
Document Semantics� two approaches

Jos� Carlos Ramalho

jcr�di�uminho�pt

Jos� Jo�o Almeida

jj�di�uminho�pt

Pedro Rangel Henriques

prh�di�uminho�pt

Universidade do Minho

Braga � Portugal
October ��� ���	

Contents

� Introduction �

� Background �

��� Decorated Abstract Syntax Trees � � � � � � � � � � � � � � � � � � �

��� Algebraic Speci�cation� CAMILA approach � � � � � � � � � � � � �

� The study of a case �

��� Document Semantics as DAST �

��� Document Semantics in CAMILA � � � � � � � � � � � � � � � � � � ��

� Conclusion ��

A Camila Language ��

Abstract

SGML introduced DTD idea to formally describe document syntax and
structure� One of its main characteristics is the fact of being purely declar�
ative and fully independent of the future document�s processing �typeset�
ting� formatting� translation�transformation�� In this context� SGML has
become the international standard to be followed�

Sooner or later� a document has to be processed� In order to do that
we need to associate semantics to the document�s structure� In a com�
piler context� normally we separate semantics in two� static and dynamic�
Establishing a parallelism with document processing� we can think of the
document�s decorated tree �as recognized by an SGML analyzer� as rep�
resenting the static semantics and document�s tree transformation as dy�
namic semantics�

�

Pursuing this idea� we will present and discuss a study of the rela�
tionship between SGML� DAST �Decorated Abstract Syntax Tree�� and
Algebraic Speci�cation� in order to better understand how to formally pro�
cess documents and how to specify and build generic document processing
tools�

� Introduction

In this paper we will be concerned with document semantics and document
processing� We will explore this subject in di	erent directions�

By description of document dynamic semantics we mean the association of trans

formations to the document that will enable to generate some other form of the
document that will serve some speci�c purpose�

Document semantics is becoming a relevant issue due to the growing generalized
used of SGML� SGML introduced the concept of document type and the formal
speci�cation of a document�s structure� One of its main characteristics and
advantages is the fact of being purely declarative and fully independent of the
future document�s processing� This also means that in order to do something
with a speci�c SGML document one has to be able to associate behaviour to
the document� That is what almost every SGML editor allows the user to do �
to specify a style sheet
 and associate it with a DTD� The problem is that each
editor has its own style speci�cation language
 instead of following a standard
�like SGML��

To put some order in this world the ISO committee launched a new standard

Document Style Semantics Speci�cation Language �DSSSL�
 which many people
is trying to implement�

In the following sections
 after a brief review of basic concepts
 we will present
a case study � the literate programming example� We will use this example
through the document to present
 analyze and compare two approaches to the
speci�cation of document semantics�

� Background

We begin with a brief knowledge introduction
 necessary to understand the
subsequent discussion�

��� Decorated Abstract Syntax Trees

An Attribute Grammar �AG in the sequel� is an well accepted formalism used
by the compilers� community to specify the syntax and semantics of languages�
Introduced by Knuth �Knu���
 the AG appeared as an extension to the classic
Context Free Grammar �CFG for short� to allow the local de�nition �without
the use of global variables� of the meaning of each symbol in a declarative

�

style� Terminal symbols have intrinsic attributes �that describes their lexical
information� and Nonterminal symbols are associated with generic attributes�
semantic information can be synthesized up the tree �from the bottom to the
root�
 but can also be inherited down the tree �from the top to the leaves�

enabling explicit references to contextual dependencies�
Let G be a CFG de�ned as a tuple G �� T�N� S� P �
 where�

� T denotes the set of terminal symbols �the alphabet�

� N is the set of nonterminal symbols

� S is the start symbol
 or grammar axiom� S � N

� P is the set of productions
 or derivation rules
 each one of the form

A� �� A � N � � � �T �N��

that we will represent in the sequel as

X� � X� X� � � � Xn

For each abstract production p � P �a derivation rule without keywords in its
rhs�� there is an associated abstract tree whose root is X�
 the nonterminal in
its lhs�
 and its n descendents are the Xi� i � � � � � n symbols in the rhs�
Given a sentence of LG
 the language generated by grammar G
 an Abstract

Syntax Tree �AST�� is a tree whose root is S
 the grammar start symbol
 and
the frontier is composed by the terminal
classes that once concatenated from
left to right form the given sentence� The AST is built pasting the abstract trees
corresponding to each grammar rule p � P used to derive the sentence from the
axiom S� An Attribute Grammar AG is a tuple AG �� G�A�R�C �
 where�

� G is a CFG as de�ned above

� A is the union of A�X� for each X � �T �N�
 and denotes the set of all
attributes �each one has a name and a type�� the attributes of a terminal
symbol are called intrinsic and their value do not need to be evaluated� for
each nonterminal X
 its set of attributes A�X� is splitted into two disjoint
subsets� the inherited attributes AI�X�
 and the synthesized attributes

AS�X�

� R is the union of Rp
 the set of attribute evaluation rules for each produc

tion p � P

� C is the union of Cp
 the set of contextual conditions for each production
p � P

�Right Hand Side of the production�
�Left Hand Side of the rule�
�Also called� Abstract Derivation Tree�

�

Let p be a CFG production �p � P �
 Rp its set of attribute evaluation rules
 and
Cp its set of contextual conditions � in this context�

� a�Xi�
 i � �
 represents the attribute a associated to the symbol X that
occurs in position i of production p

� an attribute evaluation rule is an expression of the form

a�Xi� � fun�� � � � b�Xj�� � � ��

with� a � AS�X�� �a � AH�Xi�� i � �� b � AH�X�� � b � AS�Xj�� j �
�� and fun any function of type Va �the type of attribute a�

� a contextual condition is a predicate of the form

pred�� � � � a�Xi�� � � ��� i � �

Given a sentence of LAG �the language generated by the attribute grammar
AG� let AST be its Abstract Syntax Tree
 as de�ned above�
Each tree node is
 originally
 labeled by the corresponding grammar symbol and
the identi�er of the production that was applied to derive it� Assume
 now
 that
each tree node is enriched with the attributes �either inherited or synthesized�
associated to that symbol�
A Decorated Abstract Syntax Tree �DAST� is the initial AST after the attribute
evaluation process
 with all the attribute occurrences in each node associated
with an actual value �belonging to its proper domain�� To be a DAST it is
necessary that all the contextual conditions
 related to the production labeling
each node
 are satis�ed��

��� Algebraic Speci�cation� CAMILA approach

From school physics we got used to a basic problem solving strategy� create a

mathematical model� reason on it� calculate a solution� The Camila approach is
an attempt to make such a strategy available at the software engineering level�
Based on a notion of formal software component it encompasses a set
theoretic
notation
 a prototyping environment
 fully connectable to external applications
and equipped with communication facilities
 and an inequational re�nement
calculus�

Camila aims to be both a learning tool for Computer Science students and a
working tool for software engineers� At the �rst level it provides a smooth way
to programming� At the second a rigorous way to develop complex systems and
to promote the use of formal methods in software industry�

Camila� was originally devised as a collection of interrelated support tools
for teaching di	erent parts of the Computer Science and Software Engineering

�Evaluate to true for the actual attribute occurrence values�
�Camila is named after a Portuguese ��th�century novelist � Camilo Castelo�Branco

����	 � ���
� � whose immense and heterogeneous writings� deeply rooted in his own time
experiences and controversies� mirrors a passionate and di�cult life�

�

curricula� The project a�liates itself
 but is not restricted to
 to the research
in exploring Functional Programming as a rapid prototyping environment for
formal software models
 whose origin can be traced back to P� Hendersen�s me

too �Hen����

In the way
 some new theoretical and technological results � namely a compo

nent classi�cation and rei�cation calculus and a notion of connectable high
level
prototyping environment � were achieved and incorporated in the project�

As a working tool for software engineers it o	ers a simple set
theoretic notation
and a fully connectable environment� As a learning tool supporting a Computer
Science curriculum
 it aims to be easy to understand and use
 and to stimulate
a kind of abstract and compositional reasoning which paves the way to sound
methodological principles�

The Camila platform is organized around � main components�

� An executable �functional� speci�cation language directly based on naive

set theory�

� An inequational calculus �Oli��
 Oli��� � Sets � for re�ning and clas

sifying software formal models� In particular it enables the synthesis of
target code programs by transformation of the initial speci�cations�

� A �exible rapid prototyping kernel which bears �full citizenship� at C�C��
programming level �C may call Camila services and Camila may also
invoke external C functions�� It is available at both Unix
 Linux and
MS�DOS operating systems and may provide services underX�Windows
or as a Windows ��� DLL� Furthermore the prototyping environment
provides a set of communication facilities to animate systems built by
composition of independent and concurrent software components�

� A formal software components repository which catalogues available mod

els and a compositional notation based on �software
circuit� diagrams �a
shorthand for some piece of mathematics�
 suggestively resembling the
conventional hardware notation�

� An approach to the speci�cation and generation of structural Human

Machine Interfaces
 independent of but mirroring the application seman

tics�

The Camila approach to programming technology claims to provide a smooth
way to teaching and using �constructive� formal methods in software engineer

ing� Its roots on functional prototyping of information models �Hen��� has al

ready been referred� Similar motivations may be found either in the research on
formal speci�cation methods
 such as Vdm
 Z
 Raise �Hax���
 Cold�K �FJ���
or Larch �GH���
 or on functional programming languages such asML �HM���
or Miranda �Tur����

In contrast with the former group one could stress the lighter notation of
Camila
 borrowed from set theory
 and the direct correspondence to the proto

typing language� But what is
 to our knowledge
 new is the associated calculus

�

for model reasoning and re�nement� On the other hand
 Camila lacks the
sophisticated interface and documentation management features available
 for
instance
 in Raise�

Camila
 or at least its prototyping language
 may also be compared with other
functional languages which achieved a high degree of clarity and expressive
power� Although some features of more elaborated languages �eg
 e	ective
polimorphism� are absent in Camila
 we would point out as original features
Camila�s �exibility in being fully connectable to other �galaxies� of the com

putation universe and easily suited to di	erent application domains�

A brief summary of Camila language can be found in appendix A� For a more
detailed description look in �BA��� lecture notes�

� The study of a case

To illustrate our ideas we will use a case study
 very dear to us �it is good
to demonstrate several aspects of the problem�
 the literate programming type
of document �Knu���� This type of document was created to mix in the same
text �le programs and reports
 providing the necessary commands to distinguish
those two kinds of components so that it would be possible to extract the relevant
parts later on�

Though
 a literate programming document is a text with a mixed content of
special text �elds �like title and section�
 program code and de�nitions� A de�

nition is an association between an identi�er and piece of text�code� a program
can embed references to the de�ned identi�ers�

Our text example contains a small DTD and short text written according to the
former DTD�

The DTD below de�nes formally the structure of a literate programming type of

document�

��doctype litprog �� public or system ��

�

��element litprog � � ���PCDATA � prog � def � id � sec � tit��� 	

��element prog � � ���PCDATA � id��� 	

��element def � � �prog� 	

��attlist def ident ID �REQUIRED 	

��element sec � � ��PCDATA� 	

��element tit � � ��PCDATA� 	

��element id � o EMPTY 	

��attlist id refid IDREF �REQUIRED 	

	

The following text is a concrete example of a document written according to
the DTD above�

�

�litprog	

�tit	Example of Literate Programming��tit	

�sec	Stack � FAQ��sec	

�def ident�
main
	

�prog	

main���

int S���
� sp���

�id refid�
push
	

�id refid�
pop
	

�

��prog	

��def	

�sec	Pushing Elements��sec	

To push elements onto the stack you can use this function�

�def ident�
push
	

�prog	void push�int x�

�S�sp��
�x��

��prog	

��def	

�sec	Popping Elements��sec	

This function is not yet completed ���

�def ident�
pop
	

�prog	int pop�x�

��� to be continued ���

��prog	

��def	

��litprog	

In the next two subsections we will be concerned with semantics
 and we will
discuss two approaches� The literate programming example will be used in the
sequel to illustrate our ideas� First
 we will specify the static meaning of this
type of documents� then
 we will de�ne an operation getprogram�� intended
to extract the program code from a literate programming text
 replacing all
identi�ers by their de�nitions�

��� Document Semantics as DAST

The operations we normally want to perform over documents include� trans

lation
 text formatting
 interpretation
 and information retrieval � Looking at
those operations
 the parallelism between document processing and formal lan

guage processing is obvious�

In this section
 we apply to document processing
 the same technic we are used to
apply to formal language processing� Though
 we represent document semantics
as a DAST� DAST is formally speci�ed by an attribute grammar� The �rst step

�

in the development of such semantic speci�cation of documents
 is the design of
the underlying CFG� This CFG can be automatically derived from the DTD�

The following grammar has been obtained systematically from the DTD previ

ously introduced to de�ne what is a literate programming document�

p� litprog ��	
�litprog	
 X
��litprog	

X ��	 TXT X � prog X � def X � id X � sec X � tit X

�

p� prog ��	
�prog	
 Y
��prog	

Y ��	 TXT Y � id Y

�

p� def ��	
�def ident�
 ID
	
 prog
��def	

p� sec ��	
�sec	
 TXT
��sec	

p� tit ��	
�tit	
 TXT
��tit	

p� id ��	
�id refid�
 ID
	

After writing the CFG
 it is necessary to associate attributes to the CFG sym

bols
 and write the appropriate attribute evaluation rules �in the context of each
derivation rule��

The purpose of those attributes is two fold� On one hand
 they must enable us to
state the semantic conditions that necessary to restrict the set of valid sentences
�predicates that must be veri�ed in the context of some productions�� On the
other hand
 the attributes must carry all the information
 directly or indirectly
inferred from the source document
 necessary to perform the translation task�
An attribute can
 obviously
 be useful for both purpose� The �rst purpose is
intended to de�ne the so
called static semantics
 and the second aims at the
de�nition of the dynamic semantics�

The static semantics attributes derive easily from the attlist clauses present
in the DTD�

Considering again our case
study
 it is immediate to de�ne the following at

tributes

def� syn �ident� word�

id� syn �refid� word�

whose evaluation rules are

p� def ��	
�def ident�
 ID
	
 prog
��def	

ident� def � � lexval� ID �

p� id ��	
�id refid�
 ID
	

refid� id � � lexval� ID �

Notice that we assume that each terminal symbol �in our example ID and TXT�
has an intrinsic attribute called lexval of type word�

�

The formulation of semantic restrictions comes directly from the speci�cation
of SGML
 used to write the DTD� In our case
study
 we must say�

p� def ��	
�def ident�
 ID
	
 prog
��def	

CC� not exists� ident� def �� itab� def ��

p� id ��	
�id refid�
 ID
	

CC� exists� refid� id �� itab� id ��

To write the precedent contextual conditions
 we are faced with the need to as

sociate with the symbols def and id an inherited attribute
 itab� This attribute
shall record all the de�nitions made along the document� To keep up
to
date this
table of declared identi�ers
 we also need to introduce the following attributes

def� inh �itab� IdentTAB�

syn �pros� PEleList�

id� inh �itab� IdentTAB�

X� inh �itab� IdentTAB�

syn �stab� IdentTAB�

prog�syn �pros� PEleList�

The evaluation rules below are then added to the AG�

p� def ��	
�def ident�
 ID
	
 prog
��def	

pros� def � � pros� prog �

X ��	 def X

itab� def � � itab� X� �

itab� X� � � update� itab� X� �� ident� def �� pros� def � �

stab� X� � � stab� X� �

X ��	 id X

itab� id � � itab� X� �

itab� X� � � itab� X� �

stab� X� � � stab� X� �

The development of the complete AG proceeds precisely in this way
 until all
the semantic restrictions are formulated and all the attributes used in those
conditions are speci�ed�

The dynamic semantics attributes are associated to the non
terminal symbols
by need �just as it happened in the example above concerning the itab and
stab attributes��

Looking again to our case
study
 if we declare the attributes below

�

litprog� syn �tab� IdentTAB� pros� PEleList�

X� syn �pros� PEleList�

and the evaluation rules

X ��	 prog X

pros� X� � � append� pros� prog �� pros� X� � �

p� litprog ��	
�litprog	
 X
��litprog	

tab� litprog � � stab� X �

pros� litprog � � pros� X �

We have
 at last
 all that we need to be able to specify any aimed processing of
the document formally described by the AG�

The getprogram�� operation
 that we have announced in the beginning of this
section as the aim of the problem we are studying
 can be written as follows

p� litprog ��	
�litprog	
 X
��litprog	

getprogram� pros� litprog �� tab� litprog � �

��� Document Semantics in CAMILA

As a DTD is a type de�nition
 from an algebraic point of view it can be seen as
a model
 as previously discussed in �RAH����

The implicit model
 for the example written in CAMILA
 is�

model

type

litprog � X�seq

X � �TXT � prog � def � id � sec � tit�

prog � Y�seq

Y � �TXT � id�

def � ID x prog

sec � TXT

id � ID

endtype

In this approach
 the operation getprogram�� is then expressed as a func

tion over that model� It transforms a literate programming text in a program
�cprog��

type

cprog � TXT�seq

endtype

func getprogram�t�litprog��cprog

returns explode��main�mkindex�t���

��

getprogram��is a recursive substitution �explode� of the identifiers�id�

by their associated programs� starting with main identifier�

func mkindex�t�litprog�� id �	 prog

return � i�x� �	 v�x� � x �� t � is�def�x�
 �

func explode�i�id� d� id�	 prog� � cprog

pre i in dom�d�

returns CONC�

� if�is�id�x� �	 explode�x�d��

else �	 �x	 � � x �� d�i
	��

This approach is good for prototyping semantics� it is compact to

write� we can play with getprogram�� independently of the concrete

syntax and before building any parsing tool�

Comparing this approach with section ���� we can see that the algebraic

model describes simultaneously both the structure and the values defined

by the AG� the attribute evaluation rules correspond to the type�constructors

in the algebraic approach� For instance functions like mkindex�� in

Camilacorrespond to the partial evaluation rules to build the tt stab

attribute� in the AG approach such a function �that takes complex arguments�

is splitted into parts �according to the CFG� that process simple arguments�

In this approach� we are looking at the DTD in a semantic point of

view�

Another point of view is to consider element definition as production

of a CFG as we did in the previous subsection� In this case� the DTD

is only a syntactic way to define the document�

It is well known the mapping between context free grammars �CFG� and

algebraic signatures�GTWW��
�

The signature associated with our case�study is�

sorts� litprog� prog� def� sec� tit� id� TXT� ID�

operators�

p�� �TXT � prog � def � id � sec � tit�� �	 litprog

p�� �TXT � id�� �	 prog

p�� ID x prog �	 def

p�� TXT �	 sec

p�� TXT �	 tit

p�� ID �	 id

In order to have semantics� we have to define models for the sorts

and definitions for the operators�

It is now clear how to relate the algebraic specification with the

attributed grammar�AG� approach�

��

� the model for all the sorts corresponding to the T and NT symbols�

is a cartesian product of attributes�

� the operators p���pn are defined by a set of equations over the

attributes associated with each productions

� Conclusion

Throughout this paper we have made some reasoning about ways to represent

document semantics in order to further process them using tradicional

environments�

DAST �and AG� seamed to be a natural process do enrich a DTD with dynamic

semantics definitions� Since we are working with SGML documents� the

process of grammar derivation starting from the DTD is almost automatic�

As SGML documents can have some kind of static semantics� that can

be easily converted into some attribute equations �as we have shown

in our case study�� Dynamic semantics can also be specified through

attributes� Currently we are working on a project that takes this

approach and aims at implementing DSSSL �this work is based on Synthesizer

Generator�RT��a� RT��b
��

Formal specification in general� and Camila in particular� seamed

to be useful for prototyping document processing and for defining intended

behavior of tools�

Some work is being done in order to build a SGML input device to Camila�

Algebraic programming proved to be useful for comparing different approaches�

Comparing SGML language with CAMILA specifications one difference comes

out� In SGML there is a clear distinction between what is an element

and what is an attribute� in our approach this difference is almost

invisible� This issue could be an advantage in some cases� many times

it is hard to understand why someone has specified some object as an

attribute instead of specifying it as an element� there is no criteria�

when developing a DTD� to decide what should become an element and

what should become an attribute� The relevance of this issue is that

for a parser that difference is very important� and this leads to errors

even when we are dealing with small documents�

References

�BA��
 Luis Barbosa and J�Joao Almeida� System Prototyping in

CAMILA� University of Minho� ����� Lecture notes for

the system Design Course� Computer System Engineering�

University of Bristol�

��

�FJ��
 L� Feijs and H� Jonkers� Formal Specification and

Design� ��� Cambridge Tracts in Theoretical Computer

Science� �����

�GH��
 J� Guttag and J Horning� Larch� Languages and Tools

for Formal Specification� Springer�Verlag� �����

�GTWW��
 Joseph Goguen� James Thatcher� Eric Wagner� and Jesse

Wright� Initial algebra semantics and continuous

algebras� Journal of the Association for Computing

Machinery� �������� ��� January �����

�Hax��
 A� Haxthausen� A Tutorial on RAISE� Technical Report

RAISE�CRI�DOC��������� CRI A�S �Denmark�� �����

�Hen��
 P� Hendersen� me too� A Language for Software

Specification and Model Building � Preliminary Report�

Tecnhical Report� University of Stirling� �����

�HM��
 R� Harper and K� Mitchell� Introduction to Standard ML�
Technical Report� University of Edimburgh� �����

�Knu��
 Donald E� Knuth� Semantics of context�free languages�

Mathematical Systems Theory� �������� ���� �����

�Knu��
 Donald E� Knuth� Literate Programming� Distributed by

Unversity of Chicago Press� ����� CSLI ���

�Oli��
 J� N� Oliveira� A Reification Calculus for

Model�Oriented Software Specification� Formal Aspects

of Computing� ����� ��� �����

�Oli��
 J� N� Oliveira� Software Reification Using the SETS

Calculus �invited communication�� In Theory and Practice

of Formal Software Development� BCS FACS �th Refinement

Workshop� London� �����

�RAH��
 J�C� Ramalho� J�J� Almeida� and P�R� Henriques� David

� algebraic specification of documents� In A�Nijholt�

G�Scollo� and R�Steetskamp� editors� TWLT�� � Algebraic

Methods in Language Processing � AMiLP��� number ��

in Twente Workshop on Language Technology� Twente

University � Holland� Dec� �����

�RT��a
 Thomas Reps and Tim Teitelbaum� The Synthesizer

Generator� A System for Constructing Language�Based

Editors� Texts and Monographs in Computer Science�

Springer�Verlag� �����

��

�RT��b
 Thomas Reps and Tim Teitelbaum� The Synthesizer

Generator Reference Manual� Texts and Monographs in

Computer Science� Springer�Verlag� �����

�Tur��
 D� A� Turner� Miranda� A Non�Strict Functional

Language with Polymorphic Types� Jour� Comp� Sys� Sci��

������� ��� �����

A Camila Language

A Camila specification is a set of software components� Each one
is a model that includes type� function and state definitions�

Model ��� MODEL id

TypeDef

FunDef

StateDef

ENDMODEL

Where a type definition has the following form�

TypeDef ��� TYPE

� id � TypeModel ��

ENDTYPE

The basic data type models predefined in Camila are�

Data Models Camila

Sets X�set

Lists X�seq

Finite functions X ��� Y

Binary Relations X �� Y

Alternatives X j Y j ���

� X 	

tuples T � X � A

Y � B

Integers INT

Strings STR

Tokens SYM

Universe ANY

Camila also provides some other primitive types which do not bear a direct

mathematical correspondence but are inherent to its programming environment�

A function definition has the following form�

FunDef ��� FHeader FPredCond FState FBody

��

FHeader��� FUNC fid �ParamLst� � typeid

FPreCond��� PRE CondExp

FState ��� STATE exp

FBody ��� RETURNS Exp

Finally
 a state definition is written according to the rule�

StateDef ��� STATE sid � typeid

The basic collections of functions associated with Camila type constructors

�eg
 intersection or union of two sets
 domain or range of binary relations

application or overwrite of mappings
 concatenation of sequences and reduce

operators
 structure definition by enumeration or comprehension
 etc�� are

available as primitive functions in the language� So are the propositional

connectives and quantifiers� To exemplify
 a synopsis of some collections

is presented above in the form of tables showing the Camila syntax
 a brief

informal description and the corresponding set theoretic notation�

�Finite� Functions �� X ��� Y

Camila Description Semantics

dom�f� Domain dom f

ran�f� Co�domain rng f

f�x	 Application f �x�
f�s Dom� restriction f js
f
s Dom� subtraction f n s

f � g Overwrite f y g
� �� � � � �� Map� enum� �����

�x� e j x� s � p� Map� compreh� �ej x � s � p�

Sequences �� X�seq

Camila Description Semantics

hd�s� Head hd s

tl�s� Tail tl s

nth�i
s� Elem� by pos� s�i�
s�r Concatenation s � r

�x�s� Appending �x�� s

CONC�s� concatenation s� � s��� � sn
elems�s� Set of elements fxj x� sg

inds�s� Domain dom s

plusq�s
f� overwrite s y f
�e�x��s�p� Seq� compreh� � ej x � s � p �

o�orio�e
s� Distribut� form

��

