
SGML Documents� Where Does Quality Go�

Jos�e Carlos Ramalho

jcr�di�uminho�pt

Jorge Gustavo Rocha

jgr�di�uminho�pt

Jos�e Jo�ao Almeida

jj�di�uminho�pt

Pedro Henriques

prh�di�uminho�pt

Departamento de Inform�atica

Universidade do Minho

Braga � Portugal
October ��� �		

Abstract

Quality Control in Electronic Publications should be one of the major
concerns of every project�

Big projects try to gather information from a series of di�erent sources�
universities� libraries� museums and other scienti�c or cultural organiza�
tions�

Collecting and treating information from several di�erent sources raises
a very interesting problem� the assurance of quality�

Quality in Electronic Publications can be re�ected in several forms�
from the visual aspects of the interface and linguistic�literary ones to the
correctness of data� We are concerned with the lowest boundary of this
spectrum� correctness of data�

With SGML we can solve a small part of the problem� structural cor�
rectness� SGML provides a nice way to structure documents keeping a
complete separation between structure �syntax	 and typesetting� Today
there are lots of editors and environments that can assist the user pro�
ducing well�formed SGML documents �validating their structure	� But�
there is clearly a lack for content validation� There are situations where
pre�conditions over the information being introduced should be enforced
in order to prevent the user from introducing erroneous data
 we shall
call this process data semantics validation� In SGML is not possible to
implement this process�

We will discuss an adaptation of the SGML syntax that will enable us
to express constraints to allow some semantic validation when authoring�

Furthermore� we will propose a new SGML processing model capable
of dealing with this extension� This model will be built extending the
existing one� So� we will not restrict any SGML capability� instead we will
add new ones�

Both� the SGML extension and the model extension� will be de�ned
and implemented resorting to algebraic speci�cation �SET theory and

�

functional programming	�

� Introduction

In previous work �RAH��� we have suggested an algebraic approach to document
processing� This �rst proposal was further explored in �RAH����

The use of data types to express documents� syntax	 would enable us to
reason about structured texts as we are used to about any other objects
 thus
we can archive documents in an internal format according to the mathematical
model chosen to implement their types	 and moreover we can transform docu�
ments by means of operations over document types� Those operations can then
be implemented by functions as usual in model�based algebraic speci�cation and
development method� Documents are seen as algebraic terms�

In this article our main concern will not be the de�nition and implementa�
tion of functions for document processing �production	 or transformation
	 but
we will emphasize the clean and easy way how we can express and deal with
document semantic validation in order to assure the quality of documents �at
least	 from the content correctness point of view
�

We intend to merge the traditional SGML processing model with the alge�
braic approach to keep all the functionality available in the context of SGML

based environments but enhance such environments with the capability of mak�
ing some semantic checking during authoring� This enhancement aims at the
elimination of errors �not only structural	 but mainly semantics
 during infor�
mation manipulation in order to improve the quality of document processing
tasks�

As in the past	 we use Camila �a speci�cation language and prototyping
environment�ABNO��� developed at Universidade do Minho	 by the Computer
Science group
 to implement the above mentioned validation scheme�

Section � is dedicated to raise the problem and to give motivation� In sec�
tions � and � we propose a solution along with its implementation� Finally	 we
conclude the paper with section � binding this article to other work in progress�

To understand the ideas discussed in this paper	 the reader is supposed to be
familiar with SGML	 the standard mark�up language for document processing	
and its intrinsic concept of document type de�nition �DTD
� Concerning these
matters we address the reader to �Her��	 Bra����

It is also convenient to have some knowledge about model based algebraic
approach to software speci�cation and development �Oli��	 Oli���� Camila is
a language and prototyping environment well founded in the set�theory	 not
very di�erent from Z �Spi���	 Raise �Geo���	 or other VDM �Jon��� inspired
methods� The language is introduced in �BA��b	 BA��a�� The paper �RAH���
also contains an appendix dedicated to that method�

�

Authoring
 Process

Design
 Process

Validation
 Process

Formatting
 Process

Editor Editor

Parser

Formatter
DTD SGML Valid Doc.

SGML Doc.

OK / errors

OUTPUT

Figure �� SGML authoring and processing model

� SGML and Semantic Validation

The introduction of SGML brought new ways of working in document processing�
automated structural validation	 validation process during editing �the author is
always aware of his document�s structural correctness
	 platform and application
independence�

Big corporations	 producing large amounts of documentation	 can have au�
thoring teams working coherently�

This model of SGML documentation processing is shown in Fig� ��
The model is su�cient for most cases but when dealing with certain infor�

mation there is a lack� semantic validation� For example	 suppose someone is
editing a CD�ROM with History content
 an error on a king�s birth date or a
wrong association of kingdoms with the dates	 can make all the project collapse�

Concerning consistency and correctness veri�cation issues	 SGML enforces a
complete structural checking and some semantic validation �through the use of
attributes

 it is possible to secure that some text �elds have only a restricted set
of values� But	 when producing certain kinds of documents we need to impose
stronger constraints on data
 this requirement is beyond SGML scope� We will
not propose a solution for the complete problem of semantic validation only
for a subset� each PCDATA is	 normally	 too general for the intended element
type
 compound content models	 can have relations between some of their sub�
elements that should be guaranteed
 this kind of relations�restrictions can be
expressed associating a type with each DTD�s element and imposing an invariant
property over that type�

In the next example we illustrate the idea�

Example �� �The need for semantic validation�
An editor is editing a book on portuguese literature �using SGML
� One of the
chapters will focus on authors� Its main body could be de�ned as�

���

��ELEMENT authlist � � �author���

��ELEMENT author � � �name�birthdate�deathdate������

�

���

This DTD fragment states that a part of the referred chapter should describe a
list of authors	 each one characterized by a name	 a birth date	 a death date	
and some other elements�

Structural validation will be ensured by the SGML parser� However	 beyond
syntactic correctness it is also important to state an invariant that should be
preserved� the deathdate �eld for each author should always contain a value
higher then the birthdate �eld�
������

The small example above gives a feeling of the kind of problems we found in
practice	 when dealing with archaeological and historical documents� The reso�
lution of those problems seemed to be crucial to secure error free information�

In the next sections we will discuss an extension to the SGML processing
model capable of dealing with these and similar validation problems�

� SGML and Constraints

In order to guarantee the preservation of some semantic characteristics of doc�
uments we need to associate constraints to the DTD�s element� The power to
write the constraints	 or type invariants	 is given to the designer that will write
them along with the DTD� There are two ways to enclose invariants in the DTD�

� special comment sections where the invariants could be written	 mixed
with the DTD declarations
�

Example �� �DTD declarations mixed with invariants�

��DOCTYPE king �

��ELEMENT king � � �name� coname� bdate� ddate� decree���

���� INV

inv	king�k�
 ���

���

������

� an anchor to an external �le where the invariants will be written
 the
anchor will be placed in a special comment section�

Example �� �invariants binded with an anchor�

���� INV� king�cam ���

��DOCTYPE king � ���

�

������

The use of comment sections was reinforced so that new additions do not
a�ect SGML syntax� This way	 we can still use SGML parsers as they are to run
the structural validation process�

From the two proposed approaches we chose the second� The �rst one could
lead to heavy and hard to read DTDs� The second maintains the DTD concise�
ness and gave us one other advantage� We wrote a small compiler that giving the
DTD generates a skeleton for the invariants �le
 this process helps the document
designer making his work faster and more secure�

In order to be able to speak about SGML elements and state constraints
about them	 the natural choice will be a model based speci�cation language� As
shown in �RAH���	 each element de�nition of the DTD has an implicit model �a
type
	 and each element instance can be mapped into an algebraic expression
over that model� We use an automatic conversion tool to translate the DTD

into the implicit model in SET speci�cation language Camila �BA��b	 BA��a��
After this mechanical conversion	 the designer will be able to associate each
DTD element type with an invariant �predicate
 that should always evaluate to
true
 if in some document the invariant evaluates to false	 its author will receive
an error message�

Each invariant is de�ned by a set of pairs formed by a condition and respec�
tive reaction�

Consider the example below that clari�es our proposal�

Example �� �Kings and decrees�

The following DTD was written to de�ne a format for editing lists of decrees
proclaimed by some king�

��DOCTYPE king �

��ELEMENT king � � �name� coname� bdate� ddate� decree���

��ELEMENT decree � � �date�body��

��ELEMENT �name� coname� � � �
PCDATA��

��ELEMENT �bdate� ddate� date� � � �
PCDATA��

��ELEMENT �org� � � �
PCDATA��

��ELEMENT body � � �
PCDATA � org�� �

��

The text below lists some decrees proclaimed by D� Dinis	 according to the
DTD above�

�king�

�name�D�Dinis��name�

�coname�Farmer��coname�

�bdate�������������bdate�

�ddate�������������ddate�

�decree�

�date�������������date�

�body� From this day only bicycles are allowed to circulate in the

town of Braga���body�

�

��decree�

�decree�

�date�������������date�

�body�McDonald�s will sell green wine instead of COCA�COLA���body�

��decree�

��king�

Observing the DTD and its instance it is easy to identify some invariants
that should be true in every document written according to this DTD�

� the document�s date should be higher than king�s birth date �bdate
�

� the king�s name should exist in some database�

To formalize these invariants we want to preserve in each document	 we
add to the DTD a special comment section with an anchor to a �le where the
invariants will be maintained	 as shown below�

���� INV� king�cam ���

��DOCTYPE king � ���

Each invariant will be a set of pairs condition�reaction �action taken by the
checker if the condition � negation of the invariant � evaluates to true
�

inv	king�k�

�if�k notin famous	personsDB �� k �� � must be inserted in FPDB�� �

if�bdate	�k� � ddate	�k� �� k �� � died before he has born�� �

if�ddate	�k��bdate	�k�� ��� �� k �� � lived more then ��� years�� �

if��all�x �� decree	l�k�� bdate	�k� � date	�x� �� date	�x� � ddate	�k� �

�� k �� � made a decree outside his life��

� �

Suppose we had the following values�

� k � �D� Dinis�

� bdate�k
 � ������������

� ddate�k
 � ������������

This set of values would trigger the invariant

if�bdate�k� � ddate�k��

and would produce as result the concatenation �����
 of the king�s name ��k�

with the string �died before he has born��
������

After the explanation of our adaptation of SGML DTDs to accommodate
invariants intended as contextual conditions that preserve documents� semantic	
we will discuss in the next section how we extend the processing model to cope
with this semantic veri�cation�

�

Editor

Editor

Parser

Style
 Specification

Valid SGML Doc.

Design
 Process

Authoring
 Process Formatting

 Process

Validation
Process 1/2

Validation
Process 2/2

DTD

CAMILA
DTD2Types

ESIS

SG
M

L D
oc

.

SGML Doc.

OK / errors

OK /
er

ro
rs

Formatter
OUTPUT

Figure �� New SGML authoring and processing model�

<king>
 <...
</king>

DTD

LOAD
 aux.func.

Types

Invariants

Designer

User

dtd2cam

nsgmls

esis2cam

validate

esis

OK / errors

calls

data flow

Figure �� Camila Validation Process�

� Implementation

As shown in Fig�� we add an extra process to the SGML processing model� This
new process will run an additional validation that takes care of the invariants�
In practice	 we have just one checking process that deals with the two validation
tasks�

Figure � illustrates the new validation process� Both	 the designer and the
user must provide information to settle down this process�

Once the designer has written the DTD	 he executes dtd�cam
 this procedure
takes the DTD as an argument and produces an algebraic model in Camila �maps
each element into a type
 and generates an invariant for each type �by default
all the invariants return true

 those invariants are written into a �le which
name came from the invariant anchor in the DTD �see previous section

 then
the designer can edit this �le and rewrite the invariants� body to meet his needs�

From this moment the user can start authoring
 when he has �nished	 he can

�

run the editor�s validate command which is now bound to an external validate
function
 this function calls nsgmls �Cla	 Cov�	 which returns the document
in ESIS format
 this text is then passed to another function	 esis�cam	 which
converts it into Camila
 validate function takes this Camila text together with
the invariants �le �described above
 and checks them returning the result to the
user� Notice that structural validation has been done during the execution of
nsgmls�

The process whose behavior was described above comprises two generation
tasks�

The �rst is solved with a simple compiler	 esis�cam	 that converts ESIS out�
put from nsgmls into Camila	 i�e�	 takes a document after passing the structural
validation and passes it to Camila that will run the semantic validation� The
ESIS format is the most used intermediate representation for SGML documents�
Each line of data in ESIS represents a single �instruction� returned from the
parser� The instructions most commonly encountered are�

� start ���gid�
 and end ��
gid�
 the element with generic identi�er �gid�

� attribute value ��Avalue�

� data content ���data�

Applying nsgmls to example � we would get the following ESIS output�

�king

�name

�D� Dinis

�name

���

�decree

�date

�����������

�date

�body

�From this day only ���

�body

�decree

���

�king

The second task �dtd�cam
 is not so simple because it involves a mapping
between a DTD and an algebra�

� the DTD is translated into a model�set

� each element is mapped into a type according to a prede�ned translation
scheme �RAH��	 RAH���

� each element will have an invariant

� each invariant is a �constraint � reaction
�set	 by default it will be the true
value� The constraint and the reaction are written according to Camila

syntax with Camila operators�

�

The following example gives a clear idea of the process� The DTD that will
be used is the one presented earlier of �kings and decrees��

Example �� �Execution of dtd�cam�

The DTD has the following declaration�

��ELEMENT king � � �name� coname� bdate� ddate� decree���

dtd�cam generates the following Camila code�

TYPE

king
name	�name

coname	�coname

bdate	�bdate

ddate	�ddate

decree	l�decree�seq

�

ENDTYPE

inv	king�k�
true�

���

������

� Conclusion

In this paper we have presented and discussed a proposal for an extra validation
process to be added to the SGML processing model� This new validation process
enables us to put some kind of data constraints in the DTD� Then it becomes
possible to restrict the values of some elements of documents to certain ranges
and also to enforce some relationship between text elements� This way many
errors given by a distracted author can be avoided�

We think that this validation scheme can help to improve information quality�
This parameter is crucial when distributing large amounts of information to
large amounts of users	 for example in the Internet�

In every real example we have tried so far	 we didn�t found the need to
impose highly complex invariants� This is probably due to SGML since it already
enforces a structural validation� Most of the invariants we need to write	 are
validations of data atomic types like strings and numbers and relations between
them� This leads to the feeling that our model can be simpli�ed and optimized�
One way to do this is to replace Camila with a simpler constraint language
�which is being done already
�

We are joining this validation scheme with our document management en�
vironment INES �LRH���� The combination of the two will result in a more
powerful processing environment with an high level of quality in the informa�
tion being produced�

�

Acknowledgments

We would like to thank the precious comments and suggestions from our anony�
mous referees that were very helpful to improve this paper�

We also are grateful to Luis Barbosa for the pro�table discussions�
Thanks are dued to JNICT and PRODEP for the grant under which this

work is being developed�

References

�ABNO��� J� J� Almeida	 L� S� Barbosa	 F� L� Neves	 and J� N� Oliveira�
Camila� Formal software engineering supported by functional pro�
gramming� In A� De Giusti	 J� Diaz	 and P� Pesado	 editors	 Proc�
II Conf� Latino Americana de Programacin Funcional �CLaPF���	
pages ���������	 La Plata	 Argentina	 October ����� Centenario
UNLP�

�BA��a� L� S� Barbosa and J� J� Almeida� Camila� A Reference Manual�
Technical Report DI�CAM��������	 DI �U� Minho
	 �����

�BA��b� L� S� Barbosa and J� J� Almeida� Systems Prototyping in Camila�
Bristol Lecture Notes DI�CAM��������	 DI �U� Minho
	 �����

�Bra��� N� Bradley� The Concise SGML Companion� Addison�Wesley	 �����

�Cla� James Clark� Sp� An sgml system conforming to international stan�
dard iso ����� http���www�jclark�com�sp�index�htm�

�Cov� Robin Cover� Sgml parsers� http���www�sil�org�sgml�publicSW�html�parsers�

�Geo��� C� George� The raise speci�cation language� a tutorial� In Proc� of
VDM���� LNCS ����
	 �����

�Her��� E� Herwijnen� Practical SGML� Kluwer Academic Publishers	 �����

�Jon��� C� B� Jones� Systematic Software Development Using VDM� Series
in Computer Science� Prentice�Hall International	 �����

�LRH��� A�R� Lopes	 J�C� Ramalho	 and P�R� Henriques� Ines� Ambiente
para construo assistida de editores estruturados baseados em sgml�
In Simpsio Brasileiro de Linguagens de Programao	 Universidade de
Campinas	 Campinas	 S� Paulo	 Brasil	 Set� �����

�Oli��� J� N� Oliveira� A rei�cation calculus for model�oriented software
speci�cation� Formal Aspects of Computing	 ������	 April �����

�Oli��� J� N� Oliveira� Software rei�cation using the set calculus� In Proc�
of the BCS FACS 	th Re�nement Workshop
 Theory and Prac�
tice of Formal Software Development
 London
 UK	 pages ��������
Springer�Verlag	 ���� January ����� �Invited paper
�

��

�RAH��� J�C� Ramalho	 J�J� Almeida	 and P�R� Henriques� David � al�
gebraic speci�cation of documents� In A�Nijholt	 G�Scollo	 and
R�Steetskamp	 editors	 TWLT�� � Algebraic Methods in Language
Processing � AMiLP�		 number �� in Twente Workshop on Lan�
guage Technology	 Twente University � Holland	 Dec� �����

�RAH��� J�C� Ramalho	 J�J� Almeida	 and P�R� Henriques� Document seman�
tics� two approaches� In SGML���
 Celebrating a decade of SGML	
Sheraton�Boston Hotel	 Boston	 USA	 Nov� �����

�Spi��� J� M� Spivey� The Z Notation � A Reference Manual� Series in
Computer Science� Prentice�Hall International	 �����

��

