
XML::DT � a PERL down translation module

José João Dias de Almeida José Carlos Ramalho

29 de Setembro de 2004

Resumo
In this paper we present a Perl module, called XML::DT, that can be

used to translate and transform XML documents.
A programmer always looks for the simplest tool to do a certain task,

development and maintenance will be easier. That is the main idea behind
the module we are presenting: a simple tool that will enable the user to
speed up his work and that will help him to maintain it.

XML::DT includes some down translation features that are common
to other SGML/XML processors available on the market like Omnimark
[1] or Balise [2], and some other features to deal with input and output
of Unicode character sets.

The idea was to adopt familiar concepts together with a familiar syntax
to SGML/XML programmers but shaped to the usual Perl notation.

1 Introduction

There are many tools to process SGML/XML but in the remaining of this
document when talking about the history of tool development we will only
consider shareware and free tools.

Perl is an unquestionable tool when we are talking about text processing
in general or being more speci�c, structured documents processing. In recent
times the interest for this has increased a lot. For some years we had David
Megginson's Perl library and module to process SGML documents [?] - in fact
we could use these modules to create processors that would process the output
of SGMLS and NSGMLS parsers [8]. SGML was di�cult to process so the
interest in tool development was low. But then, XML emerged and XML is
a lot easier to process: DTD syntax has changed, annoying things like the
ampersand operator were left out, and you can even create and process the
document without a DTD. The scenery was set for tool development.

New tools start appearing and other SGML tools su�ered some changes so
they can process XML aswell. However XML tools developed from scratch are
simpler and easier to use.

One of the �rst was the XML Language Toolkit from Henry Thompson [3]. It
provided a set of small tolls that could be combined to process XML documents.

Concerning Perl universe everything started with the work from Larry Wall
and Clark Cooper. They developed a Perl module that exports the necessary
functionality to XML parsing: XML::Parser [5].

XML::Parser is built upon a C library, expat, that is very fast and robust.
Expat was authored by James Clark [7], a highly respected developer and con-
sultant in the SGML/XML community.

1

Since then, many Perl modules were developed upon XML::Parser. XML::DT
belongs to this family.

XML::DT is built on XML::Parser. The main idea was to provide devel-
opers with a down-translation skeleton and programming shortcuts. dt (down-
translation) is XML::DT main function, it takes an XML document and a pro-
cessor speci�cation as arguments and returns the translated document.

In the next sections we will go deeper explaining how XML::DT was built
and we will present several examples of use with growing complexity.

To fully understand the remainder of this document some familiarity with
Perl is needed even though we have tried to comment everything.

2 A �avor of XML::DT use

The basic function of the module is called dt. The parameters of dt are the
document �lename and a processor speci�cation which is a mapping of elements
to anonymous functions (perl sub). The mapping may include a -default"
function de�ning a default translation function (to be used for elements out of
the mapping domain).

In order to make the code simpler to write, every function is associated with
an element name and can use the global variables $c � for element content,
$v{atrName} � for attribute value, and $q � for the element generic identi�er.

One important feature of Perl [9], expat and XML::Parser is that they are
all Unicode-aware; that is, they can read encoding declarations and perform the
necessary conversions into Unicode [10], a system for the interchange, processing,
and display of the written texts of the diverse languages of the modern world.
Thus a single XML document written in Perl can now contain Greek, Hebrew,
Chinese and Russian in their proper scripts.

Unfortunately many other tools and environment are not Unicode aware. In
XML::DT a output encoding option ("-outputenc") is possible, but should be
used just in special cases.

In a similar way, "-inputenc"(implemented in XML::Parser module) makes
it possible to force a input encoding type. Whenever possible, the user should
de�ne the input encoding in the XML �le:

<?xml version='1.0' encoding='ISO-8859-1'?>

In the next subsections we present a series of examples with growing com-
plexity. In this examples we will try to illustrate the implemented features of
our module together with its potential.

2.1 Extracting meta information from a paper

Let's consider the following xml example of a simpli�ed paper to be submitted
to a workshop:

<?xml version='1.0' encoding='ISO-8859-1'?>
<article>

<title>The XML Down Translator</title>
<author>J. João Almeida</author>
<author>J. Carlos Ramalho</author>

2

<keyword>XML</keyword>
<keyword>language processing</keyword>
<keyword>perl</keyword>
<abstract>
Once upon a time ...

</abstract>
</article>

The following perl program (using XML::DT) can be used to extract some
meta-information in order to build a bibliographic reference in HTML:

1 #!/usr/bin/perl
2 use XML::DT ;
3 my $filename = shift;

4 %handler=(
5 '-outputenc' => 'ISO-8859-1',
6 '-default' => sub{""},
7 'title' => sub{"$c"},
8 'author' => sub{" <i>$c</i>"},
9 'article' => sub{"$c
"}

10);
11 print dt($filename,%handler);

The functions de�ned in lines 7 to 9 just put HTML tags around element
content ($c). Many problems can be solved with functions so simple as these
ones.

In line 6 we have de�ned a general function stating that by default, each
element content should be suppressed.

Line 5, we force the output in ISOlatin1. This emergency option was used
to process our names in an environment that is not totally Unicode aware.
Whenever possible this situation should be avoid.

In line 11 dt translates $filename based on %handler functions.
The result will be:

1 The XML Down Translator
2 <i>J.J. Almeida</i>
3 <i>J.C. Ramalho</i>
4

2.2 mkskel.pl: a program to generate XML::DT proces-

sors

In order to simplify the task of making XML::DT processors we have developed
"mkskel.pl" - a program that generates a skeleton of a XML::DT processor
for a target XML document. It has the peculiarity of being programmed with
XML::DT, illustrating this way the use of XML::DT in another kind of appli-
cations.

The default action (actually the only one de�ned) makes a side-e�ect: it
computes the list of elements used in the target xml �le.

In the end mkskel.pl program writes a XML::DT processor associating a
simple action to each element name found.

3

1 #!/usr/bin/perl
2 use XML::DT ;
3 my $filename = shift;
4 %xml=('-default' => sub{$element{$q}=1; ""});

5 dt($filename,%xml);

6 print <<'END';
7 #!/usr/bin/perl
8 use XML::DT ;
9 my $filename = shift;

10 %handler=(
11 # '-outputenc' => 'ISO-8859-1',
12 # '-default' => sub{"<$q>$c</$q>"},
13 END

14 for $name (keys %element){
15 print " '$name' => sub{\"\$q:\$c\"},\n";
16 }
17 print <<'END';
18);
19 print dt($filename,%handler);
20 END

The default function in line 4 is called for each element in the XML �le.
This default action, just stores the element name $q in the element associative
array. In fact a very simple perl statement, we are just creating a list of element
names.

Whenever necessary, much more complex actions can be included in the
processing functions.

In lines 6 to 20 a perl XML::DT program is written to the output. In lines
14 to 16 a simple processing line is written for each name in the element list
(associative array). This simple processing line, can be changed by the user to
meet more speci�c needs, generating a more specialized processor skeleton.

The output of mkskel.pl art.xml is:

1 #!/usr/bin/perl
2 use XML::DT ;
3 my $filename = shift;

4 %handler=(
5 # '-outputenc' => 'ISO-8859-1',
6 # '-default' => sub{"<$q>$c</$q>"},
7 'title' => sub{"$q:$c"},
8 'author' => sub{"$q:$c"},
9 'article' => sub{"$q:$c"},

10 'abstract' => sub{"$q:$c"},
11 'keyword' => sub{"$q:$c"},
12);
13 print dt($filename,%handler);

4

2.3 Making proceedings end-page

Suppose that we have a set of papers and we want to generate the proceedings
book with those papers. The proceedings could be de�ned as:

<?xml version='1.0' encoding='ISO-8859-1'?>
<proceedings>
<title>The XML Europe 99</title>
<chair>Pam</chair>
<abstract>

Once upon a time in Granada ...
</abstract>
<article file="art2.xml"/>
<article file="art3.xml"/>
<article file="art1.xml"/>

</proceedings>

Now we can generate the proceedings by writing a proceedings' processor.
In order to make the example shorter we are going to discuss just the case of

making the proceedings end page with the titles and the list of included papers.
Note that the papers are not copied in this document; the article empty

element just contains an attribute named "�le"with the name of the XML paper
document.

The proceedings processor calls a paper processor to do the job.

1 #!/usr/bin/perl
2 use XML::DT ;
3 my $filename = shift;

4 %p_proc=(
5 '-default' => sub{"$c"},
6 'proceedings' => sub{"Proceedings $c"},
7 'abstract' => sub{""},
8 'article' => sub{ dt($v{file}, %p_art) },
9 'chair' => sub{"Chair: $c"},

10);

11 %p_art=(
12 '-default' => sub{""},
13 'title' => sub{" $c"},
14 'author' => sub{" <i>$c</i>"},
15 'article' => sub{"$c"},
16);

17 print dt($filename,%p_proc);

The default action (line 5) just returns element content. The element ab-
stract is ignored (line 7), and some syntactic sugar is added (lines 6 and 9).

In line 8, $v{file} is used to obtain the value of the attribute "�le". When
an element "article"is found dt function is called with the �lename (from the at-
tribute "�le") and the paper processor %p_art similar to the example previously
presented.

5

In this example we are showing how several processors can be coexist to
process the same XML document enabling subdocument processing.

The generated output was:

1 Proceedings
2 The XML Europe 99
3 Chair: Pam
4 The XML Parser
5 <i>Clark Cooper</i>
6 <i>Larry Wall</i>
7 The expat tool
8 <i>James Clark</i>
9 The XML Down Translator

10 <i>J.J. Almeida</i>
11 <i>J.C. Ramalho</i>

2.4 Making a keyword index

In previous example, each paper had keyword tags. In this example we will
compute a richer proceedings end-page by adding a keyword index:

4 %p_proc=(
5 ...
6 'proceedings' => sub{ "Proceedings $c". mkKeyInd() },
7 ...

11 %p_art=(
12 ...
13 'title' => sub{ $tit= $c; " $c"},
14 ...
16 'keyword' => sub{ $ind{$c} .= "\n $tit"; "";}
17);

19 sub mkKeyInd { my $r="Index by keywords\n";
20 for $term (sort keys %ind){ $r .= "\n $term $ind{$term}";}
21 $r
22 }

In line 13 a side-e�ect was added to save the title in $tit variable.
In line 16 we are building a keyword index as an association of keyword to

a string containing the titles separated with new lines.
In line 6, we concatenate the previous solution with the result of a function

mkKeyInd() de�ned in lines 19 to 22. mkKeyInd() returns a string containing
the index text.

In this example we can see that is easy to mix simple side-e�ects in the
processors in order to build other views of the document. This approach is
similar to the attributed grammars view.

The generated output was:

1 Proceedings
2 The XML Europe 99

6

3 chair: Pam
4 The XML Parser
5 <i>Clark Cooper</i>
6 <i>Larry Wall</i>
7 The expat tool
8 <i>James Clark</i>
9 The XML Down Translator

10 <i>J.J. Almeida</i>
11 <i>J.C. Ramalho</i>
12 Index by keywords
13 XML
14 The XML Parser
15 The expat tool
16 The XML Down Translator
17 expat
18 The expat tool
19 language processing
20 The XML Down Translator
21 perl
22 The XML Parser
23 The XML Down Translator

2.5 Context

Processing XML elements is often context dependent: the actions that should
be performed are parent dependent. In order to be possible to write context
dependent processing, two functions are provided:

ctxt(number)
inctxt(pattern)

ctxt(1) returns the name of the father element; ctxt(2) returns the name
of the grand-father element.

inctxt(pattern) returns true if the pattern matches the context path
string.

Suppose that the papers have sections with titles and contents. In order
to have the correct end-page generation, some changes are necessary. Just the
titles with parent "article"should be saved.

...
title => sub { if(inctxt('article'))

{$tit=$c; " $c";}
else

{""}
}

...

or

title => sub { if(ctxt(1) eq 'article')
...

7

3 The main algorithm

The algorithm that is presented in this section is a simpli�cation of real one in
order to be easier to read. A Haskell (functional) like notion is used.

dt function processes the tree resulting from parsing the �le received as an
argument.

dt(filename,processor)=
let tree=Parse(filename)
in process(tree,processor)

process(PCDATA(p), process) = p
process(element(e,sons), process) =

let args = concatenate([process(x) | x <- sons])
in if(e in dom(process)) then process[e](args)

else process["-default"](args)

Processing a PCDATA text returns the text.
Processing an element is done by:

• processing its sons

• concatenating their results

• applying the corresponding processor function to the previous result

4 Conclusions and future work

XML::DT was design to do simple tasks.
Our experience with using and teaching XML::DT was good: it follows the

natural structure of the documents. It is possible to write a XML processor
with a very small perl program.

The ability of putting a XML processor in a single perl variable is powerful
and enables natural sub-document processing through the coexistence of several
processors in the same speci�cation.

In this version DT returns a string. Some examples needed a di�erent type
of result which can be done with side-e�ects. Work is under progress to include
primitives to compute non atomic (string) results based on DTD information.

Referências

[1] Omnimark, Omnimark Technologies, http://www.omnimark.com.

[2] Balise, AIS Software, http://www.balise.com.

[3] XML - LT, Thompson, H., Edinburg U.

[4] SGMLS.pm, Megginson, D.; SGMLS.pm: a perl5 class library for han-
dling output from the SGMLS and NSGMLS parsers; http://home.
sprynet.com/~dmeggins/software.html.

8

[5] XML::Parser, Cooper, C.; XML - Parser, a Perl interface to expat;
http://www.netheaven.com/~coopercc/xmlparser/intro.html.

[6] XML::Parser, Cooper, C; Using The Perl XML::Parser Module; http:
//www.xml.com/xml/pub/98/09/xml-perl.html.

[7] Expat, Clark, J.; expat - XML Parser Toolkit; http://jclark.com/
xml/expat.html.

[8] NSGMLS, Clark, J.; SGML Parser; http://www.jclark.com.

[9] Perl, http://www.perl.com.

[10] Unicode, http://www.unicode.org.

9

