
EAD Cookbook 20 July 2000 Page 1

THE EAD COOKBOOK

Archives and libraries implementing EAD face many choices: what software to use, what
elements and attributes to employ in encoding, and how best to create print and web-
accessible versions of their finding aids. During the meeting of the EAD Roundtable at the
1999 Annual Meeting of the Society of American Archivists, attendees agreed that a
simple model encoding protocol with an accompanying suite of software tools for
“authoring” electronic finding aids and stylesheets for “publishing” them would be very
useful. This Cookbook has been developed to accomplish that end. It functions as an
extension of the EAD Tag Library and the EAD Application Guidelines. To use it, one
must have a basic understanding of the EAD element set.

The EAD Cookbook includes a markup protocol that is based on recommendations found
in the EAD Application Guidelines and those promulgated by several EAD projects. It
offers an explanation of the decisions behind the encoding recommendations, is
accompanied by a suite of software tools that incorporate the model markup in various
SGML/XML authoring applications, and includes step-by-step instructions for applying
them. A sample finding aid for a fictional collection, encoded according to these
guidelines, is included as an appendix.

One has many options as to how a finding aid that uses this markup syntax will appear on
the web or in print. The tools that accompany the Cookbook produce a basic, standard
presentation suitable for either environment. Its style is drawn from a number of sources.
These include the format developed by the Minnesota Historical Society and that
employed by the Library of Congress for its online finding aids. The Society’s work on
redefining the structure and format of its inventories was chronicled by Dennis Meissner in
the Fall 1997 issue of the American Archivist (also published as Encoded Archival
Description: Context, Theory and Case Studies). The Library of Congress was an early
and active participant in EAD development and deployment. The format of its archival
registers has been widely copied by other repositories in the past. However, the encoding
protocol in the Cookbook does not reflect current practices of either institution exactly
but is a composite from various sources, including suggestions received from reviewers.
A set of stylesheets, written in the Extensible Stylesheet Language (XSL), is included to
help you generate editions of your finding aids that are suitable for viewing in a web
browser or as print copies. These too do not resemble any institutional prototype exactly
but are a composite from several sources. Step-by-step instructions guide you through
each phase of EAD implementation. Bon appetit!

Michael J. Fox
July 2000

EAD Cookbook 20 July 2000 Page 2

Section 1: The Recipe

1.1 Learn about EAD. Three volumes published by SAA make a good start:
Encoded Archival Description: Context, Theory and Case Studies, the EAD Application
Guidelines, and the EAD Tag Library. The EAD Help pages maintained by the SAA
EAD Roundtable contain much practical and useful information, including descriptions of
many implementation projects and lists of available training opportunities. They are
available at:

http://jefferson.village.virginia.edu/ead/

1.2 Determine how you will deliver your finding aids over the web. How will
researchers find these documents? Many options are available. You can do any or all of
the following:

a. Create links to the finding aids from other web pages.

b. Create links to finding aids from entries in your online catalog.

c. Index your finding aids on your local web site. Many now have software that
performs at least keyword searching of documents found on the site. EAD-encoded
documents transformed into HTML may be indexed and accessed along with other
files.

d. Contribute to a consortium that hosts a central file of finding aids. Such data servers
typically feature sophisticated software that provides structured and keyword
searching of the full text of finding aids. A growing number of state projects are
creating such services. The Research Libraries Group’s Archival Resources service
hosts finding aids from repositories in several countries and is not limited to RLG
member institutions.

e. Buy your own data server and software. Choices range from freeware to commercial
full-text search software.

f. Start you own cooperative project.

The tools for creating EAD documents that accompany the Cookbook are applicable to all
of these options.

The Cookbook provides explicit directions in Sections 5 through 8 for implementing
publishing options a and b above.

1.3 Determine the file format in which you will deliver the documents to the end user.
The Cookbook supports the option that is most widely used today- conversion of EAD
documents to HTML format for viewing in standard browsers. It does not cover the use
of browser plug-ins and other supporting files required when delivering EAD documents
in “classic SGML” format. The cost and inconvenience to users of acquiring and installing
such software makes this approach less desirable as XML options emerge.

EAD Cookbook 20 July 2000 Page 3

For further advice on these issues, consult Chapters 4 and 5 of the EAD Application
Guidelines, read the case studies in Encoded Archival Description: Context, Theory and
Case Studies, analyze the implementation strategies of various institutions documented at
the EAD Help Pages web site, and follow the discussion or ask questions on the EAD list.

1.4 Review the general principles and specific details of the Encoding Protocol found in
sections 2 and 3. Some choices have been made for you already; others you will have to
determine. These sections will help you identify your options and make those decisions.
The sources cited above and the EAD Tag Library will provide additional information.

1.5 Acquire one of the software applications for authoring finding aids supported by the
Cookbook. These include XMetaL, Author/Editor, and WordPerfect 9.

1.6 Repeat step 1.4.

1.7 Install and configure the software. (Section 4)

1.8 Create EAD-encoded finding aids. (Section 4)

1.9 Convert any files in SGML into XML. (Section 5)

1.10 Select an appropriate XSL stylesheet. (Section 6)

1.11 Transform your EAD files into HTML. (Section 7)

1.12 Mount files for web access. (Section 8)

EAD Cookbook 20 July 2000 Page 4

Section 2: The EAD Cookbook Design Principles

EAD offers great flexibility in how one might encode a finding aid. The options chosen
may have a significant impact on the subsequent usability of the file. The particular
markup choices suggested in the EAD Cookbook are designed to facilitate the transport of
data between systems, the sharing of data through union catalogs, the reuse of data for
different purposes, hyper-navigation within inventories, and the presentation of data in
different environments, currently through the web and as print output. The following
principles serve as the basis for the model encoding protocol.

1. EAD encoding is not a substitute for sound archival description. Before marking up a
single document, consider what information you wish to record. Descriptive
conventions like Archives, Personal Papers, and Manuscripts (APPM), the Rules for
Archival Description (RAD), and the General International Standard for Archival
Description (ISAD(G)) all have very useful things to say about what information
ought to be included in a good archival description and how to structure that data.
Finding aids do not differ fundamentally from other tools we create to assist our users
in identifying and locating relevant materials in our collections. Consider using
indexing terms drawn from standardized vocabularies in controlled elements to
improve retrieval across metadata systems.

2. The description embodied in an EAD-encoded finding aid conveys the multilevel,

hierarchical nature of the materials themselves. This approach reflects the fundamental
and intrinsic characteristics of archival materials and their interrelationships, and the
function of the finding aid as a surrogate for the originals and a tool for resource
discovery and interpretation.

3. Description proceeds from the general to the specific, in reflection of the hierarchy just

described, as a practical and flexible solution to the problem of creating intellectual
and physical control over large bodies of materials, and as an aid to resource discovery
by researchers.

4. Markup may use either “classic SGML” or XML syntax. If an SGML file is to be

transformed into HTML using the accompanying stylesheets, it first must be converted
into XML syntax.

5. The model assumes that the materials form a collection of personal papers or

organizational records that is subdivided into several series. The encoding further
assumes that the collection is fully processed and described. More complex or simpler
collections, e.g., those with sub-groups or sub-collections or ones consisting only of a
single series probably will require modifications to the stylesheets.

EAD Cookbook 20 July 2000 Page 5

6. No method for managing large numbers of images or other associated non-textual files
is prescribed. Repositories using finding aids to link to many external files will need
to review the options outlined in Section 4.4.3 of the EAD Application Guidelines.
The simple inclusion of an institutional logo can be handled through a single Extended
Pointer element or by a stylesheet, as is the case with those that accompany the
Cookbook (see Section 6.2).

7. There is a growing consensus within the archival community that there is a set of core
data elements that ought to be included at a minimum in every finding aid to help users
determine the applicability of a collection to their research needs and to identify
specific materials for retrieval and inspection. Appendix A of the EAD Application
Guidelines specifies four elements that should be included in every finding aid: the top
level Descriptive Identification, Biography or History, Scope and Contents, and
Controlled Access. Administrative Information elements such as user restrictions
should be included as appropriate. The specific sub-elements within these groups are
described in Section 3. Further, there are certain elements necessary for the
identification of the electronic file that carries the encoded finding aid. Some of these
are required by the EAD DTD, particularly in the EAD Header element.

8. The protocol detailed in Section 3 prescribes the explicit inclusion of certain data
elements to facilitate transport, display in external systems, internal hyper-navigation,
data reuse such as in converting EAD content into MARC records, and the future
migration of data to new systems. One cannot assume that local protocols for display,
such as may be specified by a local stylesheet, will always travel with the document or
be applied to its presentation in other systems and contexts. The protocol specifies
the inclusion of labels to provide coherent, user-friendly displays using the Head
element for blocks of text and groups of related elements, the specific inclusion of
default values for LABEL attributes, and the addition of encoding analogs. It includes
samples of explanatory text that might be added to a finding aid to assist remote users
who, for example, might not readily understand the purpose of elements such as
Controlled Access terms. To minimize subsequent display problems, avoid the use of
phrases written entirely in upper case.

9. When encoding inventories, other conventions also apply. Observe the
recommendations regarding whitespace and internal punctuation found in sections
4.3.5.1 and 4.3.5.2 of the EAD Application Guidelines and Section 3.3.10 of the
Cookbook. Internal links are specifically encoded with a Reference element. Specific
ID attributes are given to facilitate internal hyper-links, especially between the Table of
Contents and the body of the finding aid. Most of these features are supplied as
“default” values through the software templates used to create a new inventory and
therefore add no additional overhead to encoding operations.

EAD Cookbook 20 July 2000 Page 6

10. Additional markup such as the encoding of personal names and subjects beyond the
prescribed structural elements seems cost-justifiable only if it supports enhanced
comprehension or retrieval through indexing or display. The protocol markup scheme
does not provide any special support, such as keyboard macros for data entry or
distinctive styling for display through the stylesheets, for nominal content markup such
as <persname> within elements for narrative text such as paragraphs. However, this
certainly does not preclude in any way their inclusion. This topic is discussed in
several of the EAD case studies that appeared in Encoded Archival Description:
Context, Theory and Case Studies.

11. Markup follows the “combined” model for the Description of Subordinate
Components. The resulting information may be presented either in the sequence in
which it is encoded or divided for presentation into separate “analytic overview” and
“in-depth” views of the contents of the inventory by a stylesheet. The use of
stylesheets to produce either of these outputs from a single set of data eliminates the
need for duplicate entry of information common to the two views.

12. No conceptual significance is implied by the sequence in which elements appear in the
encoding specifications or the templates except insofar as the EAD DTD enforces a
given order. With the use of the stylesheets written in the XSL Transformation
(XSLT) language that accompany the Cookbook, the arrangement of information
upon output to the web is largely independent of the order of data in the source
document. While the protocol makes few assumptions about input sequence, the
stylesheets do enforce a predefined order at publication. However, publication
techniques other than XSL stylesheets often are not so flexible and one may have little
or no ability to reorder elements. In those scenarios, the order of data input may be
directly and absolutely related to the order in which data is published.

EAD Cookbook 20 July 2000 Page 7

Section 3: EAD Cookbook Encoding Protocol

This section describes the Cookbook's key encoding recommendations and the rationale
behind them. These choices are assumed by and incorporated into the accompanying
templates and other software tools described in Section 4 and the publication tools in
Sections 6 and 7.

The protocol includes every major high-level element available in EAD. If your repository
does not wish to include a particular element, it may be simply deleted globally from the
accompanying templates or removed from individual documents on a case-by-case basis.

Arbitrary values are assigned to ID attributes to simplify the creation of a table of contents
and other internal hyper-links. Any changes to these values will require a partial rewriting
of the stylesheets. If you wish to include additional elements, such as multiple instances of
<odd>, and link them from a table of contents, additional unique ID attributes must be
assigned. Any values not already used in the templates may be applied. If an element
such as <bioghist> is used recursively, the value of the ID attribute specified in this section
should be applied only to the parent element. SGML requires each ID attribute have a
unique value.

Text is suggested for certain elements, particularly Head and the EAD Header elements.
You may certainly alter the language according to local practice. For a detailed
description of the form and usage of each element, consult the EAD Tag Library.

Encoding analogs are given for many elements in order to correlate EAD elements with
equivalent data fields in the MARC 21 cataloging format. They are included only to
facilitate the conversion of EAD data into MARC records. If you do not intend to use
your finding aids in this way, these attributes may be safely ignored or deleted. Other
encoding analogs, such as to ISAD(G) elements certainly may be substituted.

The Cookbook does not utilize the <frontmatter> element either by specifying encoding
practice for it or supporting its display in the accompanying stylesheets. Many institutions
find that all the information necessary for a presentation that resembles a formal title page
for the finding aid may be extracted from the <eadheader>.

3.1 EAD <ead>
Record the RELATEDENCODING attribute as “MARC21”.

3.2 EAD Header <eadheader>
Record the AUDIENCE attribute as “internal”.
Record the LANGENCODING attribute as “ISO 639-2”.
Record the FINDAIDSTATUS attribute as “EDITED-FULL-DRAFT”.
Record the ID attribute as “a0”.

EAD Cookbook 20 July 2000 Page 8

3.2.1 EAD Identifier <eadid>

Record a value that is suitable as a computer file name in order to facilitate file
management. Stylesheet 3 which accompanies the Cookbook (see Section 6.1.3) uses the
value of <eadid> as the basis for several file names in an HTML frameset.

Record a coded value for the repository in the SYSTEMID attribute to ensure that the
<eadid> assigned is unique among the universe of inventories. Use a MARC repository
code supplied by the Library of Congress or the National Library of Canada (MARC Code
List for Organizations), or other code assigned by OCLC, by the Research Libraries
Group, or by another national authority.

Record in the SOURCE attribute a code that identifies the body that issued the code in the
SYSTEMID attribute. For example, the codes for the institutions listed above are DLC,
NLC, OCoLC, and CStRLIN respectively.

Record the ENCODINGANALOG attribute as “852”.

3.2.2 File Description <filedesc>

3.2.2.1 Title Statement <titlestmt>

Record the name of the creator of the collection [as opposed to the finding aid] in the Title
Proper <titleproper> element.
Record in the Subtitle <subtitle> element a statement in the following syntax- An
Inventory of His/Her/Its Characterization of the materials taken from the Unit title at
the Name of the Repository.

For example-
<titleproper>William Fonds Provenance: </titleproper><subtitle>An Inventory of His
Papers at the Cupcake Corners Historical Society.</subtitle>

This formula creates a statement that contains four critical informational elements- the
name of the creator of the materials, the type of document (an inventory), the nature of the
records, and the repository’s name. This data is used as the <title> element in the HTML
output for display in the browser and serves as metadata for web search engines.

Record the name of the creator of the inventory in the Author <author> element. This
provides useful information for tracking the history of the inventory.

EAD Cookbook 20 July 2000 Page 9

3.2.2.2 Publication Statement <publicationstmt>

Record the name of the publishing repository in the Publisher <publisher> element.
Record the date of the inventory in the Date <date> element.
Record the repository’s location in the Address <address> element. For long-term
maintenance, it may be preferable to record data that is subject to change such as street
addresses, phone numbers, etc. in an external file accessed through an entity reference or
supply it as default text with a stylesheet.

3.2.3 Profile Description <profiledesc>

3.2.3.1 Creation <creation>
Record the name of the individual responsible for the encoding. Include the date in the
Date <date> element.

3.2.3.2 Language Usage <langusage>
Record a statement about the language of the finding aid in <langusage>.
Note that names of the specific languages involved are recorded in the Language
<language> sub-element.

EAD Cookbook 20 July 2000 Page 10

3.3 Archival Description <archdesc>

Record the organizational level of the entire body of materials described in the LEVEL
attribute as appropriate.
Record the language(s) of the collection in the LANGMATERIAL attribute as
appropriate. The default value given in the accompanying templates is “eng”.
Record the TYPE attribute as “inventory”.

Record content for at least the following four elements: Descriptive Identification,
Biography or History, Scope and Content, and Controlled Access, as recommended in
Appendix A of the EAD Application Guidelines. Enter details of Administrative
Information such as restrictions as applicable. The accompanying templates support the
inclusion of all other high-level elements. The EAD DTD requires that the Descriptive
Identification <did> element come first. Further order is a matter of local preference
though the accompanying stylesheets will produce an output file that presents elements in
a predefined order when they transform an EAD file from XML into HTML syntax. See
Section 6 for further explanation of this process.

3.3.1 Descriptive Identification <did>

Record the ID attribute as “a1”.
Record a Head element that characterizes <did> and its sub-elements. The accompanying
templates use the expression “Overview of the Records” or “Overview of the Collection”.

Record the name of the repository in <repository> even if its display is to be suppressed.
Record the ENCODINGANALOG attribute as “852$a”.
Record the LABEL attribute as “Repository:”.
Record the repository’s city and state in <addressline> to conform to ISAD(G) standards.

Record the name of the creator of the materials in <origination>. Include a Corporate,
Personal, or Family Name element as appropriate.
Record the ENCODINGANALOG attribute for the sub-element as either “100” or “110”,
depending on which is the appropriate MARC element.
Record the LABEL attribute as “Creator:”.

Record the title of the materials in <unittitle>.
Record the ENCODINGANALOG attribute as “245$a”.
Record the LABEL attribute as “Title:”.
Do not include separating punctuation between the Unit Title and the Unit Date as the
stylesheets will display them on separate lines.

EAD Cookbook 20 July 2000 Page 11

Record the date of the materials in <unitdate>. The accompanying stylesheets
accommodate the encoding of unit dates either as separate elements or as a sub-element of
the Unit Title element.
This element may be repeated if both bulk and inclusive dates are recorded.
Record the type of date in the TYPE attribute.
Record the ENCODINGANALOG attribute as either “245$f” or “260$c” as appropriate
to the MARC conventions your institution employs.
Record the LABEL attribute as “Dates:”.

Record a physical description in <physdesc>.
Record the ENCODINGANALOG attribute as “300$a”.
Record the LABEL attribute as “Quantity:”.

Record an abstract of the contents of the materials in <abstract>.
Record the ENCODINGANALOG attribute as “520$a.
Record the LABEL attribute as “Abstract:”.

Record in <unitid> a uniquely identifying name or number for the materials described, as
required by ISAD(G).
Record the ENCODINGANALOG attribute as “099”.
Record the LABEL attribute as “Identification:”.
Record the COUNTRYCODE attribute as found in ISO 3166. The default value in the
accompanying templates is “US”.
Record in the REPOSITORYCODE attribute the value found in the SYSTEMID attribute
in <eadid>.

3.3.2 Biography or History <bioghist>

Record the ENCODINGANALOG as “545”.
Record the ID attribute as “a2”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text <p>, a chronology list <chronlist>,
or both.
Nested <bioghist> elements within the parent element (recursion) may be helpful to divide
the text of the biography or history narrative into sections such as when the collection
includes materials from several individuals in a family. This technique is supported by the
stylesheets. Recursive <bioghist> elements must not have the same ID attribute value as
the parent <bioghist> as SGML requires each ID attribute to have a unique value.

EAD Cookbook 20 July 2000 Page 12

3.3.3 Scope and Contents <scopecontent>

Record the ENCODINGANALOG as “520”.
Record the ID attribute as “a3”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text <p>.
Nested <scopecontent> elements within the parent unit (recursion) may be helpful to
divide the text of the scope and content narrative into separate sections such as when the
collection includes materials from several individuals in a family. Recursive
<scopecontent> elements must not have the same ID attribute value as the parent
<scopecontent> as SGML requires each ID attribute to have a unique value.

If you wish to create a hyperlink from a section of the text in the scope statement to the
part of the Description of Subordinate Components <dsc> that describes the same material
in detail, you must explicitly encoded those links within the narrative using the Reference
<ref> element. (See Section 3.5)

Statements about the arrangement and organization of the materials may be included here
rather than appearing as separate elements.

3.3.4 Organization <organization>

Record the ENCODINGANALOG as “351$a”.
Record the ID attribute as “a4”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

Alternatively, one may describe the organization of the materials by giving a list of the
titles of the component series. In this case, preceed the list with a short explanatory
statement characterizing its contents. The accompanying stylesheets are designed to
automatically generate hyperlinks between an individual series title in such a list and the
location in the description of subordinate components where that series is described in
detail. The links need not be specifically encoded here. However, the series titles must be
enumerated in the list in the same sequence as they appear in the description of
components. This linking works whether the organization element appears separately or
within a scope and contents element.

3.3.5 Arrangement <arrangement>

Record the ENCODINGANALOG as “351$b”.
Record the ID attribute as “a5”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text, lists, or tables.

EAD Cookbook 20 July 2000 Page 13

3.3.6 Adjunct Descriptive Data <add>
The sub-elements of <add> are described below. To increase flexibility in authoring, it
suggested that each of these elements be nested inside a separate <add> element rather
than all nested within a single <add> parent element.

3.3.6.1 Related Material <relatedmaterial>

Record the ENCODINGANALOG as “544 1”.
Record the ID attribute as “a6”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text or as a <list>.

3.3.6.2 Separated Material <separatedmaterial>

Record the ENCODINGANALOG as “544 0”.
Record the ID attribute as “a7”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text or as a <list>

3.3.6.3 Other Finding Aid <otherfindaid>

Record the ENCODINGANALOG as “555”.
Record the ID attribute as “a8”.
Record a <head> element that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.6.4 Index <index>

No ENCODINGANALOG applies.
Record the ID attribute as “a9”.
Record a <head> that describes the content of this element.
Encode the body of the element with paragraphs of text and the Index Entry element.

3.3.6.5 Bibliography <bibliography>

No ENCODINGANALOG applies.
Record the ID attribute as “a10”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text or Bibliographic Reference
elements.

EAD Cookbook 20 July 2000 Page 14

3.3.7 Other Descriptive Data <odd>
Record the ENCODINGANALOG as “500”.
Record the ID attribute as “a11”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.
This element should be used only if another, more specific, element does not apply.

3.3.8 Controlled Access Headings <controlaccess>

Record the ID attribute as “a12”.
Record a <head> that describes the content of this element. Include an introductory
paragraph that explains the origins and uses of the headings found in this section.

Record <persname>, <corpname>, <famname>, <geogname>, <subject>, <genreform>,
<title>, <occupation>, and <function> terms in the form determined by an appropriate
authority such as the Library of Congress Name Authority file or the Art and Architecture
Thesaurus. A list of possible sources is included in the Attributes section of the EAD Tag
Library.

Optionally, record in the SOURCE attribute the name of the authority file from which the
heading was derived.

Sub-elements may be organized recursively into groups by type of access term using
nested <controlaccess> elements with explanatory <head> elements. Recursive
<controlaccess> elements must not have the same ID attribute value as the parent
<controlaccess> as SGML requires each ID attribute to have a unique value.

Record ENCODINGANALOG attribute values for the appropriate MARC 21 fields to
facilitate reuse of the information in catalog records and to assist in the creation of Dublin
Core metadata in the HTML output. For example, appearance of the value "600" in this
attribute will cause a personal name to appear in a Subject element in a <meta> tag in the
HTML output generated by the stylesheets whereas if the value is given as "700", the
name will appear in a <meta> tag as a Contributor element. The values shown below are
included by default in the templates that accompany the Cookbook. In situations where
more than one ENCODINGANALOG value is possible, the default is listed below. If you
do not plan to transform your EAD data into MARC records or if the default values are
sufficiently precise for your uses, simply retain the default values and ignore the following
chart.

EAD Cookbook 20 July 2000 Page 15

The appropriate MARC values are
<persname> (600 as a subject or 700 as a creator; 700 is the template default)
<corpname> (610 as a subject or 710 as a creator; 710 is the template default)
<famname> (600 as a subject)
<geogname> (651)
<subject> (650)
<genreform> (655)
<title> (630 as a subject or 730 as part of a collection; 630 is the template

default)
<occupation> (657)
<function> (656)

Default values are included in the accompanying templates and macros.

3.3.9 Administrative Information <admininfo>
The sub-elements of <admininfo> are described below. To increase flexibility in
authoring, it suggested that each of these elements be nested inside a separate
<admininfo> element rather than all nested within a single <admininfo> parent element.

3.3.9.1 Restrictions on Access <accessrestrict>

Record the ENCODINGANALOG as “506”.
Record the ID attribute as “a14”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.2 Restrictions on Use <usesrestrict>

Record the ENCODINGANALOG as “540”.
Record the ID attribute as “a15”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.3 Custodial History <custodhist>

Record the ENCODINGANALOG as “561”.
Record the ID attribute as “a16”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

EAD Cookbook 20 July 2000 Page 16

3.3.9.4 Alternative Form Available <altformavail>

Record the ENCODINGANALOG as “530”.
Record the ID attribute as “a17”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.5 Preferred Citation <prefercite>

Record the ENCODINGANALOG as “524”.
Record the ID attribute as “a18”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.6 Acquisition Information <acqinfo>

Record the ENCODINGANALOG as “541”.
Record the ID attribute as “a19”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.7 Processing Information <processinfo>

Record the ENCODINGANALOG as “583”.
Record the ID attribute as “a20”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.8 Appraisal <appraisal>

Record the ENCODINGANALOG as “583”.
Record the ID attribute as “a21”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

3.3.9.9 Accruals <accruals>

Record the ENCODINGANALOG as “584”.
Record the ID attribute as “a22”.
Record a <head> that describes the content of this element.
Encode the body of the element as paragraphs of text.

EAD Cookbook 20 July 2000 Page 17

3.3.10 Description of Subordinate Components <dsc>

The “combined” model is used for encoding the <dsc>. See Chapter 3 of the EAD
Application Guidelines for a discussion of the possible structural models for the
Description of Subordinate Components. Accompanying stylesheets 1 through 3 present
the text of the <dsc> in a single sequence. Stylesheet 4 presents the text as a separate
“Summary Description of the Records” and a “Detailed Description of the Records”
section for print output. The stylesheets all use HTML tables to produce an indented,
tabular display. The table structure is derived from the content of the encoding; no
explicit encoding of tables in EAD is required to generate this tabular output. See Section
6.1 for further details.

Record the ID attribute as “a23”.
Record the TYPE attribute as “combined”.

Record a <head> that describes the content of this element. The accompanying templates
use the default expression “Detailed Description of the Records” or “Detailed Description
of the Collection.”
Include an introductory Paragraph that explains this section of the inventory.

Component <c>

This model assumes that the Component (First Level) element represents a series. Record
the following information for each series.

Record the ID attribute as “seriesnn”, where nn is the sequential number of the series, e.g.
series1, series2, series3, etc.
Record the LEVEL attribute as “series”.

For all component levels, record the appropriate <did> elements. You may include
<unitdate> either within <unittitle> or separately. Contrary to the recommendation in
Chapter 4 of the EAD Application Guidelines, do include separating punctuation between
the individual sub-elements of component <did> elements, such as between title and date.
During testing of the Cookbook, it was determined that it is impossible for a stylesheet to
predict and properly insert all variations in punctuation. The stylesheets will insert a space
between elements as appropriate.

EAD Cookbook 20 July 2000 Page 18

Record box and folder or other container information according to institutional practice.
Possibilities include showing box and folder numbers, only box numbers, only folder
numbers, a combined box/folder number, or no container information at all. The
accompanying stylesheets accommodate all five possibilities. When container numbers are
recorded, however, they must be recorded explicitly for each component even if an entry
duplicates information in a previous component. The accompanying stylesheets suppress
the public display of repetitive container numbers. See Section 6 for further, specific
details. The Cookbook promotes the explicit inclusion of container data for all
components as a highly desirable practice that will facilitate future data manipulation.

You may wish to include container information for most components but not for certain
others, for example one that simply represents a filing unit such as "Subject files organized
by date." In this case, include the container element but without any textual or numeric
content. For programming reasons, the stylesheets determine the display of container
information based on the appearance of the container element as well as the presence or
absence of text within it. Simply put, if you include container elements for some
components but not for others, the Cookbook stylesheets will mess up your displays.
Fortunately, it is not difficult to insert the <container> tags since the keyboard macros for
the accompanying templates automatically supply them.

The adjustments that need to be made to the templates and macros to accommodate the
type of containers you record are described separately for XMetaL, Author/Editor, and
WordPerfect in the appropriate parts of Section 4.

Record the appropriate TYPE attribute for all Container elements.

Record other elements such as appropriate. The accompanying stylesheets specifically
support the presentation of <scopecontent>, <bioghist>, <note>, <odd>, <userestrict>,
and <accessrestrict> within components.

EAD Cookbook 20 July 2000 Page 19

3.4 Tables

The EAD Cookbook stylesheets support the inclusion of simple tables for the presentation
of data in two or more columns within paragraphs in narrative elements such as Scope and
Content, Biography or History, and Note. Tables may include any number of columns.
For further information on the encoding of tables, see the Overview of EAD section and
the descriptions and examples of individual table elements and attributes in the EAD Tag
Library.

3.4.1 Table <table>

Record the number of columns in the table in the COLNUM attribute.

3.4.1.2 Table Group <tgroup>
Include a Table Column Specification <colspec> element for each column. Specify the
width of the column in the COLWIDTH attribute. Width may be expressed as an absolute
number of pixels or points or as a relative percentage.

3.4.1.3 Table Head <thead>
Record a heading for each column as an <entry> element within a <row>.

3.4.1.4 Table Body <tbody>

Record the body of the table as a series of “data cells” that are defined horizontally by
<row> elements with each individual piece of data in an <entry> element.

3.5 References

The Reference <ref> element provides a mechanism for creating internal hyperlinks
between sections of a single finding aid. All such links contain two parts- a source and a
target or destination. The target is created by adding a unique value as the ID attribute of
the element that is the destination of the link.

The source is created by embedding the text that forms the link within a <ref> element.
Record the value of the target element’s ID attribute as the value of the TARGET
attribute of this <ref>.

The cookbook stylesheets support the use of <ref> in a limited numbed of situations.
Links may be made to <c01> elements (series titles) in the description of components
section and to paragraph elements anywhere in a finding aid.

EAD Cookbook 20 July 2000 Page 20

Section 4: Authoring Tools

The Cookbook provides a variety of tools to facilitate the encoding of new inventories.
These include templates, macros and other customization files. Parallel files are available
for three applications: XMetaL, Author/Editor, and WordPerfect 9. Aids for other
software packages may be added in the future. Directions follow for installing,
customizing, and implementing each application and its associated files. The files that are
listed in the following sections are available for downloading on the EAD Help Pages.

4.1 XMetaL

XMetaL, a software application for creating EAD-encoded finding aids, is available from
SoftQuad Ltd. 161 Eglington Avenue East, Suite 400, Toronto, ON, Canada M4P 1J5. It
runs on various Windows platforms. The following tools were created to be compatible
with version 1.2 of the software.

While XMetaL may create either SGML or XML output, it is configured in the Cookbook
to produce XML files.

4.1.1 Installation

The default installation of XMetaL places the application in an XMetaL sub-directory of
the Program Files folder on the C: drive. Review the user’s manual to familiarize yourself
with the key features of the software, especially the Tags On and Plain Text displays and
the use of the Insert Element and Attribute Inspector features for markup.

The installer program also will suggest that you add the accompanying version of
Microsoft Internet Explorer browser (IE version 4.0 or 5.0 being required by the
software). You may chose to install the browser or update it at this time if you have an
older version.

When you are asked during the installation process or upon first opening the application if
you wish to preserve whitespace, select that option that indicates you do not wish to do
so.

If you will be using XMetaL to generate your HTML output (see Section 7), you will
need to install Microsoft’s version of a Java Virtual Machine which they refer to as the
Microsoft Virtual Machine. To do so, select a Customized installation for the browser
and pick the optional Microsoft Virtual Machine choice as one of the components to
install.

Install the helper files described in in the next two sections.

EAD Cookbook 20 July 2000 Page 21

4.1.2 Rules
XMetaL uses a binary version of the EAD DTD called a “rules” file for enforcing
compliance with the DTD during document creation and final validation. This file is
called

ead.rlx

Install this file in the Rules sub-directory of the XMetaL folder.

4.1.3 Templates
Templates provide a standardized file that can be reused over and over to provide the
default markup and “boilerplate” text that you wish to include in every document. Two
templates are provided with the Cookbook. They are named

eadperson.xml
eadcorporate.xml.

There are only minor variations between the two. The first is geared towards inventories
of collections of personal papers, the other to organizational or governmental records. In
the former, the Origination element contains a Personal Name sub-element, in the latter a
Corporate Name. The only other variations are in the suggested text of Head elements.
For example, in one case the text reads “Scope and Content of the Collection” and in the
other “Scope and Content of the Records”.

Install the two files listed above in the General sub-directory of the Templates directory of
the folder in which you have installed XMetaL.

4.1.3.1 To Create a New Document
Open XMetaL, chose File on the menu bar, and then select New from the pull-down
menu. You will be presented with a list of templates including these files. When you
select the appropriate template, the default tags, attributes and text will appear for you to
fill in and add to. XMetaL includes a special feature wherein grayed-out text appears
within the element as a prompt to the data entry operator, the contents of which
disappears when something is entered into that element.

The order of elements in the templates follows the sequence found in Section 3. The
EAD DTD requires that the <eadheader> sub-elements follow this order and that the
<did> element comes first within <archdesc>.

EAD Cookbook 20 July 2000 Page 22

4.1.3.2 Customize Your Templates
You may wish to customize the template files for various reasons:

• Certain attributes are repository specific. You will need to supply locally valid
values for the SOURCE and SYSTEMID attributes in the EAD Identifier and
the REPOSITORYCODE attribute in the ID of the Unit for the collection as a
whole, i.e. in the Descriptive Identification for the Archival Description.

• Default text for EAD Header elements, explanatory paragraphs, and Head

elements may be modified. For example, you may wish the Head element for
the Biography or History <bioghist> to read “Biographical Sketch” rather than
“Biography of… .”.

• The template may include elements such as appraisal or accruals which you

never use. Simply delete the markup from the template.

• Some elements in the template, such as repository name and address, that

initially appear as prompted data ought to be converted to default data so that
they do not need to be rekeyed for each inventory. Simply type over the
existing prompt to convert it to “boilerplate” data.

• The default text of data entry prompts may be customized. XMetaL uses a

proprietary application of the XML processing-instruction element to supply
these prompts. They are visible and may be edited in the Plain Text view.
The processing instruction begins with the code- <?xm-replace_text- which is
followed by the text of the prompt in curly brackets. Simply type over the
existing text in the brackets to create a new prompt.

• Certain elements automatically appear when a component such as a <c02> is

inserted. You may wish to change the defaults, for example, removing the
<container type=”folder”> element if you never include folder numbers in your
inventories. These are defined in the file ead.ctm whose customization is
described in Section 4.1.5.

• The order of elements may not be optimal for local data entry. One may

rearrange the elements within the limits of the DTD. Remember, the order of
the elements at data entry is independent of the sequence in which they display
later.

 To customize the template, open a new document using the template, insert, delete, or
type over the relevant elements and attributes as described below, select Save As on the
File menu, and save the file in the Templates sub-directory under its original name.

EAD Cookbook 20 July 2000 Page 23

 4.1.4 Macros

 Macros are a feature of many software applications, including word processors, that
permit one to execute repeatedly an oft-used set of keystrokes by typing a short two or
three letter combination of keys. The following keystrokes can be used to automatically
insert elements and text. The file

 ead.mcr

 executes the following functions. Install this file in the Macros sub-directory of the folder
in which you have installed XMetaL.

 CTRL + ALT + c Opens a Chronology List Item with a Date and an Event
 CTRL + ALT + s Opens a Scope and Content and Paragraph
 CTRL + ALT + u Opens a Unit Identification
 CTRL + ALT + 1 Opens a Component (Level One)
 CTRL + ALT + 2 Opens a Component (Level Two)
 CTRL + ALT + 3 Opens a Component (Level Three)
 CTRL + ALT + 4 Opens a Component (Level Four)
 CTRL + ALT + 5 Opens a Component (Level Five)
 CTRL + ALT + 6 Opens a Component (Level Six)
 CTRL + ALT + 7 Opens a Component (Level Seven)

 4.1.5 XMetaL Customization File
 This file customizes certain aspects of XMetaL functionality. It is named

 ead.ctm

 Install this file in the Rules sub-directory of the folder in which you have installed
XMetaL.

EAD Cookbook 20 July 2000 Page 24

 The customization file can specify certain display features such as the color of start-tag
and end-tag pairs. More significantly, it can specify which elements, attributes, and
prompts are automatically supplied when a given element is inserted. For example, in the
file supplied with the Cookbook, the default is to include the following element string
whenever a <c02> element is inserted:

 <did>
 <container type=”box”></container>
 <container type=”folder”> </container>
<unittitle><unitdate></unitdate></unittitle>
 <physdesc></physdesc>
 </did>.

 While the macro file can be used with a keyboard short-cut to insert a <c02>, the
customization file determines which elements automatically appear whenever a <c02> is
inserted.

 To edit the customization file, open a new EAD document. From the Tools menu, select
Customizations. In a frame along the left side of the dialog box that opens is a list of
elements. When you highlight a particular element on that list, any default markup or text
appears in a window in the center of the box. Simply add to or delete the appropriate
text and select Apply.

 4.1.6 Display File
 XMetaL uses the specifications of the Cascading Style Sheet (CSS) standard to control
the appearance of marked up text in the Tags On view. This does not effect the display of
the document in any other context. It defines such aspects of appearance as font size,
weight, and color, element indention and tabs, and line spacing. The specifications for
display are stored in a file called

 ead.css

 Install this file in the Display sub-directory of the folder in which you have installed
XMetaL.

 To edit the display file, open a new document. From Tools on the menu bar select Editor
Display Styles. A box will open in the middle of the screen with several tabbed entries
for editing the appearance of the document in the Tags On view. A knowledge of the
Cascading Style Sheet (CSS) protocol will be helpful in making such modifications.

EAD Cookbook 20 July 2000 Page 25

 4.2 Author/Editor

 Panorama Author/Editor is a software application for creating EAD-encoded finding aids
in “classic SGML” syntax. Initially created by SoftQuad, it is now marketed by Interleaf,
62 Fourth Avenue Waltham, MA 02116.

 If you use Author/Editor to encode your finding aids, you will need to take several
additional steps to convert them to XML syntax in order to make use of the publishing
tools that accompany the Cookbook. Section 5 describes two ways to make that
conversion. The following tools were created to be compatible with the Windows version
3.5 of Author/Editor.

 4.2.1 Installation
 The default installation for Author/Editor places the application in a sub-directory of the
C: drive called AE. Consult the user’s manual to familiarize yourself with the key
features of the software, particularly the inserting of elements and attributes and the
difference between opening and importing and saving and exporting files.

 Install also the following helper files.

 4.2.2 Rules
 Author/Editor uses a binary version of the EAD DTD called a “rules” file for enforcing
compliance with the DTD during document creation and final validation. This file is
called
 ead.rls

 Install this file in the Rules sub-directory of the AE folder.

 4.2.3 Templates
 Templates provide a standardized file that can be reused over and over to provide the
default markup and “boilerplate” data you wish to include in every document. Two
templates are provided with the Cookbook. They are named

 _eadperson.ae
 _eadcorporate.ae

EAD Cookbook 20 July 2000 Page 26

 There are only minor variations between the two. The first is geared towards inventories
of collections of personal papers, the other to organizational or governmental records. In
the former, the Origination element contains a Personal Name sub-element, in the latter a
Corporate Name. The only other variations are in the text of Head elements. For
example, in one case the text reads “Scope and Content of the Collection” and in the other
“Scope and Content of the Records”.

 Install these two files in the Templates sub-directory of the folder in which you have
installed Author/Editor.

 To create a new document, open Author/Editor, select Open Template under the File
option on the menu bar, and you will be presented with a list of templates including these
files. Select the appropriate template. The default tags, attributes and text will appear for
you to fill in and add to.

 The order of elements in the templates follows the same sequence found in Section 3.
The EAD DTD requires that the <eadheader> sub-elements follow this order and that the
<did> element comes first within <archdesc>.

 4.2.3.1 Customize Your Templates

 You may wish to customize the template files for several reasons. To do so, open a new
document using the template, insert, delete, or type over the relevant elements and
attributes, select Save As and save the file in the Templates sub-directory under its original
name.

• Certain attributes are repository specific. You will need to supply locally valid
values for the SOURCE and SYSTEMID attributes in the EAD Identifier and
the REPOSITORYCODE attribute in the ID of the Unit for the collection as a
whole, i.e. in the Descriptive Identification for the Archival Description.

• Default text for explanatory paragraphs and for Head elements may be

modified. For example, you may wish the Head to read “Biographical Sketch”
rather than “Biography of… .”.

• The template may include elements such as appraisal or accruals which you

never use. Simply delete the markup from the template.

• Certain elements automatically appear when a component such as a <c02> is
inserted. You may wish to change the defaults, for example, removing the
<container type=”folder”> element if you never include folder numbers in your
inventories. These are defined in the file ead.mcr whose customization is
described in Section 4.2.4.

EAD Cookbook 20 July 2000 Page 27

• The order of elements may not be optimal for local data entry. One may
rearrange the elements within the limits of the DTD. Remember, the order of
the elements at data entry is independent of the sequence in which they may
display later.

 4.2.4 Macros

 Macros are a feature of many software applications, including word processors, that
permit one to execute repeatedly an oft-used set of keystrokes by typing a short two or
three letter combination of keys. The following keystrokes can be used to automatically
insert elements and text.

 CTRL + ALT + c Opens a Chronology List Item with a Date and an Event
 CTRL + ALT + s Opens a Scope and Content and Paragraph
 CTRL + ALT + u Opens a Unit Identification
 CTRL + ALT + 1 Opens a Component (Level One)
 CTRL + ALT + 2 Opens a Component (Level Two)
 CTRL + ALT + 3 Opens a Component (Level Three)
 CTRL + ALT + 4 Opens a Component (Level Four)
 CTRL + ALT + 5 Opens a Component (Level Five)
 CTRL + ALT + 6 Opens a Component (Level Six)
 CTRL + ALT + 7 Opens a Component (Level Seven)

 These are defined in the file

 ead.mcr

 Install this file in the Macros sub-directory of the folder in which you have installed
Author/Editor. The first time you wish to use the macro file, go to the Special option on
the toolbar and select Load macros. Highlight the file ead.mcr and select Open. Once
you have done so, this file will be the default macro for all EAD documents until another
macro is loaded.

EAD Cookbook 20 July 2000 Page 28

 When a Component element is opened, the macro file also automatically inserts certain
sub-elements. For example, when a <c02> element is inserted, the macro also adds the
following elements:

 <did>
 <container type=”box”></container>
 <container type=”folder”></container>
 <unittitle><unitdate></unitdate></unittitle>
 <physdesc></physdesc>
 </did>

 4.2.4.1 Customize Your Macros
 If you wish to modify the list of elements that automatically appear within component
when a keyboard macro is invoked, it will be necessary to rerecord the macro as it is not
possible to edit the text of Author/Editor macros directly. To do so, go to Special on the
menu bar and select Record macro. Perform all the steps on the keyboard that you wish
to incorporate into the macro. When you are finished, go to Special and select Stop
recording. In the dialog box that opens, assign an appropriate name and keyboard
sequence to the macro you have just created.

 4.2.5 Style File

 Author/Editor uses an internal “styles” function to specify how the document will be
displayed when the Show Tags feature is turned on. This includes the way particular tags
are indented and the display of attribute values. This specifications are stored in a file
called

 ead.stl

 Install this file in Styles sub-directory of the folder in which you have installed
Author/Editor.

EAD Cookbook 20 July 2000 Page 29

 4.3 WordPerfect 9

 WordPerfect 9 is a component of Corel’s WordPerfect2000 Office Suite. It is available
through regular software retail channels or from Corel Corporation (www.corel.com),
1600 Carling Avenue, Ottawa, Ontario, Canada K1Z 8R7.

 WordPerfect 9 bundles SGML and XML document creation and editing functionality
directly into the WordPerfect editing environment. Version 9 creates XML output as its
default, though documents may be readily imported and exported as SGML as well. The
following templates and macros were created by Dennis Meissner of the Minnesota
Historical Society.

 4.3.1 Installation
 The default installation of WordPerfect 9 places the application in a Corel sub-directory
of the Program Files directory of the C: drive. Consult the user’s manual to familiarize
yourself with the key features of the software, particularly the conventions for inserting
elements, editing attributes, and validating documents. The standard presentation in the
editing window displays the document page with start and end tags represented as labeled
pointers. There is no “plain-text” view (c.f. XMetaL) in which one can view the XML
documents as simple ASCII text, but one can open a “Reveal Codes” window that may be
set to display in a graphical manner all of the text existing within angle brackets. In
addition to the document editing window, a user also can open an XML tree display as a
further navigational tool.

 Install also the following helper files.

 4.3.2 EAD|DTD
 The following two files must be copied into the directory:

 “… \Corel\WordPerfect Office 2000\XML\Dtd” folder.

 ead.dtd
 eadbase.ent

EAD Cookbook 20 July 2000 Page 30

 4.3.3 Templates
 Templates provide a standardized file that can be reused over and over to provide the
default markup and “boilerplate” data you wish to include in every document. Two
templates are provided with the Cookbook. They are named

 eadperson.wpt
 eadcorporate.wpt

 There are only minor variations between the two. The first is geared towards inventories
of collections of personal papers, the other to organizational or governmental records. In
the former, the Origination element contains a Personal Name sub-element, in the latter a
Corporate Name. The only other variations are in the text of Head elements. For
example, in one case the text reads “Scope and Content of the Collection” and in the other
“Scope and Content of the Records”.

 Install these two files in the directory:

 “… \Corel\WordPerfect Office 2000\Template\Custom WP Templates\Xml”

 To create a new document, open the File menu and select New XML Document. A
dialogue box containing a window labeled Categories/Projects will pop up. Highlight
either of these two templates and Select. A new document editing window will open
which will contain all the default elements, attributes and text of the selected template.

 The order of elements in the templates follows the same sequence found in Section 3.
The EAD DTD requires that the <eadheader> sub-elements follow this order and that the
<did> element comes first within <archdesc>.

 4.3.3.1 Customize the Templates

 You may wish to customize the template files in the following ways.

• Certain attributes are repository specific. You will need to supply locally valid
values for the SOURCE and SYSTEMID attributes in the EAD Identifier and
the REPOSITORYCODE attribute in the ID of the Unit for the collection as a
whole, i.e. in the Descriptive Identification for the Archival Description.

EAD Cookbook 20 July 2000 Page 31

• Default text for explanatory paragraphs and for Head elements may be

modified. For example, you may wish the Head to read “Biographical Sketch”
rather than “Biography of… .”.

• The template may include elements such as appraisal or accruals which you

never use. Simply delete the markup from the template.

• Certain elements automatically appear when a component such as a <c02> is

inserted. You may wish to change the defaults, for example, removing the
<container type=”folder”> element if you never include folder numbers in your
inventories. These are defined in the file WordPerfect templates.

To modify the templates, select New From Project for the File option on the menu bar.
Highlight the appropriate template, select the Options button and select Edit WP
Template from the pull-down menu. Once the template has opened, type over any
elements, text or attributes that you wish to become the new default.

To edit macros which are stored inside the template file, select Tools, Template Macro,
and then Edit. Highlight the macro you wish to edit and select Edit. You may add or
delete macro instructions with the appropriate syntax. When finished, select Save &
Compile.

The templates contain several document layout instructions to make data entry and
document editing easier. These include the display of all <head> elements as 14-point,
bold, centered text and the use of indention and line breaks between certain elements.
These customizations were made to simplify navigation within the editing window and do
not affect the output document. Further customization can be made in the templates by
clicking Format on the menu bar and selecting Edit Layout.

EAD Cookbook 20 July 2000 Page 32

4.3.4 Macros

Macros are a feature of many software applications, including word processors, that
permit one to execute repeatedly an oft-used set of keystrokes by typing a short two or
three letter combination of keys. The following keystrokes can be used to automatically
insert elements and text.

CTRL + ALT + c Opens a Chronology List Item with a Date and an Event
CTRL + ALT + s Opens a Scope and Content and Paragraph
CTRL + ALT + u Opens a Unit Identification
CTRL + ALT + 1 Opens a Component (Level One)
CTRL + ALT + 2 Opens a Component (Level Two)
CTRL + ALT + 3 Opens a Component (Level Three)
CTRL + ALT + 4 Opens a Component (Level Four)
CTRL + ALT + 5 Opens a Component (Level Five)
CTRL + ALT + 6 Opens a Component (Level Six)
CTRL + ALT + 7 Opens a Component (Level Seven)

These macros are embedded in both of the EAD templates. The user can also select them
via a drop down menu (EAD Macros) that appears on the menu bar to the right of the
“Help” menu.

4.3.4.1 Customizing the Macros

A further customization is incorporated into the macros for the seven component levels.
Required elements and those that are typically included within each component are
automatically embedded by the appropriate macro. For example, when a Component
element is opened, the macro file also automatically inserts certain sub-elements. For
example, when a <c02> element is inserted, the macro also adds the following elements:

<did>
<container type=”box”></container>
<container type=”folder”></container>
<unittitle><unitdate></unitdate></unittitle>
<physdesc></physdesc>
</did>

The macros are embedded in the WordPefect template and are modified in the template as
described in section 4.3.3.2.

EAD Cookbook 20 July 2000 Page 33

4.3.5 Validating Your Document

Every valid XML document must begin with an XML declaration and a DOCTYPE
declaration that specifies the relevant DTD. WordPerfect 9 will insert the XML
declaration automatically at the beginning of your document when you save it. However,
it does not supply the DOCTYPE declaration and is unhappy when you include it in the
template file yourself. This is a small problem that is readily resolved. The templates
include the DOCTYPE declaration. You simply need to do two things to work around
WordPefect’s unhappiness on this subject.

When you validate your document, the software will tell you that it doesn’t like any text to
appear before the root element, <ead>. Simply ignore this message and proceed with the
validation which will report any real subsequent errors. Similarly, ignore any related error
messages when you save the document.

When the file is saved, WordPerfect will insert the XML declaration and leave your
DOCTYPE declaration in the file, intact save for one alternation. It will replace the angle
bracket at the beginning of the DOCTYPE declaration with its character value- <
Simply open the document in a text editor like Windows Notepad and replace this string
of characters with the left-angle bracket (less-than symbol), and save the file.

EAD Cookbook 20 July 2000 Page 34

 Section 5: Converting SGML Files into XML
If you choose to create your EAD documents in “classic SGML” syntax using an
application like Author/Editor, and you wish to the use the XSL publishing tools described
in this Cookbook, you must first convert your SGML files into XML syntax.

5.1 EAD as XML

There are five ways in which an EAD instance in XML differs from one in “classic
SGML” syntax.

1. The inclusion of an XML declaration at the beginning of the document.
2. The required inclusion of a system identifier that points to an instance of the EAD

DTD (optional in SGML) at the end of the DOCTYPE declaration which is found at
the beginning of the document.

3. All element and attribute names in lower case. (SGML is not case sensitive in this
respect).

4. Elements that are defined as EMPTY (lb, extptr, ptr, ptrloc, extptrloc) must be
expressed in empty-element-tag syntax, for example as <lb/> rather than as <lb></lb>.
The Cookbook does not employ any of these elements.

5. A slight modification to the file “ead.dtd” is required. A copy of the XML version of
the "ead.dtd" file accompanies the Cookbook.

For more information on the differences between the SGML and XML syntax of EAD and
the necessary modification to the DTD, see Section 4.3.2 of the EAD Application
Guidelines.

 This section describes two ways to convert an SGML file into XML syntax.

5.2 SX

SX is a freeware tool that is available for non-commercial use from James Clark as part of
his suite of SGML/XML parsing software called SP. Information about SP may be found
at http://www.jclark.com/sp.

5.2.1 To install the tool-

• Download and unzip the SP software from http://www.jclark.com/sp/howtoget.htm.

• Copy the five basic EAD files into the sub-directory sp/bin in the folder in which SP is

installed. These are ead.dtd, eadbase.ent, eadchars.ent, eadnotat.ent and eadsgml.dcl.

 These files are available at the official EAD website
 http://www.loc.gov/ead/.

EAD Cookbook 20 July 2000 Page 35

• Copy the SGML catalog file that accompanies the Cookbook into the same sp/bin sub-
directory. The file is named "catalog".

• Copy the ISO character entity files that accompany the Cookbook into the sp/bin sub-

directory.

• Add the following environmental variable statements to your autoexec.bat file (in the

root directory of your C: drive) using a text editor such as Windows Notepad. The
following statements assume that SP has been installed in a folder at c:\sp.

 SET SP_CHARSET_FIXED=NO
 SET SP_ENCODING=XML
 SET SGML_CATALOG_FILES=c:\sp\pubtext\xml.soc

 5.2.2 To use the tool to convert a file-

• Place the file to be converted in the bin sub-directory of the sp folder where SP has

been installed.

• Go to the command line (that’s right- the DOS prompt) in the directory where the file

sx.exe is located, the sp/bin folder.

• Type the following syntax to execute the conversion

 sx -xnotation –xndata –xlower –xempty –xno-lb-in-tag
name_of_source_sgm_file>name_ of_ target_ file

 for example sx –xnotation –xndata –xlower –xempty
 –xno-lb-in-tag fonds.sgm>fonds.xml

 This will convert the file fonds.sgm to the file fonds.xml with elements and attributes in
lower case and place it in the same directory as the source file. The SX documentation
describes parameters for specifying other source and target directories.

 SX outputs a well-formed document but does not include the DOCTYPE declaration.
You will have to insert the following statement immediately after the XML declaration
(<?xml version="1.0"?>) which appears at the head of the document.

 <!DOCTYPE ead PUBLIC "-//Society of American Archivists//DTD ead.dtd
(Encoded Archival Description (EAD) Version 1.0)//EN" "ead.dtd">

 More information about how to use SX is available at the following address:

 http://www.jclark.com/sp/sx.htm

EAD Cookbook 20 July 2000 Page 36

 5.3 Microsoft Word
 A macro file for Microsoft Word 95 is available from the EAD Help Pages site which
converts all the tags in an EAD document in SGML syntax into lower case.

 http://jefferson.village.virginia.edu/pub/ead/resources/Word/wordmac.html

 After the macro has run, one must add the XML declaration to the beginning of the
document and append a system identifier giving the path to the EAD DTD file. The
beginning of the file should then look like this, assuming the file "ead.dtd" is in the same
directory as the finding aid-

 <?xml version="1.0"?>
 <!DOCTYPE ead PUBLIC "-//Society of American Archivists//DTD ead.dtd
(Encoded Archival Description (EAD) Version 1.0)//EN" "ead.dtd">

 The syntax of any empty elements will have to be changed manually or through a global
Search and Replace command in the word processor. Simply save the file as ASCII text
with the extension .xml

EAD Cookbook 20 July 2000 Page 37

 Section 6: Publishing Tools: Stylesheets

 Several stylesheets accompany the Cookbook that will convert EAD finding aids that have
been marked up according to the encoding protocol in Section 3 from XML files into
HTML syntax for viewing in a standard web browser. These stylesheets are not general,
all-purpose tools that will process each and every valid EAD document. They are
designed particularly to function with the Cookbook. However, they certainly may be
modified to meet local preferences in encoding or presentation. The conversion process
uses the language of the XSL Transformation (XSLT) protocol, a Recommended Practice
for the web developed by the World Wide Web Consortium (W3C). A software
application that performs transformations using XSLT reads the text of an XML
document, applies the syntax described in a specified stylesheet, and creates an HTML
output file. Several such applications are available as “freeware” from Microsoft, IBM,
Oracle and others. The stylesheets accompanying the Cookbook have been tested against
the XT package available from James Clark. This product is quite complete in its features,
and is fast and easy to install. It may be run as a batch application or in real-time on a
server as an HTTP servlet. (See Sections 7 and 8 for detailed directions.)

 The accompanying stylesheets are relatively verbose in their code and explanatory
comments. Their structure is designed in a modular fashion that is optimized for
readability, generalization, and future modification rather than for optimal performance
for a specific file. However, XSL features known to affect performance adversely have
been avoided. The code contains many instances of conditional processing to
accommodate variations across individual finding aids and institutions.

 The stylesheets support five types of markup for container information, i.e. box and folder
numbers. One may include only box numbers, box and folders numbers, only folder
numbers, a combined box/folder number, or no container data at all. If any container
information is given, the stylesheets assume that it will be given for every component
except the <c01> which, as the description of an entire series, would not normally have a
particular container number associated with it. As described in Section 3.4, the container
element must be present for each component but need not always contain data. The
stylesheets are designed to suppress the appearance of repetitive container information.
For example, if one lists box and folder numbers or only box numbers, a box number that
has already been displayed in a given <c01> will not display again for other components in
the same box. Similarly, where only folder numbers or box/folder numbers are given, the
folder or box/folder number respectively will not repeat within the same series.

 The accompanying templates and keyboard macros may insert elements into the document
that you do not use. While there may be other good reasons for deleting empty tags from
our document, it is not necessary to do so for the stylesheets. In all situations where a
problem might arise from an empty element, the stylesheets test for the presence of actual
content as well as the presence of the tags.

EAD Cookbook 20 July 2000 Page 38

 6.1 Styles
 Four XSL stylesheet files are supplied with the Cookbook. The basic presentation of the
inventory is identical in most respects in all four. Styles 1, 2, and 3 differ only in the
placement of the table of contents within the finding aid.

 6.1.1 Style 1 produces the standard display of the inventory with a table of contents at the
beginning of the document in the manner of a book. Internal hyperlinks connect this table
of contents with the various sections of the finding aid. The stylesheet file is named
EADCBS1.xsl. An example that applies this style maybe seen at

 http://www.mnhs.org/library/findaids/2468a.html

 6.1.2 Style 2 produces the standard display of the inventory with a table of contents
appearing in a window along the left side of the screen when viewed in a browser.
Internal hyperlinks connect this table of contents with the various sections of the finding
aid. This style uses an HTML table to create the left side table of contents. It may be
useful for institutions whose web policies discourage or disallow the use of HTML frames.
The stylesheet file is named EADCBS2.xsl. An example that applies this style maybe seen
at

 http://www.mnhs.org/library/findaids/2468.html

 6.1.3 Style 3 also produces the standard display of the inventory with a table of contents
appearing in a window along the left side of the screen when viewed in a browser.
Internal hyperlinks connect this table of contents with the various sections of the finding
aid. This style uses the HTML frames feature to populate the table of contents. The
XSL Transformation process described in Section 7 can generate the four files needed to
populate this frameset in a single step. The stylesheet file is named EADCBS3.xsl. An
example that applies this style maybe seen at

 http://www.mnhs.org/library/findaids/2468f.html

EAD Cookbook 20 July 2000 Page 39

 6.1.4 Style 4 produces a variation of the standard display that is intended to be used to
create a print version of the inventory. It differs from the previous three styles in three
respects. Intended for print output, it lacks any internal hyper-navigation links. The
document begins with a fuller description of the collection in a manner that more closely
resembles the title page of a book. Finally, the description of subordinate components is
divided into two sections, beginning with a summary of each series which then is followed
by a second section which provides the detailed information given for the collection to the
series, file and item levels, as provided. This approach provides the reader a quick
overview of the collection without having to jump through the text of the description of
components to find series titles, dates and abstracts at scattered locations throughout the
document. It more closely reflects the linear reading of a print document as opposed to
the hyper-navigation of an online file. This “two-view” display is not included in the web
version as users find it confusing and redundant in that environment.

 The print copy may be produced by processing an EAD inventory against this stylesheet.
The resulting HTML file is then imported into a word processor for final editing such as
the insertion of head and footers and page breaks. This stylesheet has been tested with
Microsoft Word 97 which is capable of converting an HTML file into Word format while
preserving the physical formatting of the HTML file. Tests with Word 2000 indicate that
even more sophisticated features such a hanging indention can be supported during
conversions.

 The stylesheet file is named EADCBS4.xsl. An example that applies this style maybe seen
at

 http://www.mnhs.org/library/findaids/2468prt.html

 6.2 Modifications

 Each of these stylesheets includes an HTML tag near the beginning of the file that
inserts an institutional logo at the top of the document. This file appears in the SRC
attribute with the fictional name “yourlogo.gif”. You will need to either alter the file
name or delete the element altogether, depending on whether or not you intend to include
your organizational logo.

EAD Cookbook 20 July 2000 Page 40

 Section 7: Transforming XML Files into HTML

 The stylesheets described in the previous section can convert your XML files into HTML.
This transformation may occur either in advance of any user request, i.e. in “batch mode”
or as each user accesses the file on a server, i.e., in “real-time.”. With the newest
generation of web browsers, it is possible for this transformation to occur on the user’s
computer rather than the server. However, the Cookbook describes server-based
transformation. This will likely remain the preferred method until such XML-enabled
browsers are used more widely. Conversion done in advance- batch mode- is described in
this section. Real-time transformation is described in Section 8 along with other server
issues.

 Two conversion methods are described. The first involves the use of a free software
program called XT, an application that can convert your files one at a time or an entire
directory at once. The second method involves the XMetaL software which, with version
1.2, includes an embedded version of XT that can effect the transformation as an integral
part of the authoring process.

 7.1 XT

 This tool is a freeware product for non-commercial use. It is available at

 http://www.jclark.com/xml/xt.html

 It can run in any Java-enabled environment. The following installation is for the Windows
platform.

 7.1.1 To Install the Tool-
• Create a directory in which to create your file transformation.

• Install (download and unzip) the windows version of the XT application from the web

site listed above.

• Install the required EAD files- eadbase.ent and a version of the ead.dtd file that has

been modified for XML use as described in Section 4.3.2.1 of the EAD Application
Guidelines.

• Install a copy of the Microsoft version of the Java Virtual Machine which they call the

Microsoft Virtual Machine. It is available as part of a customized installation of the
Internet Explorer browser or from the Microsoft web site (currently at
http://www.microsoft.com/java/vm/dl_vm32.htm)

EAD Cookbook 20 July 2000 Page 41

 7.1.2 To Use the Tool to Transform a File-

• Go to the command line in the directory where XT is located. That’s right- the DOS

prompt.

• Type the following syntax to execute the conversion

 xt name_of_xml_source_file name_of_xsl_stylesheet_file name_of_output_file

 for example xt fonds.xml eadcbs3.xsl fonds.html

 The processor will parse the DTD, parse your document, parse your stylesheet, and
then output the file or supply an error message if there is a syntax problem with any of
the files.

 7.1.3 XT may also convert all the files in a directory with a single command.

• Type the following syntax to execute the conversion

 xt name_of_source_directory name_of_xsl_stylesheet name_of_result_directory

 for example xt c:\xmldocs c:\styles\eadcbs3.xsl
c:\htmldocs

• The stylesheet should not be located in the source directory.

EAD Cookbook 20 July 2000 Page 42

 7.2 XMetaL

 The XMetaL software includes a built-in C++ version of the XT XSL Transformation
engine as of version 1.2. This processor requires the presence of version 5.0 of the
Microsoft Internet Explorer browser. This transformation feature appears as part of the
Print Preview option on the View menu. The stylesheet for Cookbook style 3 uses an
extension to XSL called xt:document to produce the four files required for the HTML
frame-based display it produces and cannot be used with version 2.1 of XMetaL as
described below. With that stylesheet, use the XT application described in Section 7.1.

 7.2.1 To Install the Tool-

• The configuration of the XMetaL software necessary to use XT is included in the

ead.mcr file distributed with the Cookbook. The default setting looks for the
stylesheet in the Display folder of the XMetaL directory. Install a copy of the
stylesheet into that folder.

• The default value in the ead.mcr file is the eadcbs2.xsl file. If you wish to use a

different stylesheet, you will have to edit the ead.mcr file. To do so,

♦ Open the file a text editor such as Windows Notepad. About two-thirds of the
way through the file you will find the following text:

 // Path to XSLT stylesheet is hard codedvar xslPath =
Application.Path + "\\Display\\eadcbs2.xsl";

♦ Change the file name at the end of the second line to the appropriate value. Save

the file in the appropriate Macros sub-directory.

 7.2.2 To Use the Tool

 From the View option from the menu bar, select Page Preview. The transformation will
occur and the resulting file will be displayed in a browser which will open up within the
XMetaL application. You can save the file that is created since it is stored in the same
directory as the stylesheet. XMetaL assigns the file a random but distinctive name to the
output file which you will no doubt wish to change.

EAD Cookbook 20 July 2000 Page 43

 Section 8: Delivery of EAD on the Web

 This section describes actions that may need to be carried out on your web server or with
related files as the final step in the “publication” process- delivering documents to the end
user. Assistance will probably be needed from your webmaster or system or network
administrator.

 8.1 Links from Web Pages
 If you are creating links to your finding aids from other web pages, you will need to-

• Embed in the source document an HTML pointer to the finding aid file. This requires

an introductory knowledge of HTML coding. Typically one uses the HTML anchor
<a> element with an HREF attribute to accomplish this.

• Store the inventory files in an appropriate, publicly accessible location on your web
server. This requires access to the file server and a knowledge of its file structure.
Consult your web support staff.

 8.2 Links from Online Catalogs
 If you are planning to create links from MARC records in your catalog to finding aids,
several steps will be required beyond EAD encoding. This method assumes, of course,
that you have a web-enabled online catalog that generates links to external files from
appropriate fields in the catalog record.

• Create a linking field in the MARC record using a MARC editing tool, typically part of

your Integrated Library System (ILS) software. Changes have recently been made to
the MARC 21 format that will provide additional subfield options and directions for
MARC encoding in the future. Currently you have two options. You may create an
856 field, Electronic Location and Access, with a pointer to the finding aid. The note
might look something like this.

 856 42 $ 3 An electronic version of the inventory for this collection is available at
$u http://www.mnhs.org/library/findaids/00054.html

 When your ILS vendor supports the newly-authorized addition of subfield u in the 555
field, Cumulative Index/Finding Aids Note, you may create a link like this instead.

 555 0 $ a An inventory that provides additional detailed information about this
collection is available at $u http://www.mnhs.org/library/findaids/00054.html

• Store the finding aid file in an appropriate, publicly accessible location on your web

server. This requires access to the file server and a knowledge of its file structure.
Consult your web support staff.

EAD Cookbook 20 July 2000 Page 44

8.3 Access from Data Servers
A number of products are available if you wish to provide keyword or structured
searching of the full text of your inventories. This obviously is a very complex and
technical issue, well beyond the scope of the Cookbook. Several applications are
available currently and new ones appear regularly. More detailed information may be
found in Chapter 5 of the EAD Application Guidelines and other sources:

The XSL list and archives:

http:www.mulberrytech.com/xsl/xsl-list

The XML Cover Pages (the definitive source of links to SGML/XML information)

http://www.oasis-open.org/cover/

Steve Pepper’s Whirlwind Guide to SGML and XML Tools and Vendors

http:www.infotek.no/sgmltool/guide.html

8.4 Transformation to HTML on the Server

Section 7 described how you might convert your files in advance of user access. Several
tools are now available for various HTTP servers that enable real-time conversion from
XML to HTML each time a user requests the file. The Cookbook does not describe their
implementation in detail. It is a technically complex process that will require advanced
computing skills. You will need to consult with your data services department. At least
six major products are available as of April 2000.

8.4.1 XT

The same application we considered in Section 7, XT also may run as a servlet on an http
server. For further information consult the XSL list archives (see above) under the thread
“XT as servlet”. Basic information is available at

http:www.jclark.com/xsl.

EAD Cookbook 20 July 2000 Page 45

8.4.2 SAXON

An XSL processor that may run as an applet or a servlet. A “cut-down” version of the full
processor, called Instant SAXON, may be run as a batch mode processor from the
command line in the same manner as described for XT in Section 7. Information about
SAXON is available at

http://users.iclway.co.uk/mhkay/saxon/

8.4.3 Microsoft

An XSLT processor is available from Microsoft as an extension to the ISAPI for use with
its Internet Information Servers. At the time this section of the Cookbook was written,
this application has not yet implemented some of the features found in the XSLT standard,
including ones used in the accompanying stylesheets. Microsoft has indicated that it plans
be fully compliant and has been issuing new releases regularly. Information is available at

http://www.microsoft.com/downloads/webtechnology/xml/xslisapi.asp

8.4.4 Xalan

An XSL processing suite for the Apache web server, Xalan is available from The Apache
XML Project. Consult

http://www.apache.org/xalan/index.html

8.4.5 Cocoon

Another XSL publishing environment developed for the Apache web server by the Apache
XML Project. Consult

http://www.apache.org

8.4.6 LotusXSL

An XSL processor from IBM/Alphaworks. One of many freeware products in the
Alphaworks XML/XSL tool kit. For information, consult

http://www.alphaworks.ibm.com/LotusXSL

