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Validity Checking in Propositional Logic

Propositional Logic
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Validity Checking in Propositional Logic General Remarks

Validity Checking in Propositional Logic

Given a propositional formula A, there are two obvious decision problems
regarding its validity status:
Validity problem (VAL): Given a formula A, is A valid?
Satisfiability problem (SAT): Given a formula A, is A satisfiable?
Recall:

A is valid ifM |= A for every model (valuation)M;
A is satisfiable ifM |= A for some modelM.
Hence, A is valid iff ¬A is not satisfiable.

Two conceivable approaches to settle these problems:
Semantic method – directly using the definition of validity;
Deductive method – exploit soundness and completeness theorems.
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Validity Checking in Propositional Logic General Remarks

Truth-Tables

Only propositional symbols used in a formula play a role in its validity.

A B ((A → B) → A) → A
F F T F T
F T T F T
T F F T T
T T T T T

truth-tables can be used to decide both VAL and SAT
2n entries (n the number of propositional symbols)
unfeasible for moderately big formulas
is it possible to devise better decision procedures?

Carlos Bacelar Almeida, DIUM Validity Checking- Propositional and First-Order Logic 5/43

Validity Checking in Propositional Logic General Remarks

The structure of logical validity allows for much better algorithms.
Strategy for tackling these problems:

1 one first preprocesses the input formula to a restricted syntactic class,
preserving the property under evaluation (validity for VAL, and satisfiability
for SAT)

2 an efficient method is then applied to check the validity of formulas in this
restricted class

both steps should be kept “reasonably effective” since they are intended
to be run in sequence
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Validity Checking in Propositional Logic General Remarks

Complexity Theoretic Considerations

SAT and VAL are indeed difficult problems
Both problems play a distinctive role in the hierarchy of complexity
classes:

SAT is a NP-complete problem, i.e. any problem in NP is reducible in
polynomial-time to SAT;
VAL is a coNP-complete problem.

Hence, it is believed that both SAT and VAL cannot be solved in
polynomial-time.

If a polynomial-time algorithm to solve SAT or VAL were ever found,
this would settle the P = NP question
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Validity Checking in Propositional Logic Normal Forms

Normal Forms

Normal forms are syntactical classes of formulas (i.e. formulas with a
restricted “shape”)
...that can be considered to be representative of the whole set of
formulas.
The idea is that we associate to a normal form a normalization procedure
that, for any formula, computes a formula of this restricted class that is
equivalent (or equisatisfiable) with the original.
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Validity Checking in Propositional Logic Normal Forms

Negation Normal Form

Definition
A propositional formula A, we say that it is in negation normal form (NNF), if
the implication connective is not used in A, and negation is only applied to
atomic formulas (propositional symbols or ⊥);

Propositional symbols or their negation are called literals
Hence, a formula in NNF is a formula built up from literals, constants ⊥
and > (i.e. ¬⊥), disjunctions and conjunctions.
For every formula A, it is always possible to find an equivalent formula B
in NNF (B is called a NNF of A).
Normalisation procedure: repeatedly replace any subformula that is an
instance of the left-hand-side of one of the following equivalences by the
corresponding right-hand-side.

A→ B ≡ ¬A ∨ B ¬¬A ≡ A
¬(A ∧ B) ≡ ¬A ∨ ¬B ¬(A ∨ B) ≡ ¬A ∧ ¬B

Complexity of the normalisation procedure: linear on the size of formula.
Carlos Bacelar Almeida, DIUM Validity Checking- Propositional and First-Order Logic 9/43

Validity Checking in Propositional Logic Normal Forms

Conjunctive/Disjunctive Normal Form

Definition
Given a propositional formula A, we say that it is in:

Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of
literals, i.e. A =

∧
i
∨

j lij , for literals lij ;
Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of
literals, i.e. A =

∨
i
∧

j lij , for literals lij ,
where ⊥ (resp. >) is considered to be the empty disjunction (resp. the empty
conjunction). The inner conjunctions/disjunctions are called clauses.

CNFs and DNFs are dual concepts. We will restrict attention to CNFs.
Normalisation Procedure: to a formula already in NNF apply, the following
equivalences (left-to-right):

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C) (A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)

A ∧ ⊥ ≡ ⊥ ⊥ ∧ A ≡ ⊥ A ∧ > ≡ A > ∧ A ≡ A

A ∨ ⊥ ≡ A ⊥ ∨ A ≡ A A ∨ > ≡ > > ∨ A ≡ >
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Validity Checking in Propositional Logic Normal Forms

Examples

Let us compute the CNF of ((P → Q)→ P)→ P. The first step is to compute
its NNF by transforming implications into disjunctions and pushing negations
to proposition symbols:

((P → Q)→ P)→ P ≡ ¬((P → Q)→ P) ∨ P
≡ ¬(¬(P → Q) ∨ P) ∨ P
≡ ¬(¬(¬P ∨Q) ∨ P) ∨ P
≡ ¬((P ∧ ¬Q) ∨ P) ∨ P
≡ (¬(P ∧ ¬Q) ∧ ¬P) ∨ P
≡ ((¬P ∨Q) ∧ ¬P) ∨ P

To reach a CNF, distributivity is then applied to pull the conjunction outside:

((¬P ∨Q) ∧ ¬P) ∨ P ≡ (¬P ∨Q ∨ P) ∧ (¬P ∨ P).
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Validity Checking in Propositional Logic Normal Forms

The CNF translation has an exponential worst-case running time
distributive equivalences duplicate formulas...
...the resulting formula can thus be exponentially bigger than the original
formula.

The following formula illustrates this bad behaviour:

(P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ . . . ∨ (Pn ∧ Qn)
≡ (P1 ∨ (P2 ∧ Q2) ∨ . . . ∨ (Pn ∧ Qn)) ∧ (Q1 ∨ (P2 ∧ Q2) ∨ . . . ∨ (Pn ∧ Qn))
≡ . . .
≡ (P1 ∨ . . . ∨ Pn) ∧

(P1 ∨ . . . ∨ Pn−1 ∨ Qn) ∧
(P1 ∨ . . . ∨ Pn−2 ∨ Qn−1 ∨ Pn) ∧
(P1 ∨ . . . ∨ Pn−2 ∨ Qn−1 ∨ Qn) ∧
. . . ∧
(Q1 ∨ . . . ∨ Qn)

The original formula has 2 · n literals,
while the corresponding CNF has 2n disjunctive clauses, each with n literals.

Conclusion: in practice, it is not reasonable to reduce a formula in its
equivalent CNF as part of a VAL procedure.
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Validity Checking in Propositional Logic Normal Forms

Definitional CNF

There are alternative conversions to CNF that avoid this exponential
growth.

instead of producing an equivalent formula, produce formulas that are
equisatisfiable with the original formula, i.e.

the resultant formula is satisfiable iff the original formula is

These alternative conversions compute what is called the Definitional CNF
of a formula,
...because they often rely on the introduction of new proposition symbols that
act as names for subformulas of the original formula.

The weaker requirements of definitional CNF makes them suitable for
solving SAT (not VAL).
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Validity Checking in Propositional Logic Normal Forms

Example

The previous example can be handled by associating a new proposition
symbol Ri to each conjunctive clause (Pi ∧Qi ).
New clauses are added to enforce that new proposition symbols are tied
with the original conjunctive clauses: (¬Ri ∨ Pi ) and (¬Ri ∨Qi ).
The resulting formula is thus:

(R1 ∨ · · · ∨Rn) ∧ (¬R1 ∨ P1) ∧ (¬R1 ∨Q1) ∧ · · · ∧ (¬Rn ∨ Pn) ∧ (¬Rn ∨Qn)

LetM be any model satisfying this CNF:
IfM |= Ri (for some i), thenM |= Pi andM |= Qi .
It is then clear thatM witnesses that the original formula is satisfiable.

The resultant CNF is not significantly bigger than the original formula (but
has more propositional symbols).
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Validity in CNFs

Recall that CNFs are formulas with the following shape (each lij denotes
a literal):

(l11 ∨ l12 ∨ . . . ∨ l1k ) ∧ . . . ∧ (ln1 ∨ ln2 ∨ . . . ∨ lnj )

Associativity, commutativity and idempotence of both disjunction and
conjunction allow us to treat each CNF as a set of sets of literals S

S = {{l11, l12, . . . , l1k}, . . . , {ln1, ln2, . . . , lnj}}

An empty inner set (clause) will be identified with ⊥, and an empty outer
set with >.
Simple observations:

a CNF is a tautology if and only if all of its clauses are tautologies;
If a clause c ∈ S is a tautology, it can be removed from S without affecting its
validity status, i.e. S ≡ S \ {c};
A clause c is a tautology precisely when there exists a proposition symbol P
such that {P,¬P} ⊆ c. A clause c such that {P,¬P} ⊆ c for some P is said
to be closed.
A CNF is a tautology if and only if all of its clauses are closed.

Dually, a DNF is a contradiction iff all of its clauses are closed.
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Example

Consider the formula A = ((P → Q)→ P)→ P (previous example). Its
CNF is

{{¬P,Q,P}, {¬P,P}}

Since all clauses are closed, we conclude that A is a tautology.
Consider now B = (P → Q ∨ R) ∧ ¬(P ∧ ¬Q → R). Its CNF is

{{¬A,A,¬B}, {A,¬B}}

the clause {A,¬B} is not closed, hence the formula is not a tautology (i.e.
it is refutable).
However, the applicability of this simple criterion for VAL is compromised
by the potential exponential growth in the CNF transformation.
As explained before, this limitation is overcome considering instead SAT...
...with satisfiability preserving CNFs (definitional CNF).
obs.: The dual criterion can be used to decide (un)SAT on a propositional
formula A (using its equivalent DNF).
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Satisfiability in CNFs

One of the most important methods to check satisfiability of CNFs is the
Davis-Putnam-Logemann-Loveland procedure (DPLL).
DPPL is an algorithm for verifying if a particular CNF is a contradiction.
It incrementally constructs a model compatible with a CNF...
...if no such model exists, the formula is signaled as a contradiction.
Otherwise it is satisfiable.
Basic observation: if we fix the interpretation of a particular proposition
symbol, we are able to simplify the corresponding CNF accordingly
Consider a proposition symbol P, a CNF S and a clause c ∈ S. For any
modelM:

If P ∈M,
if P ∈ c thenM |= c. ThusM |= S iffM |= S \ {c}. In short, clauses
containing P can be ignored.
M |= c iffM |= c \ {¬P}. In short, ¬P can be removed from every clause in S.

Analogously if P 6∈ M (i.e. M |= ¬P):
if ¬P ∈ c thenM |= S iffM |= S \ {c};
M |= c iffM |= c \ {P}.
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Davis-Putnam
These observations can be summarised as follows.

Definition
Let l be a literal and S a CNF.

1 The oposite of l (denoted by −l) is defined as

−l =

{
¬P , if l = P;
P , if l = ¬P.

2 The split of S by l is

splitl(S) = {c \ −l | c ∈ S, l 6∈ c}

Informally, splitl(S) is a simplification of S assuming l holds.
Note that neither l nor −l occur in any clause of splitl(S) or split−l(S).
For a CNF S and proposition symbol P,

S ≡ (P → splitP(S)) ∧ (¬P → split¬P(S))
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Recursively applying this simplification for every symbol occurring in a CNF is
the heart of the DPLL algorithm.

Definition (DPLL Algorithm)

Let S be a CNF. The DPLL algorithm is defined recursively by

DPLL(S) =


F if S = >
T if ⊥ ∈ S
DPLL(splitl(S)) and DPLL(splitl(S)) otherwise

where the literal l chosen in the recursive step is any literal appearing in S.

The CNF S is a contradiction if DPLL(S) = T;
...and satisfiable otherwise (a model can be extracted from the path of
choices performed by the algorithm).
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Example

The recursion tree for the execution of DPLL on the CNF
(¬P ∨ ¬Q ∨ ¬R) ∧ (¬Q ∨ ¬R) ∧Q ∧ R.

{{¬P,¬Q,¬R}, {¬Q,¬R}, {Q}, {R}}

{{¬P,¬Q}, {¬Q}, {Q}}

{{¬P}, {}}

True

splitQ

{{}}

True

split¬Q

splitR

{{Q}, {}}

True

split¬R

Since all the leaves are tagged with T, the formula is a contradiction.
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

Example

Consider now the recursion tree for (¬P ∨ ¬Q ∨ ¬R) ∧ (¬Q ∨ ¬R) ∧ R.

{{¬P,¬Q,¬R}, {¬Q,¬R}, {R}}

{{¬P,¬Q}, {¬Q}}

{{¬P}, {}}

True

splitQ

{}

False

split¬Q

splitR

{{}}

True

split¬R

A false leaf signals that the formula is satisfiable.
The positive literals that occur in the corresponding path give rise to a
model that validates the formula.
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Validity Checking in Propositional Logic Validity/Satisfiability in CNFs

The behaviour of the algorithm is highly dependent on the order in which
the proposition symbols are chosen.
Particular attention to how the next symbol is selected, in order to
maximize the efficiency of the algorithm.
Additional optimisations and heuristics are often explored to avoid
unnecessary branches during execution
unit-propagation: singleton clauses {l} ∈ S can (should) be used to

simplify the CNF;
pure literals: literals that occur in clauses of S always with a given

polarity can be removed.
An heuristic often used is to choose the most frequent propositional
symbol in S.
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Validity Checking in Propositional Logic SAT solvers

SAT solvers

Propositional satisfiability has been successfully applied to perform
hardware and software verification.
Specialised tools exists that are capable of handling large instances of
the satisfiability problem.
A particular class of tools that are close to the computational approach
exposed are the so called SAT solvers.
The satisfiability library SATlib1 is an online resource that proposes, as a
standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.
Such a uniform test-bed has been serving as a framework for regular tool
competitions organised in the context of the regular SAT conferences.2

1http://www.satlib.org/
2http://www.satcompetition.org
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Validity in First-Order Logic

First-Order Logic
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Validity in First-Order Logic General Remarks

Validity in First-Order Logic

Unsurprisingly, the problem of determining whether an arbitrary first-order
sentence is valid is significantly harder than for the propositional case.
In fact, it is impossible to solve this problem in its full generality.

Theorem
The validity problem for first-order logic is undecidable.

This negative result (undecidability) is a direct consequence of a positive
feature of first-order logic – its expressive power.
Moreover, it does not preclude however restricted instances of the
general problem from being solvable.
We will see that the problem of validity-checking of first-order formulas
can, to some extent, be reduced to the propositional case.
This requires to restrict the use of quantifiers in formulas.
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Validity in First-Order Logic Normal Forms

Negation Normal Form

Definition
A first-order formula is in negation normal form (NNF) if the implication
connective is not used in it, and negation is only applied to atomic formulas.

Every first-order formula is equivalent to a NNF formula.
It can be computer by extending the propositional NNF normalisation with
specific laws to handle quantifiers.

φ→ ψ ≡ ¬φ ∨ ψ ¬¬φ ≡ φ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬∀x . φ ≡ ∃x .¬φ ¬∃x . φ ≡ ∀x .¬φ

Example: to compute the NNF of ∀x . (∀y .P(x , y) ∨Q(x))→ ∃z .P(x , z).

∀x . (∀y .P(x , y) ∨Q(x))→ ∃z .P(x , z) ≡
∀x .¬(∀y .P(x , y) ∨Q(x)) ∨ ∃z .P(x , z) ≡
∀x .∃y . (¬P(x , y) ∧ ¬Q(x)) ∨ ∃z .P(x , z)
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Validity in First-Order Logic Normal Forms

Prenex Normal Form

If x does not occur free in ψ, then the following equivalences hold.

(∀x . φ) ∧ ψ ≡ ∀x . φ ∧ ψ ψ ∧ (∀x . φ) ≡ ∀x .ψ ∧ φ
(∀x . φ) ∨ ψ ≡ ∀x . φ ∨ ψ ψ ∨ (∀x . φ) ≡ ∀x .ψ ∨ φ
(∃x . φ) ∧ ψ ≡ ∃x . φ ∧ ψ ψ ∧ (∃x . φ) ≡ ∃x .ψ ∧ φ
(∃x . φ) ∨ ψ ≡ ∃x . φ ∨ ψ ψ ∨ (∃x . φ) ≡ ∃x .ψ ∨ φ

The applicability of these equivalences can always be assured by
appropriate renaming of bound variables.
Applying these equations to a NNF leads to formulas where quantifiers
are in the outermost position.

Definition

A formula is in prenex form if it is of the form Q1x1.Q2x2. . . .Qnxn.ψ where
each Qi is a quantifier (either ∀ or ∃) and ψ is a quantifier-free formula.
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Validity in First-Order Logic Normal Forms

Herbrand/Skolem Normal Form

Definition (Herbrand and Skolem Forms)

Let φ be a first-order formula in prenex normal form. The Herbrandization of φ
(written φH ) is an existential formula obtained from φ by repeatedly and
exhaustively applying the following transformation:

∃x1, . . . , xn .∀y .ψ ; ∃x1, . . . , xn .ψ[f (x1, . . . , xn)/y ]

with f a fresh function symbol with arity n (i.e. f does not occur in ψ).
Dually, the Skolemization of φ (written φS) is a universal formula obtained from
φ by repeatedly applying the transformation:

∀x1, . . . , xn .∃y .ψ ; ∀x1, . . . , xn .ψ[f (x1, . . . , xn)/y ]

again, f is a fresh function symbol with arity n.
Herbrand normal form (resp. Skolem normal form) formulas are those
obtained by this process.
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Validity in First-Order Logic Normal Forms

Proposition

Let φ be a first-order formula in prenex normal form. φ is valid iff its
Herbrandization φH is valid. Dually, φ is unsatisfiable iff its Skolemization φS is
unsatisfiable.

It is convenient to write Herbrand and Skolem formulas using vector
notation ∃x .ψ and ∀x .ψ (with ψ quantifier free), respectively.
The quantifier-free sub-formula can be furthered normalised:
Universal CNF: ∀x .

∧
i
∨

j lij
Existential DNF: ∃x .

∨
i
∧

j lij
where literals are either atomic predicates or negation of atomic
predicates.
Herbrandization/Skolemization change the underlying vocabulary. These
additional symbols are called Herbrand/Skolem functions.
(obs: this observation alone suffices to show that a formula and its
Herbrandization/Skolemization are not equivalent.)
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Validity in First-Order Logic Herbrand’s Theorem and Semi-Decidability

Herbrand Model

Definition (Herbrand Interpretation)

Let V be a first-order vocabulary and assume V has at least one constant
symbol (otherwise, we explicitly expand the vocabulary with such a symbol). A
Herbrand Interpretation H = (DH, IH) is a V-structure specified by a set of
ground atomic predicates (i.e. atomic predicates applied to ground terms),
also denoted by H. The interpretation structure is given as follows:

Interpretation domain: DH is the set of ground terms for the vocabulary
V. It is called the Herbrand universe for V.
Interpretation of constants: for every c ∈ V, IH(c) = c;
Interpretation of functions: for every f ∈ V with ar(f ) = n, IH(f ) consists of
the n-ary function that, given ground terms t1, . . . , tn, returns the ground
term f (t1, . . . , tn);
Interpretation of predicates: for every P ∈ V with ar(P) = n, IH(P) is the
n-ary relation {(t1, . . . , tn) | P(t1, . . . , tn) ∈ H}.
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Validity in First-Order Logic Herbrand’s Theorem and Semi-Decidability

Herbrand’s Theorem

Lemma

An existential formula φ is valid iff for every Herbrand model H, H |= φ. Dually,
a universal formula φ is unsatisfiable iff there exists no Herbrand model H
such that H |= φ.

Theorem (Herbrand’s Theorem)

An existential first-order formula ∃x .ψ (with ψ quantifier-free) is valid iff there
exists an integer k and ground instances ψσ1, . . . , ψσk such that
ψσ1 ∨ . . . ∨ ψσk is propositionally valid.
Dually, a universal formula ∀x .ψ (with ψ quantifier-free) is unsatisfiable iff
there exists an integer k and closed instances ψσ1, . . . , ψσk such that
ψσ1 ∧ · · · ∧ ψσk is propositionally unsatisfiable.
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Validity in First-Order Logic Herbrand’s Theorem and Semi-Decidability

Application

Theorem (Semi-Decidability)

The problem of validity of first-order formulas is semi-decidable, i.e. there
exists a procedure that, given a first-order formula, answers “yes” iff the
formula is valid (but might not terminate if the formula is not valid).

An interesting refinement is to investigate fragments in which bounds can
be established for searching the ground instance space.
This immediately leads to a bound on the number of instances whose
search is required by Herbrand’s theorem...
...turning validity of formulas decidable.
Clearly if the set of ground terms is finite, the set of ground instances of
the formula under scrutiny will be finite as well.
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Validity in First-Order Logic Decidable Fragments

Decidable Fragments

If the underlying vocabulary has no function symbol, the set of ground
terms is finite.
Note however that function symbols might be introduced during the
Herbrandization/Skolemization.
Restricting attention to formulas whose prenex normal form has the
shape

∀x .∃y .ψ

ensures that only constants are introduced by Herbrandization.
This fragment of formulas is normally known as the AE fragment, owing
its name to the alternation of quantifiers allowed (A refers to the universal
quantifier and E to existential quantifier).
The class of formulas can be further enlarged by observing that a formula
not in AE may be equivalent to one in AE (e.g. miniscope — pushing
existential quantifiers inside the formula, thus minimizing their scopes).
Monadic formulas (i.e. formulas containing only unary predicates) are
such a class of formulas. Hence, they constitute a decidable fragment of
first-order logic.
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Validity in First-Order Theories

First-Order Theories
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Validity in First-Order Theories Basic Concepts

When judging the validity of first-order formulas we are typically
interested in a particular domain of discourse...
... which in addition to a specific underlying vocabulary includes also
properties that one expects to hold.
That is, we are often interested in moving away from pure logical validity
(i.e. validity in all models) towards a more refined notion of validity
restricted to a specific class of models.
A natural way for specifying such a class of models is by providing a set
of axioms (sentences that are expected to hold in them).
Alternatively, one can pinpoint the models of interest.
First-order Theories provides the basis for the kind of reasoning just
described.
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Validity in First-Order Theories Basic Concepts

First-Order Theories

Definition

Let V be a vocabulary of a first-order language.

A first-order theory T is a set of V-sentences that is closed under derivability (i.e.,
T ` φ implies φ ∈ T ). A T -structure is a V-structure that validates every formula
of T .

A formula φ is T -valid (resp. T -satisfiable) if every (resp. some) T -structure
validates φ.

A first-order theory T is said to be a consistent theory if at least one T -structure
exists. T is said to be a complete theory if, for every V-sentence φ, either T |= φ
or T |= ¬φ. T is said to be a decidable theory if there exists a decision procedure
for checking T -validity.

Let K be a class of V-structures. The theory of K , denoted by Th(K ), is the set of
sentences valid in all members of K , i.e., Th(K ) = {ψ | M |= ψ, for allM∈ K}.
Conversely, given a set of V-sentences Γ, the class of models for Γ is defined as
Mod(Γ) = {M | for all φ ∈ Γ,M |= φ}.
A subset A ⊆ T is called an axiom set for the theory T when T is the deductive
closure of A, i.e. ψ ∈ T iff A ` ψ. A theory T is finitely (resp. recursively)
axiomatisable if it possesses a finite (resp. recursive) set of axioms.
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Whenever a theory T is axiomatisable (by a finite or recursive set of
axioms A), it makes sense to extend the first-order logic proof system
NFOL with an axiom-schema:

if φ ∈ A
Γ ` φ

Observe that the requirement that A be a recursive set is crucial to
ensure that the applicability of these axioms can effectively be checked.
Moreover, if a theory T has a recursive set of axioms, the theory itself is
recursively enumerable (hence, the T -validity problem is semi-decidable).
If T is a complete theory, then any T -structure validates exactly the same
set of T -sentences (the theory itself).
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For a given V-structureM, the theory Th(M) (of a single-element class
of V-structures) is complete. These semantically defined theories are
useful when one is interested in reasoning in some specific mathematical
domain such as the natural numbers, rational numbers, etc.
However, we remark that such theory may lack an axiomatisation, which
seriously compromises its use in purely deductive reasoning.
If a theory is complete and has a recursive set of axioms, it can be shown
to be decidable.
The decidability criterion for T -validity is crucial for mechanised
reasoning in the theory T .
It may be necessary (or convenient) to restrict the class of formulas under
consideration to a suitable fragment;
The T -validity problem in a fragment refers to the decision about whether
or not φ ∈ T when φ belongs to the fragment under consideration.
A fragment of interest is the fragment consisting of universal formulas,
often referred to as the quantifier-free fragment
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Some Theories

Equality and Uninterpreted-Functions TE: theory whose the only axioms are
the ones related with equality (reflexivity and congruence).
TE-validity is undecidable in general, but efficiently decidable for
the quantifier-free.

Natural Numbers and Integers TN, TZ: the semantic theory of natural
numbers (with operations 0, succ,+, ∗) and integers. It is neither
axiomatisable nor decidable (Godël incompleteness theorem).

Peano Arithmetic TPA: a first-order approximation of the theory of natural
numbers. Its axiomatisation includes <an axiom scheme for
induction

φ [0/x ] ∀n. φ [n/x ]→ φ [n + 1/x ]

∀n. φ [n/x ]

It is incomplete and undecidable (even for the quantifier-free
fragment).
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Linear Arithmetic TLA: with vocabulary V = {. . . ,−2,−1,0,1,2, . . .− 2·,−1·,
1·,2·, . . . ,+,=, <}, where n· is a unary function that multiplies
its argument by a constant. This theory is both complete and
decidable, and it is in fact one of the most widely used in the
context of program verification.

Rational Numbers: the full theory of rational numbers (with addition and
multiplication) is undecidable, since the property of being a
natural number can be encoded in it. But the theory of linear
arithmetic over rational numbers TQLA is decidable, and actually
more efficiently than the corresponding theory of integers.

Reals TR: surprisingly, this theory is decidable even in the presence of
multiplication and quantifiers. However, the time complexity of
the associated decision procedure may make its application
prohibitive.

Fixed-size bit vectors: model bit-level operations of machine words, including
2n-modular operations (where n is the word size), shift
operations, etc. Decision procedures for the theory of
fixed-sized bit vectors often rely on appropriate encodings in
propositional logic.

Arrays, Finite Maps, Lists...
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Satisfiability Modulo Theories

The SMT problem is a variation of the propositional SAT problem for
first-order logic, with the interpretation of symbols constrained by (a
combination of) specific theories.
More precisely, SMT solvers address the issue of satisfiability of
quantifier-free first-order CNF formulas, using as building blocks:

1 a propositional SAT-solver,
2 and state-of-the-art theory-solvers.

For a first-order CNF φ:
Let prop(−) be a map from first-order formulas to propositional formulas that
substitutes every atomic formula by a fresh propositional symbol.
For a valuation ρ of prop(φ), the set Φ(ρ) of first-order literals be defined as
follows

Φ(ρ) = {prop−1(Pi ) | ρ(Pi ) = T} ∪ {¬prop−1(Pi ) | ρ(Pi ) = F}

Given a CNF, the SAT-solver answers either “unsat”, or “sat” with a
particular valuation (model).
Given a conjunction of atomic formulas, the theory-solver answers either
“T-consistent”, or “T-inconsistent” with a particular “unsatisfiable kernel”
(i.e. a subset of the given set that is already unsatisfiable)
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SMT loop

SMT-Solver (ψ) =
A← prop(ψ)
loop

(r , ρ)← SAT (A)
if r = unsat then return unsat
(r ,Υ)← TSolver(Φ(ρ))
if r = sat then return sat
C ←

∨
B∈Υ ¬prop(B)

A← A ∧ C

The main loop invokes the propositional SAT solver with a propositional
formula A that is initialised with prop(ψ).
If a valuation ρ satisfying A is found, the theory solver is invoked to check
if Φ(ρ) is satisfiable.
If not, it will add to A a clause which will have the effect of excluding ρ
when the SAT solver is invoked again in the next iteration.
The algorithm stops whenever the SAT solver returns “unsat”, in which
case ψ is unsatisfiable,
or the theory solver returns “sat”, in which case ψ is satisfiable.
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Example

Consider the formula

g(a) = x︸ ︷︷ ︸
1

∧( f (g(a)) 6= f (c)︸ ︷︷ ︸
−2

∨g(a) = d︸ ︷︷ ︸
3

) ∧ c 6= d︸ ︷︷ ︸
−4

Send to SAT-solver {{1}, {−2, 3}, {−4}}. It answers satisfiable with model
{1,−2,−4}
Send model to Theory-solver. It answers T-inconsistent.
Send to SAT-solver {{1}, {−2, 3}, {−4}, {−1, 2, 4}}. It answers satisfiable
with model {1, 2, 3,−4}.
Send model to Theory-solver. It answers T-inconsistent.
Send to SAT-solver {{1}, {−2, 3}, {−4}, {−1, 2, 4}, {−1,−2,−3, 4}}. It
answers unsatisfiable.
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