
XML and Semantic Validation

Abstract

With XML as with SGML, we can have structural correctness, once
they provide syntactic rules to state how to mark-up all the docu-
ments of the same family (of the same type); moreover, XML also
imposes a working approach in which there is a complete separation
between the structure of the data and the way it looks. So it is possi-
ble to avoid that someone will write a letter putting the ending before
the body. Also, being purely declarative and completely independent
of the processing, it is possible to swap documents between different
systems without having to change them.
But even this way, there still is a lack of content validation. There-
fore, as Ramalho et al [1] pointed out, if a document has the decrees
published by some kings, and includes their birth dates, it is critical
if there is a sentence in which a king is said to publish a decree before
he was born.
In this paper we are concerned about reaching a way to automatically
process a document in order to validate it semantically, avoiding this
kind of incongruences that may spoil all a teams work.

Keywords:
XML, semantic validation, structured documents

1 Introduction

Like SGML, XML is a meta-language, for it allows the definition of new lan-
guages [2]. At first sight, SGML looks able to solve the problem, but it is
complex and hard to learn. This will probably make it usable only by com-
munities with an elevated technical level, and not by common users. This
way, XML seems to be the appropriate choice. This is why we have chosen to

1

work with XML documents instead of SGML documents. In fact, XML offer-
s a structured and consistent method to describe and transfer information.
Maintaining the SGML characteristics, it separates the visual format from
the information itself, allowing the independence from hardware and soft-
ware platforms. The information within a XML document describes itself,
allowing two XML applications to send and receive information without being
concerned with the format of that information. Like a SGML document, a
XML document has its structure definition within itself, which is called DTD.
The need for structured information and valid facts, like the ones included in
a History CDRom where everyone expects to find accurate data, motivates
this work, in which we pretend to find and automatize a way of semantically
validating documents.

Therefore, in section 2 we show what has been done in order to solve the
problem; in section 3 we describe our approach; this approach is applied to a
case study in section 4. Finally we present the ways in which our work may
be improved.

2 State of the art

Ramalho et al [3] suggest two forms of dealing with the specification of a
document semantics, which provides a way of document processing. They
defend that, once SGML is totally independent of the further processing of
the document, to do something with a certain document, we have to associate
behaviour to it.

The first way of doing this, they said, is using a DAST (Decorated Abstract
Syntax Tree); the approach consists in applying the technique traditionally
used in the context of formal languages processing, to the documents’ pro-
cessing: the document semantics is represented by a DAST, which is formally
specified by an attributes grammar. The first step in the development of such
a semantic specification of documents is the design of the CFG (Context Free
Grammar), which may be obtained directly from the DTD; after writing the
CFG, it is necessary to associate attributes to its symbols and write the ap-
propriate rules to evaluate the attributes in the context of each derivation
rule; the attributes shall allow the declaration of the semantic conditions
needed to restrict the set of valid sentences (static semantics) and transport
all the information, directly or indirectly inferred from the original document

2

and necessary to make the translation (dynamic semantics).

The second form of doing this is using CAMILA or another model-based
functinal approach (for instance, Haskell) —as a DTD is a type definition,
it can be seen as a model from an algebraic point of view; this approach
is good to prototyping semantics; in order to have semantics, we have to
specify: models for the sorts; and definitions for the operators. CAMILA
[4] is an attempt to make available, at the engineering level, the strategy of
creating a mathematical mode , to reason on it and only then to calculate a
solution. CAMILA uses formal methods and is currently being used both by
Computer Science students and software engineers [5].

Ramalho et al [1] realized that in SGML it is not possible to implement the
process in which the pre-conditions over the information are enforced in order
to prevent the user from introducing erroneous data. Instead, a new SGML
model should be built, extending the existing one, so that an adaptation of
the SGML syntax would enable the expression of constraints, allowing some
semantic validation. They propose an algebraic specification to implement
both SGML and model extensions. In a way to warrant the preservation of
some of the semantic characteristics of the documents, we have to associate
restrictions to some of the DTD elements. There are two ways of enclosing
invariants in the DTD:

• special comment sections —where invariants could be written, mixed
with DTD declarations; new additions would not affect SGML syntax,
granting the possibility of going on using the same SGML parsers in the
structural validation process;

• invariants binded with an anchor —where the invariants will be written;
the anchor will be placed in a special comment section; this alternative
maintains the conciseness of the DTD and having a compiler that,
given a DTD, generates a skeleton of the invariant file, the designer
work becomes much more fast and safe.

Ramalho reformulated the first approach described above in his PhD Thesis
[6], describing S4, which is a system that allows the integrated development
of documents. This system consists of three editors: one for DTDs, another
one for style and finally one specific, using SGen. In this work, Ramalho also
describes a Constraint Language which syntax is a subset of the syntax of
XQL [7]. A restriction’s declaration will be like:

3

<--constraint CL-expression action-->

where:

constraint is the sintactic keyword.

CL-expression is a predicate applied to sub-areas of the document (nodes
of the document’s tree) . If its value is true, then the document is
semantically correct.

action Describes the action to be performed if the boolean expression is not
valid.

3 Our approach

Our approach to speciy the constraints is directly related to the last one
described above. This way, we will give attributes to the key elements, ac-
cording to the DTD nomenclature, and then use the Constraint Language to
specify the constraints. Therefore, embedded in the DTD, which is specified
as usual, we will have some comments, written in this particular language,
which are describing the constraints that we want to enforce.

Afterwards, we will use a parser to generate an abstract tree with the in-
formation of the document. With this abstract tree, it will be possible to
compare the attributes, taking into account the objective , which will com-
plete the semantic validation of the document.

Parallelly, prototypes both based in compiler tools supported in Attribute
Grammars and in Algebraic-functional environments are being done. These
prototypes are to execute the predicate’s tests over the Decorated Tree, and
its details will be written elsewhere.

We are at present working in several examples. One of them is presented in
the next section.

4 Case-study

The world of laws is very critical to erroneous data or incongruences.

For instance, if a lawyer goes to a finance department to ask for a certificate
of something, it is advisable that all data is consistent. Let us suppose that

4

someone asks for a fiscal certificate, which is a certificate of the goods declared
by someone’s relatives by the time of his or her death (this is compulsory
so that the goods can be inherited). That document should include the
identification of the dead one and both the dates of that person’s death and
the current one, once this are required fields. The correspondent DTD for
such a document, could be:

<!– document to ask for a fiscal certificate –>
<!– !DOCTYPE fiscal certificate [–>
<!ELEMENT fiscal certificate (header,body,ending)>
<!ELEMENT header (#PCDATA,department)>
<!ELEMENT department (#PCDATA)>
<!ATTLIST department place CDATA ”Braga”>
<!ELEMENT body (requester,request)>
<!ELEMENT requester (name,#PCDATA,CF,#PCDATA,address)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT CF (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT request (#PCDATA,affinity,name,#PCDATA,data,#PCDATA,
village,#PCDATA,parish, #PCDATA,name,#PCDATA)>
<!ELEMENT affinity (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ATTLIST date value CDATA ”19000101”>
<!ELEMENT village (#PCDATA)>
<!ELEMENT parish(#PCDATA)>
<!ATTLIST parish place CDATA ”Braga”>
<!ELEMENT ending (#PCDATA,local,date,#PCDATA)>
<!ELEMENT local (#PCDATA)>

It is easy to realize that if the current date has occurred before the death
date, we can not ask for that certificate. Therefore, we added an attribute
value to the ELEMENT date. But this is not enough, for we still have to
compare the dates. If we add the following constraint:

<--constraint /fiscal_certificate/body/request/date/@value <

/certidao_fiscal/ending/date/@value-->

the only thing we will lack is a way of automatically verifying this validity.
Besides, people must ask for this kind of certificate in the finance depart-

5

ment of the last residence of the dead one area , so we should enforce that
congruence too. The following constraint will do it, but the attribute place
had to be added to the department and parish ELEMENTS.

<--constraint /fiscal_certificate/header/department/@place <

/certidao_fiscal/body/request/parish/@place-->

In the final version of the paper, we will present the complete example of
this certificate, with the remaining alterations that shall be done in order to
allow the semantic validation.

5 Conclusion

In the paper we have discussed a master thesis work aiming at the inclusion
of contextual conditions in the XML DTDs with the purpose of allowing a
static semantics validation of the XML documents according to that DTD.
Checking for semantic correctness, completes the structural check traditional
with mark-up languages and is a step forward towards the quality assurance
in documents processing.

It still remains deciding about which programming language is the best one
to use in order to validate the abstract tree obtained from the complete DTD
(the original DTD plus the attributes of the key elements), but at momen-
t there are clear options, trying to reuse existing languages for document
handling.

This choice and the development of a checker prototype is the under devel-
opment work involved in this thesis.

References

[1] Ramalho, Rocha, Almeida, Henriques, SGML Documents: Where does
quality go?, GCA SGML/XML’97, 1997

[3] Ramalho, Almeida, Henriques, SGML Documents: Two approaches, G-
CA SGML’96, 1996

6

[2] Bradley, The XML companion, Addison-Wesley, 2nd Ed., 2000

[6] Ramalho, Anotação Estrutural de Documentos e sua Semântica, PhD
Thesis, Universidade do Minho, 2000 (in Portuguese)

[4] Barbosa, Almeida, CAMILA: A reference Manual, Technical Report DI-
CAM-95:11:2, DI (U. Minho), 1995.

[5] Almeida, Barbosa, Neves, Oliveira, CAMILA: Formal Software Engi-
neering Supported by Functional Programming, Proc. II Conf. Latino
Americana de Programacion Funcional (CLaPF97), La Plata, Argenti-
na, October 1997.

[7] Robie, Lapp, Schach, XML Query Language (XQL), QL’98 - The Query
Languages Workshop, December 5, 1998.
Prentice-Hall, 1998.

7

