Constraining Content: Specification and
Processing

José Carlos Ramalho <jcr@di.uminho.pt>

Abstract

SGML and XML are changing the way people think an act with
documents. These standards have given rise to a new methodology
and document processing model.

Independence between structure and format, structural validation,
document longevity, software and hardware independence, all these
and much more became possible.

However there is still a lack for content validation which relies beyond
DTD scope.

Recently, some proposals were submitted to the W3C, attempting to
solve the problem: DCD, Schema, ... XML Schema seems to be the
final choice, and some implementations are already emerging.

However, in our opinion, we do not need any of those. We already have
what we need we just must to give it a different use.

In order to format a document we need to select fragments and apply
style to them or if we want to query the document content we need a
combination of tree-walkers to select the wanted nodes in the
document tree. We have XSLT to do that. The pattern language inside
XSLT is powerful enough to select almost any kind of context inside a
document tree.

In this paper we are stating that we can express content constraints
using XSLT. The syntax and the processing model are there we only
need to tweak a little bit the semantics.

We will present some examples of constraints small enough to fit in this

document and we will express them using XSLT in a way that XSLT
processors can act as constraint validators.

After that we will describe a simple operational architecture that
enables users to specify constraints and test them inside a XML-XSL
framework.

At the end we generalize the idea specifying a method to implement the
constraint processing model with any tool supporting XSLT patterns.
1. Introduction

This theme, "Content Constraining”, was the main thesis of the author's Phd
[Ram2000a].

In that thesis, a parallelism was established between Formal Languages Processing
and Document Processing. This parallelism is summarized in the following table:

Document instance Program

Markup Language Programming Language
Tag set Vocabulary

DTD Grammar

Table 1.

This hypothesis help to realize that the document processing world is very similar to
the early days of compiler construction.

Until the last five years we only had lexical analysis and syntactic analysis. DTDs
enable us to specify the lexicon and the (almost abstract) grammar of a certain
markup language. Then, in 1996, DSSSL came into scene and the specification of
what we call Dynamic Semantics became possible:

* In Formal Language Processing world when a parser analyses a text it produces
an abstract syntax tree according to the rules specified in the grammar; Dynamic
Semantics is then specified as a set of transformations over this tree.

* In Document Processing world when a parser analyses a document it produces
a grove.

With DSSSL we can then specify transformations over this structure.

After all, there was still a lack, Static Semantics. That is what will be discussed in the
remainder of this paper.

In Formal Language Processing this problem is being solved with Attribute
Grammars [Knu98] [Hen92]. We are also working with Attribute Grammars and XML
but that matter is beyond the scope of this paper.

2. Content Constraining

As we stated at the end of last section we are interested in the specification of Static
Semantics.

By Static Semantics we mean preconditions or contextual conditions over content.
These contextual conditions could be checked by the parser in the grove builder
process or, if the user is using a structured editor the built-in parser could check them
during editing. This is not the approach followed in this work. In order to do this we
should remake a parser or create a new one and our aim here is to make use of
existing technology to implement our ideas.

Concerning Content Constraining we can classify constraints as belonging to one of
the three categories defined below:

Domain range This is the most common constraint. We need this type of

checking constraint when we want a certain content/value to be
between a pair of values (inside a certain domain).
Normally, is used when data is of type date or numeric.

Dependencies between We have cases where an attribute value depends on the
two elements or value of another element or attribute located in a different
attributes branch of the document tree.

Pattern matching Sometimes we need to guarantee that content follows a
against a Regular certain format (as in the case of dates: there are more
Expression than 100 formats).

Each of the following subsections will illustrate these ideas with an example of some
domain.

2.1. Linguistics

The role of XML in the Linguistics domain can be quite varied. In this case suppose
that XML was used to markup a corpora morphologically and syntactically (this
example is just for demonstration).

A very simple sample would be:

<?xm version="1.0"""?>
<doc>
<sent ence>
<noun nunber="s" genre="f">Al i ce</ noun>
<verb tinme="present"” nunber="s" person="3">drinks</verb>
</ sent ence>
<sent ence>
<noun nunber =" p" >Dogs</ noun>
<verb tinme="present” nunber="s" person="3">barks</verb>
</ sent ence>
</ doc>

Figure 1. XML Document: sentence.xml

In this kind of documents we want to ensure that noun phases and verb phases
agree in number. We can do this specifying a value dependency between the
number attribute belonging to the two elements that should be checked by
"someone" (we will leave the specification of this constraint for the following
sections).

2.2. Archeology

During the last years we have supervised a project which aimed at the complete

classification of all the archeological sites in northern Portugal. Each archeological
site is described by a XML document as shown below:

<?xm version="1.0" encodi ng="i so-8859-1""?>
<ARCELEM>

<TlI PO ASSUNTC="ar queossitio"/>

<I DENT> Castro do Caires </|DENT>

<I MAGEM NOVE="t aca.gi f"/>

<DESC>

<Ll GA TERMO="povoado fortificado"> Povoado
fortificado</LI GA>

</ DESC>

<LUGAR> G ovos </ LUGAR>

<FREG> Caires </ FREG

<CONC> Amar es </ CONC>

<CODADMV> 030105 </ CODADMVF

<LATI T> 519, 9 </LATIT>

<LONG T> 181,5 </ LONG T>

<ALTI T> 320m </ ALTI T>

<ACESSOC>0O acesso ao povoado faz-se a partir do |ugar de

Cai res,
por cam nho carreteiro, que circunda o nonte.</ACESSC> ...

</ ARQELEM>

Figure 2. XML Document: arqueo.xml

At the moment we have reasonable number of this kind of documents and we are
starting to build a geographical information system (GIS). We want to bind these
documents to the GIS and we want everything to fit properly. To do this with a
greater degree of safety we need to guarantee some constraints over the content of
certain critical elements. In this case critical elements are LATIT and LONGIT which
hold the physical coordinates of the site and we want to ensure that these
coordinates fall inside the GIS map.

In this example we are referring to a domain range constraint. We will present the
solution for this example in the following sections aswell.
3. Constraint Definition Language

In [Ram2000a] the author wrote about his quest for a Constraint Specification
Language (CSL).

The first questions that needed an answer were: Do we really need a new language?
To what this new specification will be linked? Elements? Where? Inside the DTD?

The first idea was to specify the constraints together with the elements and attributes
in the DTD. That would be a good solution if we intended to associate a constraint
with an element. But we soon realize that we should associate constraints with
context and not with elements: an element can appear in different contexts in a
document tree and we may wish to enforce different constraints for each context. We
needed a context selector like in the query languages or style languages so the next
step became the study of those languages.

Many languages were studied: XML query languages like XSLT [XSLT], XQL
[RLS98], Element Sets, Lore, XQuery, XML-GL, DSSSL, scripting languages like
Perl (with XML::Parser, XML::DT) and Omnimark.

Scripting languages were discarded because we wanted a more user-friendly
language, declarative and maintaining the good characteristics of XML like hardware
and software independence.

It was very simple to conclude from the rest that XSLT was a common subset to
many of them. Besides that XSLT has a feature that would become very useful to
specify constraints: predicates.

3.1. Deriving a Syntax

In [Ram2000a] and other smaller publications we have formally defined this
Constraint Specification Language. This exercise of formalization helped us to find
the core structure of the language.

Thus, a specific constraint specification will be formed by a list of tuples. Each tuple
has three parts:
context selector As the name suggests is the expression that selects the

context where we want to enforce the constraint.

context condition The condition we want to enforce.

action The action we want to trigger every time the condition
does not hold.

In a more formal notation we can write:

Constrai nt Spec = Constrai nt+ Constraint = (Context Sel ector,
Cont ext Condi ti on, Action)

As we stated before we decided to use XSLT to specify the constraints. But, in order
to be coherent with XML we needed a XML wrapper for XSLT expressions (like in
XSL).

So the first version of a DTD for the Constraint Specification Language was written. It
was named csl.dtd:

<l-- CSL: Constraint Specification Language -->
<l-- jecr - 11.01.2001 - V1.0 -->
<l-- file: csl.dtd -->

<l ELEMENT cs (constraint) +>

<I ELEMENT constraint (selector,cc, action)>

<! ELEMENT sel ect or EMPTY>

<! ELEMENT cc EMPTY>

<I ELEMENT action (nmessage*)>

<I ELEMENT nessage (#PCDATA| val ue) *>

<! ELEMENT val ue EMPTY>

<I' ATTLI ST cs dtd CDATA #l VPLI ED dat e CDATA #l MPLI ED versi on
CDATA #| MPLI ED >

<I ATTLI ST sel ector sel exp CDATA #REQUI RED>

<I' ATTLI ST cc cond CDATA #REQUI RED>

<I ATTLI ST val ue sel exp CDATA #REQUI RED>

Figure 3. CSL version 1.0 DTD

With this XML language it is possible to write restrictions with a XML flavour.

Consider the following example taken from a case study. It is a simplification of a
linguistics case.

3.1.1. Example: agreements

Next, we present a very simple XML instance. This instance is adapted from a
portuguese case study. In portuguese verbs and nouns must agree in humber and
verbs and adjectives must agree in number and genre:

<?xm version="1.0"7?7>
<! DOCTYPE CS SYSTEM "csl . dtd">
<CS>
<CONSTRAI NT>
<SELECTOR SELEXP="//sent ence"/ >
<CC>noun/ @unber =ver b/ @unber </ CC
<ACTI O\>
<VESSAGE>Attri bute nunber of "<VALUE SELEXP="noun"/>" does
not agree

with attribute nunber of <VALUE
SELEXP="verb"/>"111 </ NESSAGE>
</ ACTI O\>
</ CONSTRAI NT>
<CONSTRAI NT>
<SELECTOR SELEXP="//sent ence"/ >
<CC>noun/ @enr e=adj / @enr e</ CC>
<ACTI O\>
<MESSAGE>ERROR: <VALUE SELEXP="noun"/> e <VALUE SELEXP="adj"/>
do not agree in genre! </ MESSAGE>
</ ACTI ON\>
</ CONSTRAI NT>
</ CS>

Figure 4. CSL version 1.0: XML instance

This example falls into the second category of constraints: we are testing a value
dependency between the content of two different document tree nodes.

4. Processing Model

We are now going to present the CSL processing model. To clarify the purpose and
content of the following sections we are going to describe each of the pieces and
how they relate to eachother.

Until now we did not add anything to the existing processing models. We have just
justified the need for a constraint specification language and we have created a XML
language with that goal.

The driving idea of this work is to put things to work with existing technology. In other
words to make the best we can with existing tools and standards.

With these goals in mind it was easy to reach the idea of using XSL to implement the
CSL processor (we were already using a XSL subset to specify the constraints -
XSLT).

Writing down a XSL stylesheet for each CSL document can be quite hard and boring.
Beyond all this, the relation between a CSL document and the XSL stylesheet is
quite obvious. Thus we decided to build a XSL stylesheet generator. Since each
stylesheet corresponds to a constraint processor we created a constraint processor
generator.

The following figure (Figure 5) illustrates the system components and the relations
between them.

Constraint

Spec. Constraint
Processor
Generator

XSL
stylesheet

Standard
XSL
Processor

A

XML
Doc. Instance

Error Messages...?

Figure 5. Constrain Specification and Processing Framework

4.1. CSL Processor Generator

To implement the processor generator we had to choose a XML processing
environment since CSL is now a XML language and each constraint specification file

a XML document.

Three possibilities were considered: XSL itself, XML::DT (perl module on top of

XML::Parser) and Omnimark.

As we going to see in later sections some problems have emerged and we had to
change CSL. With that new version it would be quite complex to code this generator

in XSL.

This let us with the two other choices. For the problem in question they are
equivalent. So we based our choice in personal experience and we have chosen

XML::DT.
1. #!/usr/Dbin/perl
2. use XM.::DT ;
3. ny $filename = shift;
4.
5. 9% andl er =(
6. '-outputenc’ => "'1S0O 8859-1",
7. '-default' => sub{"<$g>$c</ $g>"},
8. ' SELECTOR => sub{"$v{SELEXP}"},
9. ' CONSTRAI NT' => sub{"<xsl:tenplate
mat ch=\"$c\ n</ xsl : tenpl ate>\n"},
10. ' MESSAGE' => sub{"\n ERROR $c\n"},
11. ' VARI ABLE => sub{"<xsl:val ue- of
sel ect=\" $v{ SELEXP}\ "'/ >"},
12. 'CS' => sub{"$c"},
13. 'ACTION => sub{"$c"},
14. 'CC => sub{"[not ($v{COND})]\">"},
15.);
16.
17. print <<' HEADER- END ;
18. <?xm version="1.0" encodi ng="1 SO 8859-1"7?>
19. <!-- csl.pl - processador de restriç &otil de;es
20. jcr - 2001.02.15 -->
21.
22. <xsl:styl esheet version="1.0"
23. xmns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or mi' >
24. 25. <xsl:output indent="yes" encodi ng="iso-8859-1"/>
26.
27. <xsl:tenplate match="/">

28. <xsl :apply-tenpl ates/>
29. </ xsl : tenpl at e>
30. HEADER- END

32. print dt($filenane, %nandl er); 33.

34. print <<' FOOTER- END ;

35. <xsl:tenplate match="//text()" priority="-1">
36. </ xsl : tenpl at e>

38. </ xsl : styl esheet >
39. FOOTER- END

Figure 6. XSL Processor Generator: csl.pl

Basically what we have here is a transformation function with some text as header
and footer:

lines: 5-15 this is the transformation function; very similar to
Omnimark language: $c denoting processed content and
$v an associative array of attributes.

The implemented algorithm to generate the stylesheet is:

1. For each constraint create a XSL template.

2. Start filling attribute match of template element with
the context selector.

3. Finish filling attribute match of template element with
a predicate that is the negation of the contextual
condition (we just want to catch error situations).

4. Fill the body of the template element with the
expanded contents of action.

lines: 17-30 we are just printing the stylesheet header.

lines: 34-39 we are printing the stylesheet remainder; notice the last

template with a lower priority; this template will filter from
output all the "good" parts of the document, we just want
to find the erroneous ones.

For the agreements CSL document the generated XSL stylesheet would be:

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<xsl :styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nt' >
<xsl : out put indent="yes" encodi ng="iso-8859-1"/>
<xsl:tenplate match="/">
<xsl : appl y-tenpl at es/ >
</ xsl :tenpl at e>
<xsl:tenpl ate

mat ch="// sent ence[not (noun/ @unber =ver b/ @unber)]" >

ERROR: Attribute nunber of "<xsl:value-of select="noun'/>"
does not agree with attri bute nunber of <xsl:val ue-of
sel ect="verb' />"1!
</ xsl :tenpl at e>
<xsl:tenpl ate
mat ch="// sent ence[not (noun/ @enr e=adj / @enre)] ">
ERROR: <xsl : val ue-of sel ect='"noun'/> e <xsl:val ue- of
select="adj'/>
do not agree in genre!!
</ xsl :tenpl at e>
<xsl:tenmplate match="//text()" priority="-1">
</ xsl :tenpl at e>
</ xsl : styl esheet >

Figure 7. Generated XSL stylesheet (version 1.0)

5. The Null Value Problem

For the moment it seems that the projected architecture works very nicely. However,
when we start testing more complicated examples one important problem emerged.
We call it the null value problem.

This problem appears when two conditions meet:

1. there are optional elements in the document (in the DTD: elements in mixed
contents or as part of alternatives)

2. the designer (who specified the constraints) used one or more of those elements
in the context conditions

In XSL when an element used in a predicate is absent from the context of that
predicate the predicate will evaluate to false. With our architecture this will cause the
system to catch all the erroneous situations plus many others where optional
elements are not present.

Although, this CSL version is still valid once the designer takes some care with the
constraints he is specifying and avoids critical situations.

5.1. CSL: version 2.0

When we detected the null value problem we started to work immediately in a
solution.

This problem is common to other type of applications such as databases with
invariants: if we specify an invariant over a table column and if that column can be
empty we have the same problem. In that context the problem is solved adding a
precondition for each column that appears in the invariant and that can have a null
content: the precondition is only a conditional that tests the content existence.

Since XSL allows us to specify multiple predicates for a specific context we can solve
our problem the same way: adding a predicate for each critical element.

To implement this solution we had two options: we could consider every element a
critical element or we could give that power to the designer letting him decide which
element is critical.

We chose the second approach and created CSL version 2.0.

We had to change the DTD and the processor generator became much more
complex.

The DTD suffered smaller changes. We have just changed the CC element.

<l-- CSL: Constraint Specification Language -->
<l-- jer - 11.01.2001 - V2.0 -->

<I-- file: csl2.dtd -->

<I ELEMENT cs (constraint) +>

<I ELEMENT constraint (selector,cc, action)>
<I ELEMENT sel ect or EMPTY>

<I ELEMENT cc (#PCDATA| vari abl e)*>

<I ELEMENT action (nessage*)>

<! ELEMENT nessage (#PCDATA| val ue) *>

<I ELEMENT vari abl e EMPTY>

<! ELEMENT val ue EMPTY>

<I' ATTLI ST cs dtd CDATA #l VPLI ED dat e CDATA #l MPLI ED ver si on
CDATA #| MPLI ED >

<I' ATTLI ST sel ector sel exp CDATA #REQUI RED>
<I ATTLI ST vari abl e sel exp CDATA #REQUI RED>
<I ATTLI ST val ue sel exp CDATA #REQUI RED>

Figure 8. CSL version 2.0: DTD

With this language (CSLv2) the designer can specify the constraints without caring
about the null value problem. He just needs to mark "suspicious" elements with the
VARIABLE element.

The previous example marked up with this new version would look like the following
document.

<?xm version="1.0"?7>

<! DOCTYPE CS SYSTEM "csl 2. dtd">

<CS>

<CONSTRAI NT>

<SELECTOR SELEXP="//sent ence"/ >

<CC><VARI ABLE SELEXP="noun/ @unber"/> =<VARI ABLE
SELEXP="ver b/ @unber"/ >

</ CC>

<ACTI ON\>

<MESSAGE>Attri bute nunber of " <VALUE SELEXP="noun"/>" does
not agree with

attri bute nunber of <VALUE SELEXP="verb"/>"!11 </ NESSAGE>

</ ACTI O\>

</ CONSTRAI NT>

<CONSTRAI NT>

<SELECTOR SELEXP="//sent ence"/ >

<CC><VARI ABLE SELEXP="noun/ @enre"/ > =<VARI ABLE
SELEXP="adj / @enre"/ >

</ CC

<ACTI O\>

<MESSAGE>: <VALUE SELEXP="noun"/> e <VALUE SELEXP="adj"/> do

not agree in genre!!!
</ MESSAGE>
</ ACTI ON\>
</ CONSTRAI NT>
</ CS>

Figure 9. CSL version 2.0: Document Instance

The processor generator transformation function had to be upgraded to this new
version and looks like the following:

% andl er=('-outputenc’ => '1S08859-1', '-default' =>
sub{" <$g>$c</ $g>"},

' SELECTOR => sub{"$v{SELEXP}"}, ' CONSTRAI NT' =>
sub{@cvars=(); $predicates="";

"<xsl:tenplate match=\"$c</xsl :tenplate>";}, ' MESSAGE =>
sub{" ERROR $c"},

"VALUE' => sub{"<xsl:val ue-of select=\"$v{SELEXP}\"'/>"},
'CS' => sub{"$c"},

"ACTION => sub{"$c"}, 'CC => sub{$predicates =
"[not($c)]";

foreach $ccvar (@cvars) { $predicates.= "[$ccvar]"; }
$predi cates. "\">";},

' VARI ABLE' => sub{push(@cvars, $v{SELEXP}); "$v{SELEXP}";},
);

Figure 10. XSL Processor Generator version 2.0

And the changes are:

1. we have added a rule for the new VARI ABLE element; in this rule we collect the
element content in an associative array named "@cvars"; after that the
element content (in this case the value of attribute SELEXP) is returned (we must
return it so the normal predicate is generated as in the earlier version).

2. as the reader should have noticed the element CC has changed from EMPTY to a
mixed content; that content is the context condition, text with some parts marked
up specially (VARI ABLEs); in this rule we are generating the list of predicates -

$pr edi cat es"; the algorithm for this rule comprises the following steps:

* initialize "$predi cates" with the negation of the main condition:
$predicates = "[not ($c)]";

This is the normal predicate the one we want to test.

« for each element in array @cvars (which represent the content of a
marked up variable) we join a predicate to the list of
predicates:$pr edi cates. = "[$ccvar]";

This predicate just tests the existence of a critical element.

This processor generator applied to the previous CSL2 document would generate the
following XSL stylesheet.

<! [CDATA[
<xsl:tenpl ate match="//sentence
[not (noun/ @wunber =ver b/ @unber) |
[noun/ @wunber][ver b/ @unber]"> ERROR Attribute nunber of
"<xsl :val ue-of select="noun'/>" does not agree with
attribute nunber of
<xsl :val ue-of select="verb'/>"!1l </xsl:tenplate>
<xsl :tenpl ate mat ch="//sent ence[not (noun/ @enr e=adj / @enre) |
[noun/ @enre][adj / @enre]"> ERROR: :<xsl:val ue- of
select="noun'/> e
<xsl :val ue-of select="adj'/> do not agree in genre!!
</ xsl :tenpl at e>

Figure 11. Generated XSL stylesheet version 2.0

6. Final Remarks
This paper presented a simple idea that works with existent technology.

We still feel that this problem of constraint specification and processing would be
better resolved with a global approach integrating DTDs Constraints and Style. We

are pursuing such solution using the attribute grammar paradigm.

The work presented here is under development so it is possible that the version that
will be presented at the conference has number 3 or 4. All new versions will be up on
author's website. However, version 1.0 is still valid and can be used. In many
projects we do not need to care about inexistent elements. All versions will be
maintained: a version is composed of a DTD and the correspondent XSL processor
generator.

The small system described in this paper uses XML, XSL and XML::DT. It was on
author's mind since the beginning to put things to work in a XML-XSL framework or a
XML-XML::DT framework. The work will continue in these two parallel lines.

Acknowledgements

Thanks are due to PRODEP and FCT that provided the grant under which this work
was developed.

Bibliography

[Ram2000a] "Anotacao Estrutural de Documentos e sua Semantica", José Carlos
Leite Ramalho, Phd thesis, Universidade do Minho - Portugal, July 2000.

[Knu98] "Semantics of Context Free Languages”, Donald E. Knuth, in Mathematical
Systems Theory Journal, 1968.

[Hen92] "Atributos e Modularidade na Especificagdo de Linguagens Formais", Pedro
Rangel Henriques, Phd thesis, Universidade do Minho - Portugal, 1992.

[XSLT] "XSL Transformations (XSLT) - version 1.0",
http://www.w3.0rg/TR/1998/WD-xsl-19980818.

[RLS98] "XML Query Language (XQL)", Jonathan Robie and Joe Lapp and David
Sach, QL'98 - The Query Language Workshop, 1998.

Biography

José Carlos Ramalho
Teacher/Researcher
Computer Science Department, University of Minho
Portugal
Email: jer@di.uminho.pt

José Carlos Ramalho - José Carlos is a teacher and researcher at U.Minho
where he has finished his Phd with the title "Structured Document Processing and
Semantics".

He is supervising several XML/SGML projects and acting as an external
consultant for several institutions.

