure and
is, concerning the dates, semantically correct aswell, but if the current date was not correct, the document would
be validated the same way and wouldn't be correct.

The first semantic constraint is the following (we only show the diagnostics and pattern elements as the rest is
trivial).

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

<di agnosti cs>
<di agnosti c id="00">
Correct!
</ di agnosti c>
<di agnostic id="01">
The indicated date of the death:
<val ue-of sel ect="/fcert/body/request/date"/>,
is posterior to the request date:
<val ue-of sel ect="/fcert/endi ng/date"/>
</ di agnosti c>
</ di agnosti cs>
<pattern nane="dates">
<rul e context="//request/date">
<assert test="@alue < /fcert/endi ng/ date/ @al ue"
di agnosti cs="01"/>
<report test="@alue < /fcert/endi ng/ date/ @al ue"
di agnosti cs="00"/>
</rul e>
</ pattern>

We compare the value of those two attributes: the first belonging to the body sub-tree (date of death) and the other
one belonging to the ending sub-tree (date of the request). As the date 19990913 occurred before 19991020, the
XML instance would be correctly validated and the return would be:

Schenat ron Report

Val idation of the Fiscal Certificate
dat es
Correct!

If it wasn't so, we would receive an error, for instance if the first value attribute's value was 20010803 and the
second one was 20010607, the following error message would be triggered (from now on, we will only show the
piece of return that relates to what we are explaining, avoiding unnecessary repetition):

dat es

The indicated date of the death: 3rd of August 2001
is posterior to the request date:

7th of June de 2001

In order to be surethat the request isdelivered in the appropriate department, we specified the following constraint,
where we want to ensure that the place attribute of the department element is equal to the same place attribute of
one of the elements parish or municipality

<di agnosti cs>
<di agnostic id="02">
The request for this certificate shall not be
delivered in this departnent
<val ue-of sel ect="/fcert/header/departnent"/>,
but in the departnent in charge of the
<val ue-of sel ect="parish"/>"s parish,
<val ue-of select="nunicipality"/>"s nunicipality.
</ di agnosti c>
</ di agnosti cs>
<pattern name="Fi nance depart ment">
<rul e context="//fcert/body/request">

<assert test="parish/ @l ace =

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

[fcert/ header/ depart nent/ @l ace
or
nmuni ci pal i ty/ @l ace = /fcert/header/departnent/ @l ace"
di agnosti cs="02"/>
</rul e>
</ pattern>

We compare the value of each place attribute belonging to the body sub-tree - with the place attribute belonging
to the header sub-tree (place of the department). Asin this case the person is willing to deliver the request in a
department which local attributeisnot equal to the parish’'s one nor to the municipality's one, the following message
would be displayed:

Fi nance depart nent

The request for this certificate shall not

be delivered in this departnent

4° Bairro Fiscal de Lisboa ,

but in the departnent in charge of the Salir de Matos 's pari sh,
Cal das da Rainha 's nunicipality.

Next, we present the constraint that enforces both the order and cardinality of the requester element. For the
header, request and ending elements, the constraints are alike.

For the requester element, we want to force each sub-element to appear only once and the order of appearanceto
be name, CF (tax payer number) and address, so the constraint is:

<di agnosti cs>
<di agnostic id="04">
Ei t her -requester- sub-elements occur in a wong order,
either they occur a wong nunber of tines.
</ di agnosti c>
</ di agnosti cs>
<pattern name="requester element">
<rul e context="//fcert/body/requester">
<assert test="(count(nanme) = 1) and
(count(CF) = 1) and
(count (address) = 1) and
name(nane[1] /followi ng::*) = CF and
name(CF[1] /fol | owi ng: : *) ='address'"
di agnosti cs="04"/>
</rul e>
</ pattern>

The number of occurrences of each of the elements name, CF and address, sub-elements of the requester element
is counted and compared to 1. Besides, we verify that the name element is followed by a CF element, by itsturn
followed by an address element. The instance we presented would produce no errors once every element occurs
once and by the expected order.

3.3. Summary
For this case-study, no mgjor diferences were found in the specification. Nevertheless, we may state that with

Schematron we have alinear way of providing the information of correctness of the document - report element -
, Whereas with XCSL we would have to write the negation ourselves.

10

IAMAN Rendar X CONT

http://www.renderx.com

4. Case Study 2: 2nd Conferencefor a Divorce

In Portugal, to get divorced, acouple hasto deliver two documentsin court. Thefirst oneiscalled the First Request
for Divorce, time when they state their will to get divorced, assuring that in the presence of the judge. The second
one, which we are focusing on in this example, is called the Second Conference Requirement and the earlier it can
be submitted is 90 days after the first one. This last one is to ask for a new meeting where the couple will state
they still wish to get divorced, after which the couple will be officialy divorced. At the moment of designing the
DTD for thisfamily of documents, we have two options: the number of days passed since the first conference will
be stated; or just the date of the first conference will be written. It makes much more sense adopting the second
one. Therefore, the DTD will be:

<! ELEMENT di v_2c (header, body, ending)>
<! ELEMENT header (sender, addressee)>

<! ELEMENT sender (#PCDATA | cdepart)*>
<! ELEMENT cdepart (#PCDATA) >

<! ELEMENT addr essee (#PCDATA | court)*>

<! ELEMENT court (#PCDATA) >

<! ELEMENT body (requesters, request)>

<! ELEMENT requesters (#PCDATA | nane)*>

<! ELEMENT name (#PCDATA) >

<! ELEMENT request (#PCDATA | date | article)*>
<! ELEMENT date (#PCDATA) >

<! ATTLI ST
val ue
>
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

date
CDATA "19000101"

article (#PCDATA) >

endi ng (text, place, date, signature
pl ace (#PCDATA) >

si gnature (#PCDATA) >

text (#PCDATA)>

si gnature) >

One possible XML instanceis asfollows:

<?xm version="1.0" encodi ng="1SO 8859-1"7?> <! DOCTYPE di v_2c
SYSTEM "di v_2c02. dtd"> <di v_2c>
<header >
</ header >
<body>
<r equest >
identified in the referred Action of Divorce
of ficial papers, having acconplished the first
conference in the
<dat e val ue="20010406">6th of April of 2001</date>
and both maintaining their will to divorce, cone
by this means to require to be convoked for the
second conference, according to the
<article>1423th article of the Code of Civil Law
<larticle>
in order to the definite divorce be decreed
</ request >
</ body>
<endi ng>
<text> Ask that their request be granted </text>
<pl ace>Cal das da Rai nha</ pl ace>
<dat e val ue="20010506">6th of May of 2001</date>
<signature>The first requester's Lawer</signature>
<si gnat ure>The second requester</signature>

11

Rendered by

http://www.renderx.com

Rendered by

</ endi ng>
</ div_2c>

Structurally, this XML instance would be validated by any XML tool, but what about the date comparison? It is
essencial that the requirement for the Second Conference occurs at least 90 days after the first conference. For
that, we will need to compare both dates. Out of this comparison, we shall get the number of days in which they
differ. To achieve this, we may use a function [TON 2000]that receives agregorian date and returnsthe Julian day
for each of the dates. Afterwards, it is enough to subtract them to get the number of days. Finally, comparing that
result with the number 90, we will know exactly whether the document is semantically correct or not.

4.1. Constraining with XCSL

With XCSL, wewill specify this semantic constraint asfollows (again, we only show the CONSTRAINT element):

<CONSTRAI NT>
<SELECTOR SELEXP="//div_2c"/>
<LET NAME="a" VALUE="(fl oor((14-substring(ending/date/
@al ue, 5,2)) div 12))"/>

<LET NAME="y" VALUE="(substri ng(endi ng/date/ @al ue, 1, 4)
+ 4800 - %a)"/>

<LET NAME="m" VALUE="(substri ng(endi ng/date/ @al ue, 5, 2)
+ 12 * $a - 3)"/>

<LET NAME="t" VALUE="(substri ng(endi ng/date/ @al ue, 7, 2)
+ floor((153 * $m + 2) div 5) +
(365 * $y) + floor($y div 4) -
floor($y div 100) +
floor($y div 400) - 32045)"/>

<>

($t - $t2) >= 90
</ CC
<ACTI ON>
<MESSAGE>
Only <VALUE SELEXP="($t - $t2)"/> days undergone
since the first conference...
You will have to wait a little |onger!!
</ MESSAGE>
</ ACTI ON>

</ CONSTRAI NT>

We use 8 elements LET asthey will provide the modularity needed to reduce the amount of lines needed to specify
this constraint. The context is the root element (div_2c). The first four LET elements are applied to the ending
branch of the document's tree (where we can find the date of the requirement itself) --- we use the names a, y and
mfor theintermediary calculationsand, finally, t to keep the Julian day of that date. The second set of LET elements
is applied to the body branch of the document's tree (where we can find the date of the first petition) --- we now
use the names a2, y2, m2 and t2, with the same meaning.

After defining all this variables, the CC element itself will be as simple as subtracting t2 out of t and comparing
the result with 90.

To provide a personalized result, we can simply use a VALUE element inside ACTION element, where we use the
variablest and t2 we defined before, avoiding the duplication of al the code.

The XML instance shown aboveis structurally correct, but semantically incorrect since the first date is the 6th of
April and the second one the 6th of May, both of the year 2001. Therefore, while validating this document against
the constraint document specified above, we would get the following error message:

12

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

<?xm version="1.0" encodi ng="i so-8859-1"?> <doc- st at us>
<err-nmessage>
Only 30 days under gone
since the first conference...
You will have to wait a little | onger!!
</ err-nessage>
</ doc- st at us>

where 30 is the number of days between the two dates, generated automatically according to the VALUE element
specified in the constraint.

4.2. Constraining with Schematron

At this time, the only possibility of specifying the constraint we specified in the previous subsection, now with
Schematron, iswriting the whole equation each time we need to useit. Thisis due to the fact that, in Schematron
language, only XPath functions are available and the one used with XCSL, that allows variablesto be instantiated,
isan XSL function. The equivalent constraint in Schematron would, therefore, be,

<title>Request for the 2nd conference of divorce</title>
<di agnhosti cs>
<di agnostic id="01">
Less than 90 days undergone since the first
conf erence. .
You will have to wait a little |onger!
</ di agnosti c>
</ di agnosti cs> <pattern name="Days since the First
Conf erence" >
<rul e context="//div_2c">
<assert test="
(((substring(endi ng/ dat e/ @al ue, 7, 2) +
floor ((153*(substring(endi ng/ dat e/ @al ue, 5, 2) +12*
(floor((14-(substring(endi ng/ date/ @al ue, 5, 2)))
div 12))-3)+2) div 5)+
(365 * (substring(endi ng/date/ @al ue, 1, 4) +4800-
(floor((14-(substring(endi ng/ date/ @al ue, 5, 2)))
div 12)))))+
fl oor ((substring(endi ng/ dat e/ @al ue, 1, 4) +4800-
(floor((14-(substring(endi ng/ date/ @al ue, 5, 2)))
div 12))) div 4)-
fl oor ((substring(endi ng/ dat e/ @al ue, 1, 4) +4800-
(floor((14-(substring(endi ng/ date/ @al ue, 5, 2)))
div 12))) div 100)+
fl oor ((substring(endi ng/ dat e/ @al ue, 1, 4) +4800-
(floor((14-(substring(endi ng/ date/ @al ue, 5, 2)))
div 12))) div 400)-32045)
-)
>= 90" di agnostics="01">
</ assert>
</rul e>
</ pattern>

Whereweput "...", al the code for the cal culation of the Julian day is repeated, now for the body branch. We don't
repeat it to keep the example as understandabl e as possible. Notice that in this constraint we are not providing the
personalized output we did with XCSL. To do this, it would be necessary to repeat all the code listed above for
the calculation of both of the dates. Thisis clearly a disadvantage once the number of lines we need to specify the
Schematron 's constraint is huge when compared with XCSL's one.

13

IAMAN Rendar X CONT

http://www.renderx.com

As we pointed out before, the semantic validation of the XML instance we presented before triggers an error
message, which in this case will be, :

Request for the 2nd conference of divorce

Days since the First Conference
Less than 90 days undergone since the first conference...
You will have to wait a little |onger!!

This does not mean we can not use akey functionality in Schematron, but that it can not be used for variables, and
can only be used to keep a set of valuesin alist against which we will be able to compare other values - cases like
the uniqueness problem in databases we show in the last case-study.

4.3. Summary

Thisis clearly an example in which the XCSL specification is much easier than the Schematron's one. With the
last one, it is much easier to make mistakes. Moreover, the XCSL specification is more clear and any change of
the code will be ssimpler.

5. Case Study 3: Poem

The poem family of documentsis generically made up of aset of stanzas. Traditionally, it iscomposed by distichs,
tercets, quatrains, quintains, sestets, septets, octaves, nine verses stanzas and ten verses stanzas, in any number
and order. Free poems may have stanzaswith virtually any number of verses, reason why we must define ageneral
stanza (gstanza).

To make it possible to identify the kind of poem we are writing, we shall have a style attribute. This isimportant
to identify, for instance, sonnets, a sub-family of the poems family. Portuguese sonnets must be made of four
stanzas, the first two are quatrains and the last two are tercets, written exactly by this order.

Bellow, we show the DTD we have designed for this family of documents, allowing the style of the poem to be
stated and al so the specification of general stanzas, beyond the nine tradicional stanzas.

<! ELEMENT poem (title, author, body, date)>
<I ATTLI ST poem
styl e CDATA #| MPLI ED

>

<! ELEMENT title (#PCDATA) >

<! ELEMENT aut hor (#PCDATA) >

<! ELEMENT body (distich | tercet | quatrain | quintain | sestet |
septet | octave

ninev | tenv | gstanza)+>

<! ELEMENT di stich (verse, verse)>

<! ELEMENT tercet (verse, verse, verse)>

<! ELEMENT quatrain (verse, verse, verse, verse)>

<! ELEMENT quintain (verse, verse, verse, verse, verse)>

<! ELEMENT sestet (verse, verse, verse, verse, verse, verse)>

<! ELEMENT septet (verse, verse, verse, verse, verse, verse
verse) >

<! ELEMENT octave (verse, verse, verse, Vverse, Vverse, Verse
verse, verse)>

<! ELEMENT ni nev (verse, verse, verse, verse, verse, verse
verse, verse, verse)>

<! ELEMENT tenv (verse, verse, verse, verse, verse, verse
verse, verse, verse, verse)>

<! ELEMENT gstanza (verse) +>

14

Rendered by

http://www.renderx.com

<! ELEMENT verse (#PCDATA | nane | place)*>
<! ELEMENT nane (#PCDATA) >
<! ELEMENT pl ace (#PCDATA) >
<! ELEMENT date (#PCDATA) >

Gstanza represents all the stanzas which have just one verse or more than 10 verses. Aswe are using aDTD, we
can only state that gstanza is made of verse elements (one or more). Therefore, we will need a constraint that
returns an error when this element is misused.

The XML instance bellow is structurally correct and represents a poem which has sonnet style.

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<! DOCTYPE poem SYSTEM " poena_n. dt d">
<poem styl e="sonnet ">
<title>Sonnet antique</title>
<aut hor >Al varo de Canpos</ aut hor >
<body>
<quatrai n>
<ver se>0 ha, <nane>Dai sy</name>: quando eu
norrer tu has-de</verse>
<verse>di zer aos neus ani gos ai de
<pl ace>Londr es</ pl ace>, </ ver se>
<ver se>enbora ndo o sintas, que tu escondes</verse>
<verse>a grande dor da minha norte. |ras de</verse>
</ quatrai n>
<quatrai n>
<verse>
<pl ace>Londr es</ pl ace> p' ra <pl ace>l or que</ pl ace>
onde nasceste
(dizes ...</verse>
<verse>que eu nada que tu digas acredito), </verse>
<ver se>contar aquel e pobre rapazito</verse>
<verse>que ne deu tantas horas felizes, </verse>
</ quatrai n>

<tercet>
<ver se>enbora ndo o sai bas, que norri ...</verse>
<verse>Mesnp ele, a quemeu tanto jul guei amar, </verse>
<verse>nada se inportara... Depois vai dar</verse>
</tercet>
<tercet>
<verse>a noticia a essa estranha <nanme>Ceci |l y</ nane>
</verse>

<ver se>que acreditava que eu seria grande...</verse>
<verse>Rai 0s partama vida e quem | & ande! </verse>
</tercet>
</ body>
<dat e>1922</ dat e>
</ poen®

5.1. Constraining with XCSL

According to al that was said, we will need two constraintsto verify if, having sonnet style, poems only have two
guatrains and two tercets. We decided to implement two constraints for each one of these in order to be able to
produce a clearer information to the user. This way the user will know exactly what is wrong: less‘fmore than 2
guatrains, less'/more than 2 tercets were used.

For the first element, quatrain, these constraints will be:

15

Rendered by

http://www.renderx.com

<CONSTRAI NT>
<SELECTOR SELEXP="// poeni'/ >

<CC>

not (@tyle = 'sonnet') or
count (body/ quatrai n) >= 2</ CC
<ACTI ON>

<MESSAGE>WARNI NG
A sonnet nust have 2 quatrains
</ MESSAGE>
</ ACTI O\>
</ CONSTRAI NT>
<CONSTRAI NT>
<SELECTOR SELEXP="// poeni'/ >
<CC
not (@tyle = 'sonnet') or
count (body/ quatrai n) <= 2</CC
<ACTI ON>
<MESSAGE>WARNI NG
A sonnet only may have 2 quatrai ns</ MESSAGE>
</ ACTI ON\>
</ CONSTRAI NT>

Thisway, when the quatrain element occurslessthan twice, the user isinformed asonnet must have two quatrains
and, when it occurs more than twice, that the sonnet style allows only two quatrains.

For these two constraints, we say that unless style is different from sonnet, the quatrain element must occur twice.
Inthefirst constraint we evaluateif the number of occurrencesislessthan two, writing, therefore, the complementary
expression, greater or equal, triggering the error message every time the negation occurs. In the second, we
evaluate if the number of occurrencesis greater than two, writing, therefore, the complementary expression, less
or egqual, triggering the error message every time the negation occurs.

The particular instance we've shown would produce no errors, but with an instance of a sonnet with only one
guatrain, we would receive the following message:

<err-nessage>WARNI NG
A sonnet nust have 2 quatrains
</ err-nmessage>

If we did use 3 or more quatrain elements, the following error would be displayed:

<err-nessage>WARNI NG
A sonnet only may have 2 quatrains
</ err-nessage>

For the tercet element, the constraints are similar, reason why we won't show them.

With the constraints specified above, we already obligate a sonnet to have two quatrains and two tercets, but we
till lack the validation of the order in which they occur. We specify the following constraint to verify if the first
element quatrain is followed by another quatrain element, which is followed by atercet element which is, by its
turn, followed by another tercet element. We aso verify that the global occurrences of this two elements equals
4, onceit is enough to have more than 4 quatrains and tercets for the structure to be incorrect.

<CONSTRAI NT>
<SELECTOR SELEXP="// poem body"/ >
<CC
not(../@tyle = 'sonnet') or
((count (quatrain) + count(tercet) = 4) and

16

Rendered by

http://www.renderx.com

name(quatrain[1]/ fol |l owi ng:: *)
name(quatrain[2]/foll ow ng::*)
name(tercet[1]/following::*) =
</ CC
<ACTI ON>
<MESSAGE>WARNI NG
The only structure allowed for a sonnet is:
Quatrain
Quatrain
Ter cet
Ter cet
</ MESSAGE>
</ ACTI O\>
</ CONSTRAI NT>

='quatrain' and
='tercet' and
"tercet')

The presented instance would produce no errors but if we swapped the order of thefirst quatrain and thefirst tercet,
we would receive:

<err-message>WARNI NG
The only structure allowed for a sonnet is:
Quatrain
Quatrain
Ter cet
Ter cet
</ err-nessage>

The sonnets are now completely validated. However, we still need one constraint that guarantees that general
stanzas are used only when and if the poem'’s styleis freestyle:

<CONSTRAI NT>
<SELECTOR SELEXP="// poent body" />
<CC
../@®tyle = "freestyle' or
count (gstanza) = 0</CC
<ACTI ON>
<MESSAGE>WARNI NG
The style of your poemis <VALUE SELEXP="../@tyle"/>,
therefore you can't use stanzas
with only one verse or nore than ten verses,
allowed only in the case of free poens.
</ MESSAGE>
</ ACTI ON>
</ CONSTRAI NT>

Unless the poem has freestyle, the element gstanza must not be used (it shall never occur).

Again, the instance we've shown would produce no errors once we did not use any gstanza elements. If we did
use a gstanza element, we would receive the following error message:

<err-message>WARNI NG
The style of your poemis sonnet,
therefore you can't use stanzas
with only one verse or nore than ten verses,
allowed only in the case of free poens.
</ err-nessage>

Finally, and once we can't specify any cardinality we want with a DTD, we need a constraint to prohibit the use
of the gstanza element for the specification of stanzaswith 2, 3, ..., 10 verses:

17

Rendered by

http://www.renderx.com

Rendered by

<CONSTRAI NT>
<SELECTOR SELEXP="//poem body/ gst anza"/ >
<CC>
count(verse) = 1 or count(verse) > 10 </ CC
<ACTI ON>
<MESSAGE>WARNI NG
The el ement -gstanza- was used to specify a stanza with
<VALUE SELEXP="count (verse)"/>
verses. |Instead, the appropriate el enent nmust be used.
</ MESSAGE>
</ ACTI O\>
</ CONSTRAI NT>

Again, the XML instance would produce no errors, but it would be enough to use the gstanza element instead of
the quatrain element for the first quatrain to get the following error:

<err-message>WARNI NG
The el ement -gstanza- was used to specify a stanza with 4
verses. Instead, the appropriate el enent nmust be used.

</ err-nessage>

5.2. Constraining with Schematron

Asstated previously, we will need two constraintsto verify if, having sonnet style, poems only have two quatrains
and two tercets, i.e., both elements occur twice each. Again, we decided to implement two constraints - two assert
elements - for each one of these in order to be able to produce a clearer information to the user. Once with
schematron the restriction's title is always shown, we also specified two report elements: the first one returns
"correct!" every time the poem has sonnet style and the restriction is respected; the second one returns "Not
applicable." when the poem's style is not sonnet.

For the first element, quatrain, these constraints will be:

<title>Poem s validation</title>
<di agnosti cs>
<di agnostic id="00">
Correct!
</ di agnosti c>
<di agnosti c id="00a">
Not appli cabl e.
</ di agnosti c>
<di agnostic id="01la">
A sonnet only may have 2 quatrains
</ di agnosti c>
<di agnostic id="01b">
A sonnet nust have 2 quatrains
</ di agnosti c>
</ di agnosti cs>
<pattern name="Sonnets: Quatrains">
<rul e context="/*">

<assert test="not(@tyle = 'sonnet') or

count (body/ quat rai n) <= 2" diagnostics="01a">
</ assert>
<assert test="not(@tyle = 'sonnet') or

count (body/ quat rai n) >= 2" di agnostics="01b">
</ assert >
<report test="@tyle = 'sonnet' and

count (body/ quatrain) = 2" diagnostics="00"/>

18

IAMAN Rendar X CONT

http://www.renderx.com

<report test="@tyle != 'sonnet'" diagnostics="00a"/>
</rul e>
</ pattern>

If our XML instance was of a sonnet with only one quatrain, we would receive the following message:

Poem s val i dation
Sonnets: Quatrains
A sonnet nust have 2 quatrains

If we did use 3 or more quatrain elements, the following error would be displayed:

Sonnets: Quatrains
A sonnet only may have 2 quatrains

For the tercet element, the constraints are similar, reason why we won't show them.

We will also need a constraint which, provided the style attribute equal s to sonnet, analises the global structure of
the poem and verifiesit is. quatrain, quatrain, tercet, tercet. It verifies the first element quatrain is followed by
another quatrain element, which isfollowed by atercet element which is, by its turn, followed by another tercet
element and also that the global occurrences of this two elements equalsto 4.

<di agnosti cs>
<di agnostic id="03">
The only structure allowed for a sonnet is:
Quatrain Quatrain Tercet Tercet
</ di agnosti c>
</ di agnosti cs>
<pattern name="Sonnets: Structure">
<rul e context="//poem body">
<assert test="not(../@tyle = 'sonnet') or
((count (quatrain) + count(tercet) = 4) and
name(quatrain[1]/followi ng::*) = quatrain' and
name(quatrain[2]/followng::*) ="tercet' and
name(tercet[1]/following::*) ="tercet')" diagnostics="03">
</ assert >
<report test="../@tyle != 'sonnet'" diagnostics="00a"/>
</rul e>
</ pattern>

If we swapped the order of the first quatrain and the first tercet in the instance we've shown, we would receive:

Sonnets: Structure
The only structure allowed for a sonnet is:
Quatrain Quatrain Tercet Tercet

The sonnets are now completely validated. However, we still need one constraint that guarantees that general
stanzas are used only when and if the poem'’s style is freestyle:

<di agnhosti cs>
<di agnostic id="04">
The style of your poemis <val ue-of select="../@tyle"/>,
therefore you can't use stanzas
with only one verse or nore than ten verses,

19

Rendered by

http://www.renderx.com

Rendered by

allowed only in the case of free poens.
</ di agnosti c>

</ di agnosti cs>

<pattern nane="gstanza occurrences">
<rul e context="//poeni body" >

<assert test="../@®tyle = 'freestyle' or
count (gstanza) = 0" di agnosti cs="04">
</ assert >
<report test="../@tyle = 'freestyle'" diagnostics="00a"/>
</rul e>

</ pattern>

If we used a gstanza element in the instance we've shown, we would receive the following error message:

gstanza occurrences

The style of your poemis sonnet,

therefore you can't use stanzas

with only one verse or nore than ten verses,
allowed only in the case of free poens.

Finally, and once DTDsdon't allow this kind of validation, we need a constraint to prohibit the use of the gstanza
element for the specification of stanzaswith 2, 3, ..., 10 verses:

<di agnosti cs>
<di agnosti c id="05">
The el ement -gstanza- was used to specify a stanza with
<val ue-of sel ect="count (verse)"/>
verses. Instead, the appropriate el enent must be used.
</ di agnosti c>
</ di agnosti cs>
<pattern name="gstanza's use">
<rul e context="//poem body/ gst anza">
<assert test="count(verse) = 1 or count(verse) > 10" di agnosti cs="05">
</ assert>
</rul e>
</ pattern>

If we had used the gstanza el ement instead of the quatrain element for thefirst quatrain, we would get the following
error:

gstanza's use
The el ement -gstanza- was used to specify a stanza with 4
verses. Instead, the appropriate el enent nmust be used.

5.3. Summary

From this case-study we may infer that, again, no major differences can be found with both the specifications.
After some study and trials, all the restrictions were easily specified with both the languages.

6. Case Study 4. Database

One database is made up of various tables, each one having several registries consisting of fields. Each registry
shall have akey, i.e., afield with an unique value among al the values in that table. Assuming XML is a good
technology to represent DBs, we will need to assure the uniqueness of some field only in the table in which that
isthekey field. AsthetypeID isavailablefor attributes, we could useit, but that attribute would have to be unique

20

IAMAN Rendar X CONT

http://www.renderx.com

in the whole document, and that is not what we need. Therefore, we will specify aDTD for thiskind of documents
without the use of 1D type of attributes and afterwards we will specify one constraint to deal with the uniqueness
problem. The generic DTD, usable for any number of tables with any number of fields each, will be:

<! ELEMENT DB (STRUCTURE, DATA) >
<! ELEMENT STRUCTURE (TABLE) +>
<! ELEMENT TABLE (COLUWNS, KEYS) >
<! ATTLI ST TABLE

NAMVE CDATA #REQUI RED
>
<! ELEMENT COLUWNS (COLUWN) +>
<! ELEMENT COLUWN EMPTY>
<I ATTLI ST COLUWN

NAMVE CDATA #REQUI RED

TYPE CDATA #REQUI RED

S| ZE CDATA #REQUI RED

NULL (yes | no) #REQUI RED
>
<! ELEMENT KEYS (PKEYS) >
<! ELEMENT PKEYS (PKEY) +>
<I ATTLI ST PKEYS

TYPE (sinple | conplex) #REQU RED
>
<! ELEMENT PKEY EMPTY>
<! ATTLI ST PKEY

NAME CDATA #REQUI RED
>
<! ELEMENT DATA (itens)+>
< ELEMENT itens (itens-REGt)>
<I ATTLI ST itens

NAME CDATA #REQUI RED
>
<! ELEMENT it ens- REG (Fl ELD) +>
<! ELEMENT FI ELD (#PCDATA) >
<! ATTLI ST FI ELD

name CDATA #REQUI RED

>

Where: DB - root e ement; STRUCTURE - structure of the database ; DATA - the data itself; items - data of each
table; items-REG - one registry; FIELD- onefield.

The next document is an extract of an XML instance for a database with four tables (stocks, suppliers, clients and
orders):

<?xm version="1.0"?> <I DOCTYPE DB SYSTEM "dbm _g. dtd">
<DB>
<STRUCTURE>
<TABLE NAME="st ocks">
<COLUWNS>
<COLUWN NAME="cprod" TYPE="nvarchar" SIZE="10" NULL="no"/>
</ COLUWNS>
<KEYS>
<PKEYS TYPE="si npl e" >
<PKEY NAME="cprod"/>
</ PKEYS>
</ KEYS>
</ TABLE>
<TABLE NAME="suppliers">

</ TABLE>

21

Rendered by

http://www.renderx.com

<TABLE NAME="cl i ents" >
<COLUWNS>
<COLUWN NAME="cclient" TYPE="nvarchar" SIZE="10" NULL="no"/>
<COLUWN NAME="nane" TYPE="nvarchar" S| ZE="50" NULL="no"/>
<COLUW NAME="contact" TYPE="nvarchar" SIZE="10" NULL="no"/>
<COLUWN NAME="account" TYPE="nvarchar" SIZE="10" NULL="no"/>
</ COLUWNS>
<KEYS>
<PKEYS TYPE="si npl e" >
<PKEY NAME="cclient"/>
</ PKEYS>
</ KEYS>
</ TABLE>
<TABLE NAME="orders">
<COLUWNS>
<COLUW NAME="corder" TYPE="nvarchar" S| ZE="10" NULL="no"/>
<COLUWN NAME="cprod" TYPE="nvarchar" S| ZE="10" NULL="no"/>
<COLUWN NAME="quant" TYPE="nvarchar" S| ZE="10" NULL="no"/>
<COLUW NAME="cclient" TYPE="nvarchar" SIZE="10" NULL="no"/>
</ COLUWNS>
<KEYS>
<PKEYS TYPE="si npl e">
<PKEY NAME="corder"/>

</ PKEYS>
</ KEYS>
</ TABLE>
</ STRUCTURE>
<DATA>
<items NAME="stocks">
<i t ens- REG>
<FI ELD nane="cprod">alll</Fl ELD>
<FI ELD nane="descri pti on">agros nei o-gordo m | k</ FI ELD>
<FI ELD nane="quant " >150</ FI ELD>
<FI ELD nane="csup" >f 019</ FI ELD>
</itens- REG
<i t ens- REG>
<FI ELD nane="cprod">alll</Fl ELD>
<Fl ELD nane="descri ption">ucal nei o-gordo m | k</FI ELD>
<FI ELD nane="quant " >230</ FI ELD>
<FI ELD nane="csup" >f 231</ FI ELD>
</itens- REG
<i t ens- REG>
<FI ELD nane="cprod">b112</ FlI ELD>
<Fl ELD nane="descri ption">ucal mnei o-gordo m | k</FI ELD>
<FI ELD nane="quant " >204</ FI ELD>
<FI ELD nane="csup" >f 231</ FI ELD>
</itens- REG
</itenms>
<items NAME="suppliers">
<i t ens- REG>
<FI ELD nane="csup" >f 019</ FI ELD>
<FlI ELD nane="nane" >Agros, S. A </Fl ELD>
<Fl ELD nane="addr ess" >Por t o</ Fl ELD>
</itens- REG
</itens>
<itenms NAME="clients">

<i tenms- REG
<FI ELD nanme="ccl i ent">c001</ FlI ELD>
<FI ELD nane="nane" >Cor ner's Caf e</Fl ELD>
<FI ELD nanme="cont act ">123456324</ Fl ELD>
<FI ELD name="account ">123456789012345678901</ FI ELD>

22

Rendered by

http://www.renderx.com

Rendered by

</itens- REG
<i t ens- REG>
<FlI ELD nane="ccl i ent">c002</ Fl ELD>
<FI ELD nane="nane" >Super ni no Super nar ket </ Fl ELD>
<FI ELD nane="account " >098765432109876543210</ Fl ELD>
</itens- REG

</itenms>

<itens NAME="orders">
<itens- REG

<FI ELD nane="cor der">0012001</ FI ELD>
<FI ELD nane="cprod">alll</Fl ELD>
<FI ELD nane="quanti ty">10</ Fl ELD>
<FI ELD nanme="ccl i ent">c001</ FlI ELD>
</items- REG
<i tens- REG
<FI ELD nane="cor der">0072001</ FlI ELD>
<FI ELD nane="cprod">b112</ FlI ELD>
<FI ELD nane="quant " >20</ FI ELD>
<FI ELD nanme="ccl i ent " >c002</ FlI ELD>
</items- REG

</itenms>
</ DATA>
</ DB>

Thisisavalid XML instance, even if several FIELD elements have the values al11 and b112 (al111l is repeated
in the stocks TABLE); the contact FIEL D was forgotten in one of the clients TABLE's records; and the quantity
FIELD was used instead of the correct one - quant - in one record of the orders TABLE. This means that the
document isvalid, however it does not reflect avalid database. Therefore, wewill need to enforce several constraints
in order to have usable XML documents.

6.1. Constraining with XCSL

To ensure the uniqueness of the key of each table, i.e. cprod attribute is unique in the branch that refers to the
stocks TABLE, csup to the suppliers TABLE, cclient to the clients TABLE and corder to the orders TABLE, we
will need four constraints, one for each sub-tree. The following constraint is to validate the first table's key
uniqueness:

<CONSTRAI NT>
<SELECTOR SELEXP="//itenms[@GNAME=' st ocks'] /it ens- REG
[FIl ELD] @nane="'cprod']]"/>
<LET NAME="keycprod" VALUE="FIELD'/>
<CC>count (//itenms[@GNAME=' st ocks']/ it ens- REG
[FI ELD] @anme='cprod'] = $keycprod]) = 1</ CC
<ACTI ON>
<MESSAGE>WARNI NG
cprod: <VALUE SELEXP="FI ELD'/> is not uni que! </ MESSAGE>
</ ACTI ON>
</ CONSTRAI NT>

We use a LET element to keep in keycprod al the values that the element FIELD takes in the context
[litems] @NAME="stocks]/items-REG[FIELD[@name="cprod]] (i.e. for the branch items with name attribute
equal to 'stocks, every occurrence of FIELD for which the name attribute is equal to 'cprod’). After that, we count
how many times each instance of FIELD occurs inkeycprod list.

As we pointed out in the begining of the example, alll is repeated in the stocks TABLE. The other repetitions
won't be pointed out as they occur outside the items] @NAME="stocks] sub-tree. Therefore, the following errors
will be displayed:

23

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

<err-nessage>WARNI NG

cprod: alll is not unique!</err-nessage>
<err-nessage>WARNI NG

cprod: alll is not unique!</err-nessage>

The constraints for the other three tables are similar. Provided we substitute stocks by the name of each of the
other tables and cprod by the name of each of the other tables' key name, the construction of the new constraints
istrivial.

These constraints are not enough to completely validate our documents. We also need to validate, for each table:

» that each and every field defined in the STRUCTURE sub-tree is used to instantiate the records in the DATA
sub-tree - there are no fields unused nor used more than once;

» that each and every record in the DATA sub-tree uses FIELDs identifiers defined in the STRUCTURE sub-tree.

For the third TABLE, clients, the first restriction is:

<CONSTRAI NT>
<SELECTOR SELEXP="TABLE[@NAVE=' cl i ents']/ COLUVWNS/ COLUWN'/ >
<LET NAME="t abl ecli ents" VALUE=" @NANVE"/ >
<CC
(count(//items[GNAME=" clients']/itens- REG Fl ELD
[@anme = $tableclients]) =
count (//items[GNAME='clients']/itens- REG)
</ CC>
<ACTI ON>
<MESSAGE>WARNI NG
The field <VALUE SELEXP="$t abl eclients"/> was not used
in every record of the
"clients" table (or was used nore than once in sone record).
</ MESSAGE>
</ ACTI ON>
</ CONSTRAI NT>

With the LET element, we place in tableclients all the values the NAME attribute assumes in the context
TABLE[@NAME="clients]/COLUMNSCOLUMN (values the NAME attribute assumes every timethe COLUMN
element occurs in the sub-tree TABLE[@NAME="clients]). After this, we count, for each FIELD element
belonging to the sub-tree items] @NAME="clients], how many times the name attribute occurs in the previously
defined list tableclients. We also count the number of records (items-REG) of the sub-treeitemg] @NAME="clients],
to assure that each field defined for the clients TABL E was used as many times as the number of records described
for that TABLE. The action is triggered when these two values are not the same.

In the example we are using, one of the records of the clients TABLE does not have the contact FIELD, therefore,
the following error would be displayed:

<err-nmessage>WARNI NG
The field contact was not used in every record of the
"clients" table (or was used nore than once in sone record).
</ err-nessage>

The congtraints for the other three tables are similar. Provided we substitute clients by the name of each of the
other tables, the construction of the new constraintsis trivial.

For the fourth TABLE, orders, the second restriction is:

24

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

<CONSTRAI NT>
<SELECTOR SELEXP="itens[GNAME=' orders']/itens- REG Fl ELD"/ >
<LET NAME="t abl eorders2" VALUE=" @ane"/>
<CC>
(count (// TABLE[@NAME=' or der s'] / COLUWNS/ COLUMN] @NAMVE =
$t abl eorders2]) > 0)
</ CC
<ACTI ON>
<MESSAGE>WARNI NG
The field <VALUE SELEXP="$t abl eorders2"/> doesn't exi st
for this table: "orders".
</ MESSAGE>
</ ACTI O\>
</ CONSTRAI NT>

With the LET element, we place in tableorders2 the list of values the name attribute assumes in the context
items] @NAME="orders]/items-REG/FIELD (values the name attribute assumes every time the FIELD element
occurs in the sub-tree items] @NAME="orders]). After this, we count, for each COLUMN element belonging to
the sub-tree TABLE[@NAME="orders], the number of timesthe NAME attribute occursin the previously defined
list tableorders2. The action is triggered when this value is greater than zero, thisis, the FIELD used in the sub-
tree itemg @NAME="orders]) was defined in the sub-tree TABLE] @NAME="orders].

In the example we are using, one of the records of the stocks TABLE has a quantity FIELD instead of the quant
FIELD that has been defined in the STRUCTURE sub-tree, therefore, the following errors would be displayed
(noticethefirst error is generated by the first kind of constraint, only thelast oneis produced by the last constraint
shown):

<err-nmessage>WARNI NG
The field quant was not used in every record of the
"orders" table (or was used nore than once in sone record).
</ err-nessage>
<err - nessage>WARNI NG
The field quantity doesn't exist for this table: "orders".
</ err-nmessage>

The constraints for the other three tables are similar. Provided we substitute orders by the name of each of the
other tables, the construction of the new constraintsistrivial.

6.2. Constraining with Schematron

At this point we will need to remember that, for thisfamily of documents, we needed three constraints for each of
the four tables.

To ensure the uniqueness of the key of each table, wewill need four constraints, one for each sub-tree. Thefollowing
congtraint is to validate the stocks TABLE key uniqueness (we only show diagnostics and pattern elements as the
restistrivia):

<di agnosti cs>
<di agnostic id="01">
cprod: <val ue-of sel ect="FlIELD @ane="'cprod']"/> is not unique!
</ di agnosti c>
</ di agnosti cs>
<pattern abstract="true" id="ch">
<rul e context="//itens[GNAME=' st ocks']/itens- REG
FI ELD] @ane='cprod']]">
<key name="keycprod" path="Fl ELD"/>

25

IAMAN Rendar X CONT

http://www.renderx.com

</rul e>
</ pattern>
<pattern nanme="Stocks table key">
<rul e context="//itens][GNAME=' st ocks']/i tens- REG'>
<assert test="count(key('keycprod',
FI ELD] @ane="cprod'])) = 1" di agnosti cs="01">
</ assert>
</rul e>
</ pattern>

We use two pattern elements. The first one stands for an abstract rule wich places in keycprod the list of values
that the element FIELD takes in the context //items] @NAME="stocks]/items-REG[FIELD[@name="cprod1].
The other one counts how many times each instance of FIELD in the context //items] @NAME="stocks] /items-
REG occursin keycprod list.

The errors reported are the same they were with XCSL, but look dlightly differet. We were unable to use
Schematron-report as it returns an error because of the use of the key element, using therefore an alternative:
Topologi Schematron Validator.

Stocks table key /DB[1]/DATA[1]/itens[1]/itenms- REF 1]
<itens-REG>...</> cprod: alll is not unique!

/DB[1] / DATA[1] /items[1]/itenms- RE| 3] <items-REG...</>
cprod: alll is not unique!

Just like what happened while working with X CSL, the constraints for the other three tables are similar. Provided
we substitute stocks by the name of each of the other tables and cprod by the name of each of the other tables' key
name, the construction of the new constraintsistrivial.

We still need two more constraints for each table, as we explained before.
For the third TABLE, clients, the restriction to assure that each and every field defined in the STRUCTURE sub-

tree is used to instantiate the records in the DATA sub-tree - there are no fields unused, nor used more than once,
is:

<di agnosti cs>
<di agnostic id="03a">
The field <val ue-of sel ect="@NAME"/ >
was not used in every record of the
"clients" table (or was used nore than once in sone record).
</ di agnosti c>
</ di agnosti cs>
<pattern abstract="true" id="ch">
<rul e context="itenms[GNAME='cl i ents']/itens- REG FlI ELD' >
<key name="t abl ecl i ents" path="@ane"/>
</rul e>
</ pattern>
<pattern nane="Clients table (use of all the defined fields)">
<rul e cont ext =" TABLE[@GNAME=" cl i ent s'] / COLUWMNS/ COLUWN' >
<assert test="(count(key('tableclients', GNAME))) =
count(//itens[GNAVME='clients']/itens-REG" di agnosti cs="03a">
</ assert >
</rul e>
</ pattern>

We use two pattern elements. The first one stands for an abstract rule with which we place in tableclients the list
of values the name attribute assumes in the context itemsf @NAME="clients]/items-REG/FIELD (values that the
name attribute assumes every time the FIELD element occursin the sub-tree items] @NAME="clients]). The other
one counts, for each COLUMN element belonging to the sub-tree TABLE] @NAME="clients], how many times

26

Rendered by

http://www.renderx.com

Rendered by

the NAME attribute occurs in the list tableclients. We also count the number of records (items-REG) of the sub-
tree itemg @NAME="clients], to assure that each field defined for the clients TABLE was used as many times as
the number of records described for that TABLE. The action is triggered when these two values are not the same.

In the example we are using, one of the records of the clients TABLE does not have the contact FIELD, therefore,
the following error would be displayed:

Clients table (use of all the defined fields)

/ DB[1] / STRUCTURE[1] / TABLE[3] / COLUMNS] 1] / COLUM\ 3]

<COLUWN NAME="contact" TYPE="nvarchar" SIZE="10" NULL="no">...</>
The field contact was not used in every record of the "clients"
table (or was used nore than once in sone record).

The constraints for the other three tables are similar. It is enough to substitute clients by the name of each of the
other tables.

For the fourth TABLE, orders, the restriction needed to assure that each and every record in the DATA sub-tree
uses FIELDs identifiers defined in the STRUCTURE sub-tree, is:

<di agnosti cs>
<di agnosti c id="04b">
The field <val ue-of sel ect="@ane"/>
doesn't exist for this table: "orders".
</ di agnosti c>
</ di agnosti cs>
<pattern abstract="true" id="ch">
<rul e cont ext =" TABLE[@GNAVE=' or der s'] / COLUWNS/ COLUWN' >
<key name="t abl eorders2" pat h="@GNAME"/ >
</rul e>
</ pattern>
<pattern name="Orders table (inexistent fields)">
<rul e context="itens[@GNAVE=' orders']/itenms- REG Fl ELD">
<assert test="count(key('tableorders2', @ane)) = 1"
di agnosti cs="04b" >
</ assert>
</rul e>
</ pattern>

We use two pattern elements. Thefirst one stands for an abstract rule with which we place in tableorders2 thelist
of values the NAME attribute assumes in the context TABLE[@NAME="orders]/COLUMNSCOLUMN (values
that the NAME attribute assumes every time the COLUMN eement occurs in the sub-tree
TABLE]| @NAME="orders]). The other one counts, for each FIELD element belonging to the sub-tree
itemg] @NAME="orders], how many times the name attribute occursin the list tableorders2. Each name attribute
shall belong to the list of fields defined in the sub-tree TABLE[@NAME="orders] (and once).

In the example we are using, one of the records of the stocks TABLE has a quantity FIELD instead of the quant
FIELD that has been defined in the STRUCTURE sub-tree, therefore, the following errors would be displayed
(noticethefirst error is generated by the first kind of constraint, only thelast oneis produced by the last constraint
shown):

O ders table (use of all the defined fields)

/ DB[1] / STRUCTURE] 1] / TABLE[4] / COLUMNS] 1] / COLUMN[3]

<COLUWN NAME="quant" TYPE="nvarchar" SIZE="10" NULL="no">...</>
The field quant was not used in every record of the "orders" table
(or was used nore than once in

some record).

27

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

Orders table (inexistent fields)

/ DB[1] / DATA[1] /i tems[4] /i tenms- REF 1] / FI ELD[3]

<FI ELD nane="quantity">...</>

The field quantity doesn't exist for this table: "orders".

The constraints for the other three tables are similar. We just need to substitute orders by the name of each of the
other tables.

6.3. Summary

For this case-study, transforming XCSL constraintsin Schematron constraints or the other way round is not linear.
The perspective in which we have to think, in order to write this kind of constraints, differs from one to another.
With XCSL we grab in the list al the values pertaining to the "origin" branch, whereas with Schematron we grab
in the list all the values pertaining to the "destiny" branch, i.e, if we want to check if all the values defined in the
X sub-tree were used inthe Y sub-tree, we create the XCSL's list with the X branch values and the Schematron's
list with the Y branch values.

We set up the Schematron lists of values in independent pattern elements, what means that, apart from the incon-
venience of having to define two pattern elements, makesit possible to define global variables. XCSL on the other
hand, doesn't allow this, meaning that we may use exactly the same names for every constraint (i.e, each CON-
STRAINT element) whereas with Schematron we can not.

7. Conclusion

In this paper we briefly introduced three constraint languages - XCSL, Schematron and XML-Schemas -, and used
four red life case-studies to compare the two first approaches.

Those examples were chosen from a much larger set of documents we have been working with. The complete
report is undergoing and will be published shortly.

This study allowed us to find the answers to the questions we faced in the beginning:
Do they do the same job?

According to all that we've shown, yes, XCSL and Schematron can do the same job.
Arethere some kind of constraints that are easier to specify withone of them?

The kind of constraints for which it is useful to use variables are clearly simpler to specify with XCSL once, at
the present moment, it has the advantage of allowing the use of variables what significantly shortens the number
of lines that we need to write and, consequently, errors become less likely to occur. The rest of the constraints
differ on the mental structure of each person: with XCSL you start writing a constraint and do it all at once using
the CONSTRAINT element whereas with Schematron (unless you don't need to report the value some element or
attribute assumes in a particular instance), you need to use two elements - pattern and diagnostics. Even so, all
XCSL constraints are |less verbose than Schematron's ones.

Globally, XCSL looks easier to understand, learn and use than Schematron.
Do you need different background to use the tools?

Theonly thing that differsfrom oneto another isthe particular XML language each one has. To validate documents
using one of thetools, al that you have got to learn isits DTD (or Schema).

Isit possible to use themin similar situations (the same DTD, the same XML instances)?

Unlessfor the huge amount of lineswe need to use when constraining the referred cases with Schematron, it looks
likeit is possible to specify every constraint with both the tools.

28

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

May we use them to produce an equal result?
Although Schematron is much more verbose, we were able to produce the same kind of resultswith both the tools.

Schematron is clearly more complex than XCSL and even if it is true that the first one has some possibilities
inexistent in the last one (like documentation or the ability of entitling the whole restrictions document), it isalso
true that maybe the over effort to learn al those facilities overweighs the advantage of using them.

How do XCS. and Schematron relate to XML Schemas?

Some constraints we specified with them may be specified by XML Schemas, however, there are some constraints
that we can't specify with XML Schemas. Therefore, we may still need to use both an XML Schemaand aconstraint
document (written in XCSL or Schematronlanguages).

What is the intersection area of these three?
Domain Range, mixed content and cardinality constraints.
What kind of constraints each one of these three is able to specify?

Supposing we covered all possible kinds of constraints, and we believe we did, we may constrain Domain Range,
mixed content and cardinality constraints with XML Schemas and all kinds of constraints both with XCSL and
Schematron.

Bibliography

[RAM 2000] José Carlos Leite Ramalho, 2000. Anotagéo Estrutural de Documentos e sua Seméantica, Universidade
do Minho - Portugal.

[RAM 2001] Ramalho, José C. and Henriques, Pedro R., 1998. Constraining Content: Specification and Processing,
XML Europe'2001, Internationales Congress Centrum (ICC), Berlin, Germany.

[DOD 2001] Dodds L., 2001. Schematron: Validating XML Using XSLT, XSLT UK Conference, Keble College,
Oxford, England.

[TON 2000] Claus Tondering, 2000. Frequently Asked Questions about Calendars - Version 2.3, in
http://www.tondering.dk/claus/calendar.html.

Glossary

XCsL, XML Constraint Specification Language

Biography

Marta Henriques Jacinto
University of Minho
Braga
Portugal
Email: martajacinto@itij.m;j.pt

With a degree on Applied Mathematics and Computation, Marta Jacinto is currently working for ITIJ - the
Computer Department of the Ministry of Justice as Systems Engineer.

As aresearcher, she isworking on her Master thesis under the subject " Semantic Validation of XML Docu-
ments".

29

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

Giovani Rubert Librelotto

University of Minho
Braga

Portugal

Email: grl@di.uminho.pt

Giovani Librelotto, has adegree and aMaster on Computer Science. Heis currently researching on XML and
Topic Maps and is preparing his Ph.D. thesis.

José Carlos Leite Ramalho

University of Minho
Braga

Portugal

Email: jer@di.uminho.pt

J. C. Ramahoisan Auxiliary Professor at the Computer Science Department of the University of Minho.

HehasaMasterson " Compiler Construction” and aPh.D. on the subject " Document Semanticsand Processing”.
He has been managing several XML projects and consulting.

Pedro Rangel Henriques

University of Minho
Braga

Portugal

Email: prh@di.uminho.pt

Pedro Henriquesis an Associated Professor of Computer Science at University of Minho.

Hisresearch and teaching activity has been concerned with programming in general - paradigms, specification
formalisms and languages; in particular, his main interest is the devel opment of language processors.

He completed, some years ago, his Ph.D. at University of Minho in the area of Attribute Grammars; he is,
now, the leader of the "Language Specification and Processing” group. The application of the "grammatical
approach to problem solving" and the use of "parsing and semantic analysistechnologies’ in various problem
domains (namely, document processing, information retrieval and data/text mining, and geographical
information systems) are the present concerns of his academic work.

30

IAMAN Rendar X CONT

http://www.renderx.com

