
Generating SGML specific editors: from DTDs to Attribute
Grammars

José Carlos Ramalho Alda Reis Lopes Pedro Rangel Henriques

30 de Setembro de 2004

Resumo

SGML (Standard Generalized Markup Language) is well established in electronic publishing industry. The
number of users and the number of applications grows everyday.

If we look at the market the choice of available tools is very wide. We have tools for every purpose and for
each price.

However, from a technical point of view there are still some open areas for research and improvement. In
this work we will address the parsing technology. Can we improve it? Or, is there another way to do it? Can we
achieve better results? These are some of the questions that we will try to answer along this paper.

SGML parsers are normally implemented using traditional technology: syntax directed translation. In the
SGML context these parsers are good and offer a good performance. The problems emerge when we want to do
something else besides structural validation. For example, to build an extension to perform semantic checking or
to have on-line validation instead of batch validation.

The focus of this paper will be a DTD (Document Type Definition) editor that generates specific editors for
each specific type of document. To implement this editor we develop an AG (Attribute Grammar) for SGML
syntax. But the most important part it is not this grammar. The editor has a built-in generator that at any moment
translates the DTD being edited to a generic AG.

In this paper we will discuss the methodology used to develop this DTD editor and we will make a detailed
presentation of the conversion performed between DTDs and Attribute Grammars. At the end we will show a
glimpse of the intended environment that along with this editor includes a style editor and a semantics editor.

1 Introduction

The issues addressed in this paper are related to SGML parsing technology, the core of every comercial SGML
editing environment.

The main idea is to explore new methodologies and compare the results to see if we can improve what we already
have.

This does not mean that the actual technology has problems. It has served well but is gradually becoming insuffi-
cient.

Looking at the Computer Science universe we can find another field with an evolution very similar to SGML:
Programming Languages. Going deeper in our analysis we can reach the conclusion that programs written in a
specific programming language and SGML documents are almost equivalent:

• Programs have a support language defined by a formalism – SGML documents are written with a markup
language defined also formally

• In the definition of a programming language we have the lexical definition (the vocabulary) and the syntactic
definition expressed by a CFG (Context Free Grammar) – a markup language is specified by a SGML
declaration and a DTD.

1

Generating SGML specific editors: from DTDs to Attribute Grammars

Besides that relationship between a CFG and a DTD, we can take this comparison a little further, to the processing
of SGML documents and programs. SGML documents as programs have to be analysed for subsequent transfor-
mation. In order to do this a lexical analysis followed by a syntactic analysis have to be performed. This applies to
both. The difference comes when we move towards the semantic analysis. Actual SGML parsers are only able to
perform some simple validations like the one related to the ID and IDREF attributes.

Concerning SGML, we are at a stage already overcome in the programming languages universe. We want to
have more control over document content; we need to be able to express constraints over element content and to
process them. This will only be possible by changing the way we are processing SGML, using more powerful
methodologies and technologies.

In the early 70’s we were facing the same needs and the same difficulties with programs. The answer was to move
towards a new model of language processing,Semantics Directed Translation. This model is based in attribute
grammars; it uses attributes and attribute equations to express semantics and attribute evaluators to process them.
This paradigm brought new concepts with it, such as incremental parsing and incremental editing with on-line
validation.

In the work we are currently developing we are facing the need to process semantics. We also want to explore
new ways and new ideas. So we decide to develop an environment based on Attribute Grammars to process
SGML documents. In this environment we aim at building automatically specific editors for each document type
(according to the respective DTD). Specific editors tend to be more efficient and easy to use then generic ones.
Moreover the proposed specific syntax-directed editors are acopulated with an incremental compiler that enables
to perform on-line syntatic and semantic validation.

In the next sections we explain the central piece of our system: a DTD structured editor that generates attribute
grammars for specific editors. But first we introduce the attribute grammar formalism, and the tool used to imple-
ment attribute grammars, SGen (Synthesizer Generator; then we present the architecture of our system INES.

2 Attribute Grammars

An AG is a well accepted formalism used by the compilers’ community to specify the syntax and semantics of
languages.

Introduced by Knuth [Knu68a], the AG appeared as an extension to the classic CFG to allow the local definition
(without the use of global variables) of the meaning of each symbol in a declarative style.

Terminal symbols have intrinsic attributes (that describe their lexical information) and Nonterminal symbols are
associated with generic attributes; semantic information can be synthesized up the tree (from the bottom to the
root), but can also be inherited down the tree (from the top to the leaves), enabling explicit references to contextual
dependencies.

Let G be a CFG defined as a tupleG =< T, N, S, P >, where:

• T denotes the set of terminal symbols (the alphabet)

• N is the set of nonterminal symbols

• S is the start symbol, or grammar axiom:S ∈ N

• P is the set of productions, or derivation rules, each one of the form:

A −→ δ,A ∈ N ∧ δ ∈ (T ∪N)∗

that we will represent in the sequel as:

X0 −→ X1X2...Xn

2

Markup Technologies 1998

For each abstract productionp ∈ P — a derivation rule without keywords in itsRight Hand Side (rhs) of
the production — there is an associated abstract tree whose root isX0, the nonterminal in itsLeft Hand Side
(lhs) , and itsn descendents are theXi, i ≥ 1 ∧ i ≤ n symbols in the rhs.

Given a sentence ofLG, the language generated by grammarG, an AST (Abstract Syntax Tree), also called
Abstract Derivation Tree, is a tree whose root isS, the grammar start symbol, and the frontier (the leafs) is
composed by the terminal-classes that once concatenated from left to right form the given sentence. The AST is
built pasting the abstract trees corresponding to each grammar rulep ∈ P used to derive the sentence from the
axiomS.

An Attribute GrammarAGis a tupleAG =< G,A, R,C >, where:

• G is a CFG as defined above

• A is the union ofA(X) for eachX ∈ (T ∪N), and denotes the set of all attributes (each one has a name and
a type); the attributes of a terminal symbol are calledintrinsic and their value do not need to be evaluated; for
each nonterminalX, its set of attributesA(X) is splitted into two disjoint subsets: the inherited attributes
AI(X), and the synthesized attributesAS(X)

• R is the union ofRp, the set ofattribute evaluation rulesfor each productionp ∈ P

• C is the union ofCp, the set ofcontextual conditionsfor each productionp ∈ P

Let p be a CFG production (p ∈ P), Rp its set of attribute evaluation rules, andCp its set of contextual conditions;
in this context:

• a(Xi), i ≥ 0, represents the attributea associated to the symbolX that occurs in positioni of productionp

• an attribute evaluation rule is an expression of the forma(Xi) = fun(..., b(Xj), ...) with:

– a ∈ AS(X0) ∨ a ∈ AH(Xi), i ≥ 0;

– b ∈ AH(X0) ∨ b ∈ AS(Xj), j ≥ 0 and

– fun any function of typeVa (the type of attributea)

• a contextual condition is a predicate of the form:pred(..., a(Xi), ...), i ≥ 0

Given a sentence ofLAG — the language generated by the attribute grammarAG — let AST be itsAbstract
Syntax Tree, as defined above. Each treenodeis, originally, labeled by the corresponding grammar symbol and the
identifier of the production that was applied to derive it.

Assume, now, that each tree node is enriched with the attributes (either inherited or synthesized) associated to that
symbol.

A Decorated Abstract Syntax Tree(DAST) is the initial AST after the attribute evaluation process, with all the
attribute occurrences in each node associated with an actual value (belonging to its proper domain). To be a DAST
it is necessary that all the contextual conditions, related to the production labeling each node, are satisfied (evaluate
to true – for the actual attribute occurrence values).

We exemplify this abstract definitions with a fragment of the AG behind our system. In this example, we will signal
with error messages duplicated element declarations in a DTD. To do that we use two attributes, one inherited
(travelling top to bottom through the derivation tree) is namedElemTab , the other, is synthesized (travelling
bottom to top through the derivation tree) and is namedElemNewTab. Both are used to store generic identifiers
corresponding to declared SGML elements. In a more informal way we can say that inherited attributes are input
parameters and synthesized attributes are output parameters.

DTD --> Declarations
Declarations.ElemTab = ()

3

Generating SGML specific editors: from DTDs to Attribute Grammars

Declarations --> Declaration Declarations
Declaration.ElemTab = Declarations.ElemTab
Declarations$2.ElemTab = Declaration.ElemNewTab

| ε

Declaration --> ElemDecl
ElemDecl.ElemTab = Declaration.ElemTab
Declaration.ElemTab = ElemDecl.ElemNewTab

| AttDecl
| ...

ElemDecl --> gi min min Content
if (not exist(gi, ElemDecl.ElemTab)

ElemDecl.ElemNewTab = insert(ElemDecl.ElemTab, gi)
else error("Duplicated Element!!!")

We show below the DAST corresponding to the example above.

Figura 1:Decorated Abstract Syntax Tree

3 Synthesizer Generator

In the implementation of our environment we are using theSynthesizer Generator (SGen)[RT89a, RT89b].

SGen was initially developed to try out the incremental compiling paradigm based on Attribute Grammars. By
incremental compilingwe mean the ability to recompile a source text, after a change, with minium effort, without
analysing the unchanged parts. Today, SGen is a tool widely used both in industry and academic environments.

SGEN is normally used as a structured editor generator. The generated editors can range between simple text
editors to smart editors that have built-in inference mechanisms and complex output generators.

The authoring process in these editors is made in an incremental way, i.e., the user is immediately informed each
time he gives an error being able to correct it in the moment.

4

Markup Technologies 1998

SGen generates a structured editor and an incremental compiler for a language using an Attribute Grammar based
specification. This specification is composed of:

• A lexical module, where the lexemes are defined.

• Two syntactic modules. SGen distinguishes between the abstract and concrete syntax. The abstract syntax
is used to build the internal representation of the document being introduced. The concrete syntax is used to
parse the document.

• One or more unparsing modules. Each unparsing module represents one view of the internal representation.
This way, we will have as much of these modules as the number of layouts we want for each document being
processed.

• A semantics module, where the attributes and their equations are specified.

• An optional tranformation module, where transformations are specified. These transformations will operate
over the internal representation. The utility of these transformations is to provide shortcuts in the interface
so the user can speed up the introduction of text without errors.

In the following sections we will follow the generation of the abstract grammar.

4 INES: a document programming environment

The work we are presenting is the first piece of a larger puzzle which we are building. The main idea was to explore
the paralellism between SGML documents and programs and to create a document programming environment. We
baptized the global system with the nameINES.

In the next figure (fig. 2) we present the basic working architecture of INES.

Figura 2:INES: Document Programming Environment

As one can see, we consider two kinds of people as the customers of INES: the document designer and the au-
thor. The designer will interact with INES to provide DTD definitions together with Style specifications (XSL
— eXtensible Style Language) based language and Semantics specifications (in the form of constraints - specific
language being developed) [RH98]. All these specifications are used to generate a specific editor (one specific
editor is defined by one DTD, one style specification and an optional semantic specification). On the other hand,
the author will interact with the generated editor to create his documents.

5

Generating SGML specific editors: from DTDs to Attribute Grammars

Figura 3:INES: inside

These components and their interactions are described in figure 3.

The elements represented in figure 3 by dotted lines are beyond the scope of this article and will soon be covered
by other texts. In this article we are covering the syntactic part of the environment, represented in the diagram by
theDTD editorand theEditor Generator.

This part of the system is composed of three modules:

• A DTD syntax-driven editor, generated by the SGen tool (given an AG for SGML);

• An incremental syntactic and semantic processor (compiler), integrated with the structured editor (not shown
separately in the figure);

• A transformer, called "Editor Generator", that takes a DTD and converts it into an appropriate Attribute
Grammar that will be sent to SGen to generate the new specific editor.

4.1 Working with the DTD editor

The DTD editor (a syntax-directed editor generated by SGen) provides the designer, at any time, with the set of
SGML possible declarations (element, attribute, entity, ...). This set of SGML declarations is represented at the
bottom of the editor window by a set of buttons as can be seen in figure 4.

When a declaration is selected, the editor immediately expands the declaration icon into the structure of that
alternative, inserting all reserved words automatically. This way, the user only has to fill the variable parts of each
declaration.

For example, if the user chooses the declarationElement , the editor will expand the symbol< Declaration >
into <!Element < Name >< Min >< Min >< ElementContent >>

Now the symbolsName, Min and Element_content can be selected and expanded the same way, until
the derivation process reaches the bottom (a leaf of the derivation tree). For instance, if the user selects the symbol
Namethe editor will wait for the introduction of an identifier. This working scheme avoids lexical and syntactic
errors that an absent-minded user could enter.

In addition to the lexical and syntactic validation, semantic checks can be made; all detected errors are reported in
another window.

Figure 5 shows a complete DTD for a document of typeLetter , created with the DTD editor described.

According to the internal representation of the DTD, the editor generator builds an Attribute Grammar based
specification and sends it to SGen that will use it to generate the specific editor. With this new specific editor, the

6

Markup Technologies 1998

Figura 4:DTD editor

7

Generating SGML specific editors: from DTDs to Attribute Grammars

Figura 5:Example: DTD for type Letter

8

Markup Technologies 1998

user will be able to author documents ofLetter type. The SGML documents of that type will have the structure
illustrated by the following example:

<Letter Type="Friend" Idiom="English">
<Date>30 July 1998</Date>
<Name>Alexandra</Name>
<Message>I wish you a good weekend!</Message>
<End>Cheers!</End>

</Letter>

In the next section we will take a look at the process of attribute grammars generation.

5 Generating Attribute Grammars

To generate a new syntax-directed editor, SGen requires a description of the language to be edited in the form of a
AG specification.

As described above, this AG specification should be composed of the standard SGen modules: the abstract gram-
mar, the concrete grammar, the unparsing rules, the attribute definitions and equations, and the transformation
rules.

The generation process is centered on the abstract grammar.

We shall now exemplify the generation process in two steps. In the first one we will issue a conversion of the
SGML file presented above into the correspondent abstract grammar. Then we generalize this process and we
show how to convert the DTD into an abstract grammar.

5.1 From SGML document to AG

The abstract grammar for the letter SGML document is shown below (together with some comments):

root letter;
letter : Letter(type idiom date newSymb message end);

• the first line indicates that the non-terminal "letter"is the axiom of the grammar (the root of the document’s
structure).

• the second line represents the production (derivation rule) for the non-terminal "letter"; notice the "Let-
ter"operator in the right hand side - SGen will use it to address the contents of this production during pro-
cessing; notice also the symbols "type"and "idiom", in the DTD they are defined as attributes of the element
"letter- in the translation to a grammar, both attributes and elements become symbols, terminal (T) or non-
terminal (N); since attributes are associated with the opening tag in the document instance, in the grammar
they will appear in front of the other symbols corresponding the content group.

• the symbol "newSymb"has replaced the content "Name+"(see below).

date : DateNull()
| Date(text);

• the element "Date"in the DTD is "PCDATA"; in the grammar it becomes a terminal symbol with its deriva-
tion associated with a "text"lexeme.

9

Generating SGML specific editors: from DTDs to Attribute Grammars

• in a normal grammar only one production would be used but here we are talking about incremental parsing;
even with incremental parsing possibilities the parser needs to create a complete instance of the structure,
in this case this is done using "null"productions ("date : DateNull()"); "DateNull()"will be associated with a
representation of "date"that will show as "date"content while this element is not filled by the user.

list newSymb;
newSymb : NewSymbNull()

| NewSymb(name newSymb);

name : NameNull()
| Name(text);

• the "Name"element appears in the DTD with an occurrence indicator "+", meaning that this element can be
instanciated one or more times.

• elements with cycling occurrence indicators are translated into a recursive production "newSymb : NewSymb(name
newSymb)".

• the element "Name "without the occurrence indicator is a normal terminal symbol with its respective pro-
ductions: the "null"production and the "text"production.

• so, a symbol with a cycling occurrence idicator is translated into two sets of productions; one is recursive
and deals with the repeating factor; the other is the normal derivation of the element being affected by the
occurrence indicator.

message : MessageNull()
| Message(text);

end : EndNull()
| End(text);

• the elements "Message"and "End"are "PCDATA; thus they are treated as terminal symbols.

type : TypeNull()
| TypeFriend()
| TypeFamily()
| TypeWork();

idiom : IdiomNull()
| IdiomEng()
| IdiomFre()
| IdiomSpa()
| IdiomPor();

• the symbols "type"and "idiom"are terminals and correspond the attributes with the same name.

• attributes are always mapped into terminal symbols since their value is never structured.

• in this case we have attributes with enumerated values so we have a production for each possible value
besides the "null"production.

10

Markup Technologies 1998

5.2 From DTD to AG

Thus far, we have seen the correspondance between a SGML document and an attribute grammar. Now, we shall
generalize and in the process build a translation between DTDs and attribute grammars.

Most of the conversion rules were already applied in the previous example. We will look at them again in a
generalized perspective.

If we take the "Letter"DTD and generate an attribute grammar, we will end up with the grammar displayed in
figure 6.

It is easy to notice that there are differences between this grammar and the one generated earlier. Most of the
differences are in the symbol identifiers and this brings us to the first problem we had to solve: the overlap of
identifiers.

SGML syntax lets attributes, elements and entities have the same generic identifiers. Even more, attributes associ-
ated with different elements can have the same generic identifier. In the new attribute grammar they will all belong
to the same domain (terminal and non-terminal symbols) and we must be able to distinguish between them. We
achieve this converting the generic identifiers following a set of rules:

• The identifiers of the new symbols and respective production operators will include the original identifier
(of the element or attribute) with some prefix and suffix.

• For elements "n"is used as the prefix for non-terminal and terminal symbols and "N"as the prefix for the
production operator. In the case of element "Letter", "nLetter"will be the identifier of the non-terminal
symbol and "NLetter"will be the identifier of the production operator (see figure 6).

For attributes "a"is used as the prefix for the symbol and "A"as the prefix for the operator. The "Type"attribute
would be converted into "aType"and respective operator would be "AType". But this is not enough since
every element can have an attribute with the same identifier. So, to distinguish between them we add a
numeric suffix (an integer), that is incremented every time it is used during the generation process. "Type"is
converted into "aType0"with its operator being "AType0".

• For entities we use the prefixes "e"and "E". So the entity "sign"would be "esign"with operator "Esign".

Let’s now take a look at an element derivation process.

5.2.1 Productions corresponding to elements:

Let elId be the identifier of an element; letattList be the list of non-terminal symbols corresponding to its
attributes; letelem_content represent the content of the elementelId . The productions of a non-terminal
symbol corresponding to an element depend on its content. In case it is anempty content, a#PCDATAcontent or
structured content, the productions are, respectively:

n_elId: N_elId_Null()
| N_elId(attList);

n_elId: N_elId_Null()
| N_elId(attList TEXT);

n_elId: N_elId_Null()
| N_elId(attList elem_content);

In the first case, the content is empty, so the production’s right hand side will only have the list of attributes. In the
second case, there is the same list and alsoTEXT, as the content is#PCDATA. In the last case, on the right side
there is the attribute listattList followed by the symbolelem_content . As an example consider the first
production of our case study (Letter):

11

Generating SGML specific editors: from DTDs to Attribute Grammars

Figura 6:Generated Abstract Grammar

12

Markup Technologies 1998

letter : Letter(type idiom date newSymb message end);

that corresponds to the following DTD element definition:

<!ELEMENT Letter - - (Date, Name+, Message, End)>

Its attributes are declared as:

<!ATTLIST Type (Work | Family | Friend) Work>
<!ATTLIST Idiom (English | French | Spanish| Portug) English>

The productions where the non-terminal symbol referent to Letter is derived are:

nLetter: NLetter(nType nIdiom nDate newSymb nMessage nEnd);

In this production the first and second symbols on the right correspond to the attributes (theattList men-
tioned before). The last sequence of non-terminal symbols is related to the content of Letter, substituting the
elem_content symbol mentioned before.

To derive the content of an element, first it is necessary to analyse the occurrence indicator (zerone for zero or one
occurrences,zeron for zero or more occurrences andonen for one or more occurrences) and then the connector
(alternative or sequential). After this, we repeat the analysis for each operand of the connector, and so
on until the last atomic operands (without connectors and occurrence indicators).

Concerning the occurrence indicator, two situations might happen:

• if it is not there, nothing is done and we start to analyse the connector of the same content.

• if it is present, a new non-terminal symbol is created and calledoze , ozn or oon , accordingly to the zerone,
zeron or onen.

The identifiers of these symbols start with ano that is the first letter of occurrence, followed by the first and last
letter of the corresponding occurrence indicator.

As it is possible that several new symbols may appear, to avoid repetitions we use an integer suffix-ne- that is
incremented each time it is used. Letoccur_content represent the non-terminal symbol corresponding to the
argument of an occurrence indicator.

For thezerone we have the following productions:

oze_ne: Oze_ne_Null()
| Oze_ne_Nil()
| Ozer_ne(occur_content);

The second production enables the content to occur zero times, and the third one time.

Thezeron has the following derivation:

ozn_ne: Ozn_ne_Null()
| Ozn_ne_Nil()
| Ozn_ne(ozn_ne_l);

The second production represents the possibility of zero occurrences of the content. In the third production,
the symbolozn_ne_l represents one or more occurrences of content. Thus, in SSL (Synthesizer Specification
Language) syntax,ozn_ne_l is defined as a list. Its productions are:

13

Generating SGML specific editors: from DTDs to Attribute Grammars

list ozn_ne_l;
ozn_ne_l: Ozn_ne_Null()

| Ozn_ne_l(ozn_ne_ll ozn_ne_l);

The last production has on the right hand side two symbols: the first one (ozn_ne_ll) stands for one occurrence
of content; the second one (ozn_ne_l) is a recursive call.

Finally, the content is derived by the symbolozn_ne_ll :

ozn_ne_ll: Ozn_ne_llNull()
| Ozn_ne_ll(occur_content);

And, onen derives in the following way:

list oon_ne;
oon_ne: Oon_ne_Null()

| Oon_ne(oon_ne_l oon_ne);

oon_ne_l: Oon_ne_lNull()
| Oon_ne_l(occur_content);

The symboloon_ne is a list ofoon_ne_l , which represents the content that is repeated one or more times.

In our example, the content of the element Letter has anoon occurrence indicator in the elementName. So, it
will be created a new symbol calledoon1 instead ofnewSymb. Assuming that the identifier of the non-terminal
symbol referent toNameis nName, the productions where the new symbol is derived are:

list oon;
oon1: Oon1Null()

| Oon1(nName oon1);

Concerning the connector, if it is sequential, the non-terminal symbols that represent each operand of the connector
are sequenced in the production where the element is derived, in the same order they appear in its content. This is
the case of the production wherenLetter is derived, as we showed before.

If the connector is alternative, the new non-terminal symbol (before callednewSymbol) is calledor and derived
in a set of productions, one for each operand. Again, we use the suffixne to avoid repetitions between symbols of
this type. Letor_ne be the identifier of this new symbol andop_n be the operand that appears in the nth position
in the sequence of operands. The productions are:

or_ne: Or_ne_Null()
| Or_ne(op_1)
| Or_ne+n-1(op_n);

5.2.2 Productions corresponding to attributes

When an attribute is enumerated, it has a set of possible values. LetattId be the identifier of an SGML attribute.
The correspondent non-terminal symbol will have the prefixa and the sufixna resulting ina_attId_na . For
a set of n possible values for the attributeattId , the following productions wherea_attId_na is derived
correspond each one to a value:

a_attId_na: A_attId_na_Null()
| A_attId_na()
| A_attId_na+n-1();

14

Markup Technologies 1998

Constant values are represented by empty productions. So, attributes with a possible set of constant values (enu-
merated) are represented as a set of empty productions. In our earlier example the attributeType is represented
by:

AType: ATypeNull()
| ATypeWork()
| ATypeFamily()
| AtypeFriend();

If the attribute is numerical its productions are:

a_attId_na: A_attId_na_Null()
| A_attId_na(INT);

Here,INT is the lexeme that represents a integer.

If the attribute is CDATA its productions are:

a_attId_na: A_attId_na_Null()
| A_attId_na(STR);

Here,STRis the lexeme that represents a string.

#IMPLIED attributes are optional. So, they will have, not only the productions corresponding to their values, but
also an empty production. Assuming the identifier of this production operator having a suffixNil , the productions
are:

a_attId_na: A_attId_na_Null()
| A_attId_na_Nil()
| A_attId_na()
| A_attId_na+n-1();

5.2.3 Productions corresponding to entities

When entities are declared in the DTD, the user can use them in the text when editing the correspondent instances.
So, the symbol that represents any text-text- must be derived inTEXT, the lexeme that represents any text, and
alternatively in the symbol that represents all the declared entities. This last symbol is calledent and is derived
in several productions, each one representing an entity. The non-terminal symbol corresponding to an entity is
derived in the lexeme that represents the way an entity is referenced in the SGML document, that is between& or
%and; .

Let e_entId1 ande_entIdn be the identifiers of the non-terminal symbols referent to the entitiesentId1
andentIdn . Finally we have the following productions:

Text : TextNull()
| Text(TEXT)
| Text(ent);

ent : EntNull()
| Ent_entId1(e_entId1)
...
| Ent_entIdn(e_entIdn);

15

Generating SGML specific editors: from DTDs to Attribute Grammars

e_entId1: E_entId1Null()
| E_entId1();

...

e_entIdn: E_entIdnNull()
| E_entIdn();

From the DTD Letter we can extract an example based on the entitysign . The corresponding productions are:

Text : TextNull()
| Text(TEXT)
| Text(ent);

ent : EntNull()
| Entsign(esign);

esign: EsignNull ()
| Esign();

5.3 SGML Specials

There are some SGML features that we did not cover in our system. That was due to the complexity in the
implementation of the solutions that we have considered. We shall discuss some of those cases and respective
solutions.

5.3.1 And connector (&)

The operands of a& connector appear in the content in any order, but both have to appear. So, it is equivalento to
a model group with aor (|) connector which operands are the two possible sequences of the operands.

For example,

<!ELEMENT Date - - ((Day & Month) , Year)>

is equivalento to:

<!ELEMENT Date - - (((Day, Month) | (Month, Day)) , Year)>

In the context of AG, since there are no direct implementation for the& connector, we have to use the combinatory
sequences of operands shown above.

nDate : NDateNull()
| NDate1(nDay, nMonth, nYear)
| NDate2(nMonth, nDay, nYear);

5.3.2 Inclusions

It may happen that an element can occur in all the sub-elements of a given element. To include that element in
all the model groups would be cumbersome. The same effect may be achieved via an inclusion of elements that
are not logically part of the document’s hierarchy structure [Her94]. It can be said that inclusions can also be an

16

Markup Technologies 1998

accident waiting to happen because of the far-reaching implications they have for the overall structure of the DTD
[McGrath98].

Basically, every model group occurring below the inclusion point in the hierarchy inherits the inclusion. So, at the
time of creating the new AG, it would be necessary to extend the productions of every non-terminal symbol that
represents an element in the model content. This way, we allow the included element to appear anywhere in the
content.

For example, the following declarations mean that a footnote may appear anywhere in the content of the letter
element.

<!ELEMENT Letter - - (Date, Name+, Message, End) +(Fn)>
<!ELEMENT Date - - (#PCDATA)>
...

An equivalent way of expressing the same but without inclusions would be:

<!ELEMENT Letter - - (Fn*,Date,Fn*,Name+,Fn*,Message,Fn*,End,Fn*)>
<!ELEMENT Date - - (#PCDATA|Fn)*>
...

The equivalent AG would be:

nLetter: NLetterNull()
| NLetter(nFnSeq, nDate, nFnSeq, nNameSeq, nFnSeq,

nMessage, nFnSeq, nEnd, nFnSeq);

list nDate;
nDate: NDateNull()

| NDate(newsymb, nDate);

newsymb: NewSymbNull()
| NewSymbNil()
| NewSymb1(nFn)
| NewSymb2(TEXT);

The symbolnFnSeq represents the footnote element ocurring zero or more times.

Analogous productions to the ones associated withnDate should be generated for the remaining non-terminal
symbols in the letter content.

5.3.3 Exclusions

Exclusions are analogous to inclusions but have the effect of excluding specified elements from model contents.
Perhaps their most common application is the removal of unwanted recursion in model contents [McGrath98].

In the previous example we can define a footnote as a message and use an exclusion to avoid a footnote inside
itself.

<!ELEMENT Message - - (#PCDATA | Fn)*>
<!ELEMENT Fn - - (Message) -(Fn)>

Concerning the AG being generated, we could give a solution to this problem but this would imply a complex
explosion in the number of productions that would have to be added.

17

Generating SGML specific editors: from DTDs to Attribute Grammars

One other solution is to leave the grammar untouched and provide semantic constraints to achieve the same goal.
In this case we must check if the message (the parent) where the footnote appears is inside a footnote, if so, an
error message would be issued. This context rule would be associated withnMessage productions.

5.3.4 Tag Omission

Structured editors are driven by an abstract syntax grammar. In terms of SGML, tags are only present to signal ele-
ment boudaries, they are syntactic sugar in the abstract syntax grammar. So, in our editors tag omission represents
a decision about the visual interface. There is no need for them to be present. The minimization rules in element
declaration work as switches to the visual appearance.

6 Conclusion

We have presented the architecture and the underlying principles of a Document Programming Environment we
are developing (fig. 2). Following a typical compilers development approach we are using attribute grammar based
specifications to implement the various pieces of the system.

We have discussed in more detail the central component of the system, a DTD editor that automatically generates
attribute grammars corresponding to the DTDs being edited.

With this work we introduced concepts like incremental parsing and on-line validation. These are improvements
to the traditional SGML editor/parser environments.

This metodology opened a gate to semantics processing. Attribute Grammars give a possible formal approach to
semantics.

We are extending this system to process semantics, embedding a constraint language into the SGML syntax and
plugging in INES a new module to verify the constraints.</PARA>

7 Acknowledgements

Thanks are dued to JNICT and PRODEP for the grant under which this work is being developed, and to Filomena
Louro for proof reading this paper.

Referências

[Her94] Eric van Herwijnen,"Practical SGML", Kluwer Academic Publishers, 1994.

[Knu68a] Donald E. Knuth,"Semantics of context-free languages", Mathematical Systems Theory, 2(2):127–145,
1968.

[McGrath98] Sean McGrath,"Parseme.1st", Prentice Hall, 1998.

[RH98] Ramalho, J. C., and Henriques, P. R.,"Beyond DTDs: constraining data content", In proceedings of
"SGML/XML Europe 98"conference, Paris, May 1998.

[RT89a] Thomas Reps and Tim Teitelbaum,"The Synthesizer Generator: A System for Constructing Language-
Based Editors", Texts and Monographs in Computer Science, Springer-Verlag, 1989.

[RT89b] Thomas Reps and Tim Teitelbaum,"The Synthesizer Generator Reference Manual", Texts and Mono-
graphs in Computer Science, Springer-Verlag, 1989.

18

