
Rigorous Software Development

José Carlos Bacelar Almeida

Departamento de Informática
Universidade do Minho

Coq Proof Assistant

MAP-i, Braga 2010

1

Part II - Deductive Reasoning

• A Practical Approach to the Coq Proof Assistant
• Gallina Language

- Syntax for Terms and Basic Commands
- Inductive Definitions
- Function Definitions
- Programming with Dependent Types

• Tactics and Interactive Term/Proof Construction
- Logical Reasoning in Coq
- Axiom Declarations and Classical Reasoning
- Induction and Inductive Predicates

• Small Demo

• Case study: correctness of functional programs

2

Bibliography
• Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions, volume XXV
of Texts in Theoretical Computer Science. An EATCS Series. Springer Verlag,
2004.

• Documentation of the coq proof assistant (version 8.3).

- Tutorial (http://coq.inria.fr/tutorial.html)

- Reference Manual (http://coq.inria.fr/refman/index.html)

- Standard Library (http://coq.inria.fr/stdlib/index.html)

- FAQ (http://coq.inria.fr/faq.html)

• Yves Bertot. Coq in a Hurry. http://arxiv.org/abs/cs/0603118

• Christine Paulin-Mohring and Jean-Christophe Filliâtre. Coq-lab (Types
Summer School 2007). http://www.lri.fr/~paulin/TypesSummerSchool/
lab.pdf

• Eduardo Giménez, Pierre Castéran. A Tutorial on Recursive Types in Coq.
(http://www.labri.fr/Perso/~casteran/RecTutorial.pdf.gz)

3

http://coq.inria.fr/V8.1/tutorial.html
http://coq.inria.fr/V8.1/tutorial.html
http://coq.inria.fr/refman/index.html
http://coq.inria.fr/refman/index.html
http://coq.inria.fr/stdlib/index.html
http://coq.inria.fr/stdlib/index.html
http://coq.inria.fr/V8.1/faq.html
http://coq.inria.fr/V8.1/faq.html
http://cel.archives-ouvertes.fr/docs/00/07/23/65/PDF/coq-hurry.pdf
http://cel.archives-ouvertes.fr/docs/00/07/23/65/PDF/coq-hurry.pdf
http://www.lri.fr/~paulin/TypesSummerSchool/lab.pdf
http://www.lri.fr/~paulin/TypesSummerSchool/lab.pdf
http://www.lri.fr/~paulin/TypesSummerSchool/lab.pdf
http://www.lri.fr/~paulin/TypesSummerSchool/lab.pdf
http://www.labri.fr/Perso/~casteran/RecTutorial.pdf.gz
http://www.labri.fr/Perso/~casteran/RecTutorial.pdf.gz

Pragmatics

• Installation

- Binaries available for several operating systems (ms-windows, linux, macosx)

- ...downloadable from the web page.

• Several choices for user interaction:

- coqtop - basic textual shell;

- coqide - graphical interface;

- emacs proof-general mode - powerful emacs mode offering the functionality
available in coqide.

4

The Coq Proof Assistant

• The specification language of Coq is named Gallina. It allows to develop
mathematical theories and to prove specifications of programs.

• It implements the Predicative Calculus of (Co)Inductive Definitions (pCiC).

• Every valid Gallina expression ”e” is associated to a type, or specification, ”t” (also a
valid Gallina expression) - we denote the assertion “e has type t” by ”e:t”.

• Expressions in Gallina are built from:

- pCiC terms - such as Sort names, abstractions, applications, ...

- constants:

• defined constants (name alias for other terms);

• inductive types and associated objects (such as constructors, induction/
recursion principles);

• declarations - postulated inhabitants for certain types.

• A strong-normalising reduction relation is defined over the language expressions.

• These ingredients make it possible to look at the Coq system as:

- a Powerful Programming Language (albeit some peculiarities, as we will see);

- a Proof Development Environment.
5

Coq as a Programming Language

6

• When seen as a programming language, the Coq system is capable to
express most of the programs allowed in standard functional languages
(e.g. haskell, SML, ...)

• Important distinctive features:

- Consistency of the underlying theory relies on the strong-normalisation
of terms. This enforces restrictions on:

• recursion patterns allowed in the definitions;

• shape on the type of constructors in inductive definitions

- Ability to deal with dependent types, which allow a much finer notion of
“types as specifications”.

• Obviously, when we address the expressive power of Coq as a programming
language, we are not interested in using it as the target language for an
application - instead, we are interested in the expressive power that it
accomplishes (for modelling purposes).

• This is particularly evident when verifying functional programs correctness
- the objects we want to reason about are first class citizens in the proof
environment.

Coq as a Programming Language

7

• Coq allows to introduce new definitions, which link a name to a well-typed value.

• The impact of a definition is:

- add a constant to the Gallina Language;

- add a (δ-)redex to the evaluation rules.

• Coq commands:

- Definition - define a new constant;

- Check - asks the type of an expression;

- Print - prints the definition of a constant;

- Eval - evaluates an expression.

Definitions

Coq < Definition double (x:nat) : nat := 2 * x.
double is defined
Coq < Check double.
double : nat -> nat
Coq < Print double.
double = fun x : nat => 2 * x
 : nat -> nat
Coq < Eval cbv delta [double] in (double 22).
 = (fun x : nat => 2 * x) 22
 : nat
Coq < Eval compute in (double 22).
 = 44 : nat

8

• The ability to define new types is an important ingredient for the expressiveness of
a programming language.

• In Coq, some restrictions are imposed on the definable inductive types (c.f. the
positivity condition presented earlier). However, the role of these ill-behaved types
can arguably be referred as marginal in every-day programming.

• On the other hand, Coq allows for the definition of dependently typed inductive
types, which are out of the scope in standard functional languages.

• As in functional languages, inductive types are specified by the signature of its
constructors. Taking the following well known types as an example (haskell syntax):

• In Coq, we must give the full signature of the constructors (return type included).

Inductive Definitions

// Nil :: List a Cons :: a -> List a -> List a
data List a = Nil | Cons a (List a)
// Empty :: Tree a; Node :: Tree a -> a -> Tree a -> Tree a
data Tree a = Empty | Node (Tree a) a (Tree a)

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
list, list_rect, list_ind, list_rec is defined
Inductive tree (A:Set) : Set :=
| empty : tree A
| node : tree A -> A -> tree A -> tree A.
tree, tree_rect, tree_ind, tree_rec is defined

9

• The system automatically generates induction/recursion principles for the declared
types.

• These allow the definition of primitive recursive functions on the respective type.

• Taking the list type as an example, primitive recursion is close enough to the
“foldr” combinator available in the haskell prelude (slightly more powerful).

• The inferred principle is a dependent-type version of the primitive recursion
combinator (return type might depend on the argument value). Its type is:

• Sample functions:

Induction/Recursion Principles

Definition length’ (A:Set) : list A -> nat :=
 list_rec A (fun _=>nat) 0 (fun x xs r=> 1+r).
length’ is defined
Eval cbv delta beta iota in (length’ (cons nat 1 (cons nat 1 (nil nat)))).

= 2 : nat

Definition app' (A:Set) (l1 l2:list A) : list A :=
 list_rec A (fun _=>list A) l2 (fun x xs r=> cons A x r) l1.
app’ is defined
Eval compute in (app’ nat (cons nat 1 (nil nat)) (cons nat 2 (nil nat))).
 = cons nat 1 (cons nat 2 (nil nat)) : list nat

list_rec : forall (A : Set) (P : list A → Set),
 P nil →
 (forall (a : A) (l : list A), P l → P (a :: l)) →
 forall (l : list A), P l

10

• The polymorphic lists example show that terms that, in a functional language are
written simply as (cons 1 nil), are polluted with type applications (cons nat 1 (nil
nat))

• These applications are annoying, since they can be inferred from the context.

• Coq has a mechanism that allow to omit these redundant arguments - Implicit
Arguments.

• The command Set Implicit Arguments instructs Coq to automatically infer what
are the implicit arguments in a defined object.

Implicit Arguments

Implicit Arguments nil [A].
Implicit Arguments cons [A].
Implicit Arguments length' [A].
Implicit Arguments app' [A].

Eval compute in (length' (cons 1 (cons 1 nil))).
 = 2 : nat

Eval compute in (app' (cons 1 nil) (cons 2 nil)).
 = cons 1 (cons 2 nil) : list nat

11

• Fortunately, the Coq system allows for a direct encoding of recursive
functions.

• However, it forces recursive calls to act upon strict sub-terms of the
argument (in the present of multiple arguments, the recursive one is
singled out by the keyword “struct” - e.g. {struct l1}).

• A recent extension of the system allows to overcome this limitation...

• ...as long as evidence for termination is provided (i.e. proved).

(...we will return to this later)

Fixpoint Definitions

Fixpoint length (A:Set) (l:list A) : nat :=
 match l with
 | nil => 0
 | cons x xs => 1 + (length xs)
 end.
length is defined
Fixpoint app (A:Set) (l1 l2:list A) {struct l1} : list A :=
 match l1 with
 | nil => l2
 | cons x xs => cons x (app xs l2)
 end.
app is defined

12

• Dependent types allow for a much richer notion of type (e.g. we might express
types for fixed-length lists; balanced-trees; binary-search trees; etc).

• The syntax in the “match” construct is extended to cope with different types in
each branch and how the return type is conditioned.

• Dependent types lead to a proliferation of arguments (most of them inferable from
others). Implicit arguments are an important device in making the terms readable.

• Dependent types can be used to constrain the functional behaviour of programs -
as such, their inhabitants might be seen as “programs with their correctness proof
embedded on” (c.f. Σ-types as sub-set types - more about this later...).

Exploiting Dependent Types

Inductive Vec (A:Set) : nat -> Set :=
| Vnil : Vec A O
| Vcons : forall (x:A) (n:nat), Vec A n -> Vec A (S n).

Check (Vcons 1 (Vnil nat)).
Vcons 1 (Vnil nat) : Vec nat 1

Fixpoint appVec (A:Set)(n1 n2:nat)(v1:Vec A n1)(v2:Vec A n2){struct v1}:Vec A (n1+n2) :=
 match v1 in Vec _ m return Vec A (m+n2) with
 | Vnil => v2
 | Vcons x m' v' => Vcons x (appVec v' v2)
 end.

Eval compute in appVec (Vcons 1 (Vnil nat)) (Vcons 2 (Vcons 3 (Vnil nat))).
 = Vcons 1 (Vcons 2 (Vcons 3 (Vnil nat))) : Vec nat (1 + 2)

13

• Programming with dependent types rapidly becomes a challenging task.

• Look at definition of the “head” function.

• The difficulty arises from the fact that the first branch of the match constructor
could not occur (Vnil is always of type (Vec A 0)). But the argument (proof) must
be given explicitly.

• One often uses a mixed style of “definitional” and “interactive” term construction
(more about this later).

Fixpoint VecHead (A : Set) (n : nat) (v : Vec A (S n)) {struct v}: A :=
(match v in (Vec _ l) return (l <> 0 -> A) with
 | Vnil => fun h : 0 <> 0 => False_rec A (h (refl_equal 0))
 | Vcons x m' _ => fun _ : S m' <> 0 => x
 end)
 (* proof of Sn<>0 *)
 (fun H : S n = 0 =>
 let H0 :=
 eq_ind (S n)
 (fun e : nat => match e with
 | 0 => False
 | S _ => True
 end) I 0 H in
 False_ind False H0)

14

Coq as an Interactive Proof-
Development Environment

15

Interactive Proof Development

• The underlying type system used by coq allows for expressing proofs in the same
way as we define functions acting on computational objects (c.f. Curry-Howard
Isomorphism)

• Here, we can identify the term (fun (A:Prop) (x:A) ⇒ x) as an encoding of the natural

deduction proof tree for the logical formula (forall (A:Prop), A→A).

• However, when we are willing to find a proof for a given formula, the ability to
present the complete proof-term is not very helpful (it can only act as a proof-
checking device).

• To interactively construct the natural deduction proof-tree, is is normally adopted
the so called goal-oriented proof development:

- the system keeps track of the current goal and the set of open premises (the
environment);

- the user insert nodes in the proof-tree by means of certain commands (tactics).
The system adjusts the state accordingly.

- the process finishes when we are able to match a premise with the conclusion.

Definition simple_proof (A:Prop) (x:A) : A := x.
simple_proof is defined
Check simple_proof.
simple_proof : forall A : Prop, A -> A

16

Minimal Logic and Basic Tactics
• The internal logic of Coq possesses a single connective: Π. It generalises both

implication and universal quantification.
• Basic tactics:

• Proof editing mode is activated by the Theorem command. Once completed, a proof
is saved by the Qed command.

Theorem ex1 : forall A B:Prop, A -> (A->B) -> B.
1 subgoal
 ============================
 forall A B : Prop, A -> (A -> B) -> B
intros A B H H0.
1 subgoal
 A : Prop
 B : Prop
 H : A
 H0 : A -> B
 ============================
 B
apply H0.
1 subgoal
 A : Prop
 B : Prop
 H : A
 H0 : A -> B
 ============================
 A
exact H.
Proof completed.
Qed.
ex1 is defined

intro - introduction rule for Π;
apply - elimination rule for Π;
assumption, exact - match conclusion with an hypothesis.

17

• Interactive goal-oriented proof-term construction is a legitimate mean to define
objects in Gallina.

• The command Theorem (and its variants Lemma, Proposition, Corollary, Fact,
Remark) is analogous to Definition (but reserved for goal-oriented definitions).

• Note the use Defined command (instead of Qed). It makes the definition
transparent (can be unfolded).

• The refine tactic allows to mix both styles - it fills a proof with a term (with holes).

Curry-Howard analogy at work...

Definition VecHead’ (A:Set) (n:nat) (v:Vec A (S n)) : A.
refine (fun A n v => match v in Vec _ l return (l<>0)->A with
 | Vnil => _
 | Vcons x m' v => _
 end _).
intro h; elim h; reflexivity.
intro h; exact x.
discriminate.
Defined.

(* Definition Scomb (A B C:Set) (x:A->B->C) (y:A->B) (z:A) : C := x. *)
Definition Scomb (A B C:Set) : (A->B->C) -> (A->B) -> A -> C.
intros A B C x y z.
apply x.
 exact z.
 apply y; exact z.
Defined.
S is defined

18

Logical Reasoning

• Other logical connectives are encoded as inductive types whose constructors
correspond to their introduction rules:

• Elimination rules are obtained through the corresponding induction principle.
Consider the following example:

(* False (absurd) is encoded as an empty type *)
Inductive False : Prop :=.
(* NEGATION - notation: ~A *)
Definition not (A:Prop) : Prop := A -> False.
(* AND - notation: A /\ B *)
Inductive and (A B:Prop) : Prop := conj : A -> B -> and A B.
(* OR - notation: A \/ B *)
Inductive or (A B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
(* EXISTENTIAL QUANT. - notation “exists x, P x” *)
Inductive ex (A : Type) (P : A -> Prop) : Prop :=
 ex_intro : forall x : A, P x -> ex P

Theorem ex2 : forall A B, A/\B -> A\/B.
intros; apply or_introl.
1 subgoal
 A : Prop
 B : Prop
 H : A /\ B
 ============================
 A

19

• To proceed the proof we have to apply the elimination rule on A/\B. Checking the
type for and_ind, we get:

• If we unify P with the conclusion, we can read it as a rule that decomposes the
components of the conjunction.

(the “with” clause instantiate variables; the “try ...” tactical attempts to apply the
given tactic to the generated sub-goals).

• The elim tactic performs exactly this:

apply and_ind with A B; try assumption.
1 subgoal
 A : Prop
 B : Prop
 H : A /\ B
 ============================
 A -> B -> A.
intros; assumption.
Proof completed.

Theorem ex2’ : forall A B, A/\B -> A\/B.
intros A B H; left; elim H; intros; assumption.
Proof completed.

Check and_ind.
and_ind: forall A B P : Prop, (A->B->P) -> A/\B->P

20

Example: First-Order Reasoning

• The same methodology applies for proving first-order properties:

• Exercise: prove the reverse implication.

Theorem ex3 : forall (X:Set) (P:X->Prop), ~(exists x, P x) -> (forall x, ~(P x)).
unfold not; intros.
1 subgoal
 X : Set
 P : X -> Prop
 H : (exists x : X, P x) -> False
 x : X
 H0 : P x
 ============================
 False
apply H.
1 subgoal
 X : Set
 P : X -> Prop
 H : (exists x : X, P x) -> False
 x : X
 H0 : P x
 ============================
 exists x : X, P x
exists x (*apply ex_intro with x*); assumption.
Proof completed.

21

Classical Reasoning

• The internal logic of Coq is constructive. That means that we could not directly
prove certain classical propositions, such as:
 (Peirce)
(Double negation elimination)
 (de Morgan laws)

• To perform classical reasoning in Coq, we must rely on a convenient axiomatisation
(e.g. adding the excluded middle principle as an axiom).

• In Coq, we might declare:

• Alternative names/commands for Axiom are Conjecture and Parameter (usually
reserved for computational objects).

Axiom EM : forall P:Prop, P \/ ~P.
EM is assumed.

((P → Q) → P) → P

~~P → P

~ (forall n:U, ~ P n) → (exists n : U, P n)

~ (forall n:U, P n) → exists n : U, ~ P n.
~ (exists n : U, ~ P n) → forall n:U, P n

22

Theorem ex4 : forall (X:Set) (P:X->Prop), ~(forall x, ~(P x)) -> (exists x, P x).
intros.
1 subgoal
 A : Prop
 B : Prop
 X : Set
 P : X -> Prop
 H : ~ (forall x : X, ~ P x)
 ============================
 exists x : X, P x
elim (EM ((exists x, P x))).
2 subgoals
 A : Prop
 B : Prop
 X : Set
 P : X -> Prop
 H : ~ (forall x : X, ~ P x)
 ============================
 (exists x : X, P x) -> exists x : X, P x
subgoal 2 is:
 ~ (exists x : X, P x) -> exists x : X, P x
intro; assumption.
intro H0; elim H; red; intros; apply H0; exists x; assumption.
Proof completed.

• Exercise: prove the remaining example formulas.

23

Section mechanism
• The sectioning mechanism allows to organise a proof in structured sections.

• Inside these sections, the commands Variable/Hypothesis and Let declare local
assumptions and definitions.

• When a section is closed, all local declarations (variables and local definitions) are
discharged. This means that all global objects defined in the section are generalised
with respect to all variables and local definitions it depends on in the section.

•
Section Test.
Variable U : Set.
Hypothesis Q R: U->Prop.
Theorem ex6: (forall x, Q x)/\(forall x, R x) -> (forall x, Q x /\ R x).
intro H; elim H; intros H1 H2; split; [apply H1 | apply H2]; assumption.
Qed.
Let conj (a b:Prop) := a/\b.
Hypothesis W Z:Prop.
Definition ex7 := conj W Z.
Check ex6.
ex6 : (forall x : U, Q x) /\ (forall x : U, R x) -> forall x : U, Q x /\ R x
Print ex7.
ex7 = conj W Z : Prop
End Test.
Check ex6.
ex6 : forall (U : Set) (Q R : U -> Prop),
 (forall x : U, Q x) /\ (forall x : U, R x) -> forall x : U, Q x /\ R x
Print ex7.
ex7 = let conj := fun a b : Prop => a /\ b in fun W Z : Prop => conj W Z
 : Prop -> Prop -> Prop

24

Other uses of Axioms/Parameters

• Axioms and Parameters are often used to decouple the subject we are interested in
reason about with some underlying theory (we comfortably take for granted).

• An example of such use is the modelling of an abstract data type - we are able to
reason about it without depending on a concrete implementation.

Section Stack.

Variable U:Type.

Parameter stack : Type -> Type.
Parameter emptyS : stack U.
Parameter push : U -> stack U -> stack U.
Parameter pop : stack U -> stack U.
Parameter top : stack U -> U.
Parameter isEmpty : stack U -> Prop.

Axiom empty_isEmpty : isEmpty emptyS.
Axiom push_notEmpty : forall x s, ~isEmpty (push x s).
Axiom pop_push : forall x s, pop (push x s) = s.
Axiom top_push : forall x s, top (push x s) = x.

End Stack.

Check pop_push.
pop_push : forall (U : Type) (x : U) (s : stack U), pop (push x s) = s

25

• The capability to extend the underlying theory with arbitrary axioms is a
powerful and dangerous mechanism.

• An axiom declaration turns the corresponding type automatically inhabited. Care
must be taken in order to avoid inconsistency.

• As a simple demonstration of the risks, consider the following proof script:

• The False_ind principle encodes the natural deduction ⊥-rule: from the absurd we
are able to prove anything.

• Once declared an inhabitant for the False type, all the logical judgements are
useless - the theory is inconsistent.

A note of caution!!!

Check False_ind.
False_ind : forall P : Prop, False -> P

Axiom ABSURD : False.
ABSURD is assumed.

Theorem ex8 : forall (P:Prop), P /\ ~P.
elim ABSURD.
Proof completed.

26

Equality and Rewriting

• Equality is defined as an inductive predicate:

• Rewriting (replace equals by equals) is the natural proof strategy when dealing with
equalities.

• In fact, rewriting is exactly what we achieve when perform elimination on a equality
hypothesis...

Lemma ex9 : forall a b c:X, a=b -> b=c -> a=c.
intros a b c H1 H2.
1 subgoal
 X : Set
 P : X -> Prop
 a,b,c : X
 H1 : a = b
 H2 : b = c
 ============================
 a = c

Inductive eq (A : Type) (x : A) : A -> Prop := refl_equal : x = x.

Check eq_ind.
eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
 P x -> forall y : A, x = y -> P y

27

...
elim H2 (*apply eq_ind with X b*).
1 subgoal
 X : Set
 P : X -> Prop
 a,b,c : X
 H1 : a = b
 H2 : b = c
 ============================
 a = b
elim H1.
 ...
 ============================
 a = a
reflexivity (*apply refl_equal*).
Proof completed.

• Equality tactics:

- rewrite - rewrites an equality;

- rewrite <- - reverse rewrite of an equality;

- reflexivity - reflexivity property for equality;

- symmetry - symmetry property for equality;

- transitivity - transitivity property for equality.

28

Evaluation and Convertibility tactics
• Another important proof strategy is evaluation.

• To proceed the argument, it is enough to perform evaluation on the left hand side of
the equality,

• Convertibility tactics:

- simpl, red, cbv, lazy - performs evaluation;

- change - replaces the goal by a convertible one.

Lemma app_nil : forall (A:Set) (l:list A), app nil l = l.
intros.
1 subgoal
 A : Set
 l : list A
 ============================
 app nil l = l

...
simpl.
1 subgoal
 A : Set
 l : list A
 ============================
 l = l
reflexivity.
Qed.
app_nil is defined

29

Induction (reasoning about inductive types)
• To reason about inductive types, we should apply the corresponding induction

principle.

• For lists, it asserts that to prove a property (P l), is enough to prove:

- P nil
- forall x l, P l -> P (cons x l)

(the pattern tactic performs eta-expansion on the goal - it makes explicit the
predicate to be unified with the conclusion of the induction principle.)

Theorem app_l_nil : forall (A:Set) (l:list A), app l nil = l.
intros A l; pattern l.
1 subgoals
 A : Type
 l : list A
 ============================
 (fun l0 : list A0 => l0 ++ nil = l0) l
apply list_ind.
2 subgoals
 A : Type
 l : list A
 ============================
 app nil nil = nil
subgoal 2 is:
 forall (a : A) (l0 : list A), app l0 nil = l0 -> app (a :: l0) nil = a :: l0
reflexivity.
intros a l0 IH; simpl; rewrite IH; reflexivity.
Proof completed.

30

Tactics for induction

• Once again, the elim tactic might be used to apply the corresponding induction
principle:

• Some available tactics:

• induction - performs induction on an identifier;

• destruct - case analysis;

• discriminate - discriminates objects built from different constructors;

• injection - constructors of inductive types are injections;

• inversion - given an inductive type instance, find all the necessary conditions that
must hold on the arguments of its constructors.

Theorem app_l_nil’ : forall (A:Set) (l:list A), app l nil = l.
intros A l; elim l.
reflexivity.
intros a l0 IH; simpl; rewrite IH; reflexivity.
Proof completed.

31

Inductive Predicates
• We have shown how to declare new inductively define Sets (datatypes). But we can

also define relations (predicates).

• Exercise: use the inversion tactic to prove that forall x, ~(last x nil). Try to prove it
avoiding that tactic (difficult).

• Exercise: define inductively the Odd predicate and prove that Even n => Odd (S n).
• We can also define mutually recursive inductive types:

Inductive EVEN : nat -> Prop :=
| EVEN_base : EVEN 0
| EVEN_step : forall n, ODD n -> EVEN (S n)
with ODD : nat -> Prop :=
| ODD_step : forall n, EVEN n -> ODD (S n).
EVEN, ODD are defined
EVEN_ind, ODD_ind are defined

Inductive Even : nat -> Prop :=
| Even_base : Even 0
| Even_step : forall n, Even n -> Even (S (S n)).
Even, Even_ind are defined
Inductive last (A:Set) (x:A) : list A -> Prop :=
| last_base : last x (cons x nil)
| last_step : forall l y, last x l -> last x (cons y l).
last, last_ind are defined
Check last.
last : forall A : Type, A -> list A -> Prop

32

Libraries & Automatisation
• Proof development often take advantage from the large base of definitions and facts

found in the Coq Standard Library, as well from some (limited, but very useful)
forms of automatisation.

• Often used libraries:

- Arith - unary integers;
- ZArith - binary integers;
- List - polymorphic lists;

• Useful commands for finding theorems acting on a given identifier:
- Search, SearchAbout, SearchPattern

• For some specific domains, Coq is able to support some degree of automatisation:

- auto - automatically applies theorems from a database;

- tauto, intuition - decision procedures for specific classes of goals (e.g.
propositional logic);

- omega, ring - specialised tactics for numerical properties.

Require Import List.

Check map.
map : forall A B : Type, (A -> B) -> list A -> list B

33

Other useful tactics and commands...

• Tactics:

- clear - removes an hypothesis from the environment;

- generalize - re-introduce an hypothesis into the goal;

- cut, assert - proves the goal through an intermediate result;

- pattern - performs eta-expansion on the goal.

• Commands:

- Admitted - aborts the current proof (property is assumed);

- Set Implicit Arguments - makes it possible to omit some arguments (when
inferable by the system);

- Open Scope - opens a syntax notation scope (constants, operators, etc.)

• See the Reference Manual...

34

Small Demo...

35

Problem Statement

• We are interested in proving a simple fact concerning the app function:

An element belonging to (app l1 l2) belongs necessarily to l1 or l2.

36

A Logic-Oriented Approach

• We first shall define what is meant by “an element belongs to a list”

• Then we are able to state the property we want to prove...

InL : A -> list A -> Prop

Theorem InApp : forall (A:Type) (l1 l2:list A) (x:A), (InL x (app l1 l2)) <-> (InL x l1)\/(InL x l2)

37

A Programming-Oriented Approach

• Another approach would be to program the “elem” function:

• Now, the statement becomes:

- “orb” is the boolean-or function.

elem :: a -> [a] -> Bool

elem _ [] = false

elem x (y:ys) | x==y = true

 | otherwise = elem x ys

Theorem ElemApp : forall (A:Type) (l1 l2:list A) (x:A), elem x (app l1 l2)=orb (elem x l1) (elem x l2)

38

Filling the gap: correctness of “elem”

• We have seen two different approaches for the formalisation of a single property.
What should be the preferred one?

- The first approach makes fewer assumptions and is easier to follow;

- The second rely on the behaviour of the functions “elem” and “orb”.

• If we formally relate the “InL” relation with the “elem” function, we fill the gap
between both approaches.

• In fact, we have just proved the correctness of elem:

- The relation InL acts as its specification.

Theorem InElem : forall (A:Type) (l:list A) (x:A), (InL x l) <-> (elem x l = true)

39

Rigorous Software Development

José Carlos Bacelar Almeida

Departamento de Informática
Universidade do Minho

Program Verification in Coq

MAP-i, Braga 2010

40

Part II - Program Verification

• A Pratical Approach to the Coq Proof Assistant

• Small Demo and Lab Session

• (Functional) Program Verification in Coq

• Specifications and Implementations
- correctness assertions
- non-primitive-recursive functions in Coq

• Functional Program Correctness
- the direct approach
- accurate types: specification-types and program-extraction

• Case Study:
- Verification of sorting programs

41

Coq as a Certified Program Development Environment

• From the very beginning, the Coq development team put a strong focus on
the connection to program verification and certification.

• Concerning functional programs, we have already seen that:

- it permits to encode most of the functions we might be interested in
reason about - the programs;

- its expressive power allows to express properties we want these
programs to exhibit - their specifications;

- the interactive proof-development environment helps to establish the
bridge between these two worlds - correctness assurance.

• In the system distribution (standard library and user contributed
formalisations) there are numerous examples of developments around the
themes “certified algorithms” and “program verification”.

42

Specifications and Implementations

43

Function Specifications

• What is a function specification?

- In general, we can identify a function specification as a constraint on its input/
output behaviour.

- In practice, we will identify the specification of a function f:A→B as a binary
relation R⊆A×B (or, equivalently, a binary predicate).

- The relation associates each input to the set of possible outputs.

• Some remarks:

- note that specifications do allow non-determinism (an element of the input can be
related to multiple elements on the output) - this is an important ingredient, since
it allows for a richer theory on them (composing, refinement, etc.);

- it also means that doesn’t exists a one-to-one relationship between specifications
and functions (different functions can implement the same specification);

- even when the specification is functional (every element of the domain type is
mapped to exactly one element of the codomain), we might have different
“functional programs” implementing the specification (mathematically, they encode
the same function).

44

Partiality in Specifications

• Consider the empty relation ∅⊆A×B (nothing is related with anything). What is its
meaning? Two interpretations are possible:

- it is an “impossible” specification - it does not give any change to map domain
values to anything;

- it imposes no constrain on the implementation - thus, any function f:A→B trivially
implements it.

• The second approach is often preferred (note that the first approach will make any
non-total relation impossible to realise).

• So, we implicitly take the focus of the specification as the domain of the relation: a
function f:A→B implements (realises) a specification R⊆A×B when, for every element
x∈dom(R), (x,f(x))∈R. (obs.: dom(R) denotes the domain of R, i.e. { a | (a,b)∈R }).

• The relation domain acts as a pre-condition to the specification.

• In practice, it is usually simpler to detach the pre-condition from the relation (by
considering it a predicate Pre(-) on the domain type). The realisation assertion
becomes:

- for every element x of the domain type, Pre(x) ⇒ (x,f(x))∈R.

45

Specification Examples

- Head of a list:

- Last element of a list:

- Division:

- Permutation of a list (example of a non-functional relation):

Definition headPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive headRel (A:Type) (x:A) : list A -> Prop :=
 headIntro : forall l, headRel x (cons x l).

Definition lastPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive lastRel (A:Type) (x:A) : list A -> Prop :=
 lastIntro : forall l y, lastRel x l -> lastRel x (cons y l).

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=
 let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition PermRel (l1 l2:list Z) : Prop :=
 forall (z:Z), count z l1 = count z l

46

Implementations

• When we address the expressive power of Coq, we refer to some limitations in
defining functions in Coq.

• But then, a question is in order: What is exactly the class of functions that can be
encoded in Coq?

• The answer is: “functions provable total in higher-order logic”.

• Intuitively, we can encode a function as long as we are able to prove it total in Coq.

• But the previous statement shouldn’t be over emphasised! In practice, even if a
function is expressible in Coq, it might be rather tricky to define it.

- we can directly encode primitivive recursive functions (or, more generally,
functions guarded by destructors);

- Examples of functions that can not be directly encoded:

• Partial functions;

• non-structural recursion patterns (tricks and strategies...)

• manipulate programs to fit the primitive-recursion scheme;

• derive a specialised recursion principles;

• Function command (available after Coq version V8.1).

47

• Coq doesn’t allow to define partial functions (function that give a run-time
error on certain inputs)

• But Coq’s type system allows to enrich the function domain with pre-
conditions that assure that invalid inputs are excluded.

• Take the head (of a list) function as an example. In Haskell it can be
defined as:

(the compiler exhibits a warning about “non-exhaustive pattern matching”)

• In Coq, a direct attempt would fail:

Partial Functions

head :: [a] -> a
head (x:xs) = x

Definition head (A:Type) (l:list A) : A :=
 match l with
 | cons x xs => x
 end.
Error: Non exhaustive pattern-matching: no clause found for pattern nil

48

• To overcome the above difficulty, we need to:

- consider a precondition that excludes all the erroneous argument values;

- pass to the function an additional argument: a proof that the precondition
holds;

- the match constructor return type is lifted to a function from a proof of
the precondition to the result type.

- any invalid branch in the match constructor leads to a logical contradiction
(it violates the precondition).

• Formally, we lift the function from the type
 forall (x:A), B to forall (x:A), Pre x -> B

• Since we mix logical and computational arguments in the definition, it is a
nice candidate to make use of the refine tactic...

(the generated term that will fill the hole is “False_rect A (H (refl_equal nil))”)

Definition head (A:Type) (l:list A) (p:l<>nil) : A.
refine (fun A l p=>
 match l return (l<>nil->A) with
 | nil => fun H => _
 | cons x xs => fun H => x
 end p).
elim H; reflexivity.
Defined.

49

• We can argue that the encoded function is different from the original.

• But, it is linked to the original in a very precise sense: if we discharge the
logical content, we obtain the original function.

• Coq implements this mechanism of filtering the computational content from
the objects - the so called extraction mechanism.

• Coq supports different target languages: Ocaml, Haskell, Scheme.

Check head.
head : forall (A : Type) (l : list A), l <> nil -> A

Extraction Language Haskell.
Extraction Inline False_rect.
Extraction head.

head :: (List a1) -> a1
head l =
 case l of
 Nil -> Prelude.error "absurd case"
 Cons x xs -> x

50

• Coq’s extraction mechanism are based on the distinction between sorts
Prop and Set.

• ...but it enforces some restriction on the interplay between these sorts:

- a computational object may depend on the existence of proofs of logical
statements (c.f. partiality);

- but the proof itself cannot influence the control structure of a
computational object.

• As a illustrative example, consider the following function:

More on Extraction

Definition or_to_bool (A B:Prop) (p:A\/B) : bool :=
 match p with
 | or_introl _ => true
 | or_intror _ => flase
 end.
Error:
Incorrect elimination of "p" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

51

• If we instead define a “strong” version of “or” connective, with sort Set (or
Type):

• Then, the equivalent of the previous function is:

Inductive sumbool (A B:Prop) : Type := (* notation {A}+{B} *)
| left : A -> sumbool A B
| right : B -> sumbool A B.

Definition sumbool_to_bool (A B:Prop) (p:{A}+{B}) : bool :=
 match p with
 | left _ => true
 | right _ => flase
 end.
sumbool_to_bool is defined.

Extraction sumbool_to_bool.
sumbool_to_bool :: Sumbool -> Bool
sumbool_to_bool p =
 case p of
 Left -> True
 Right -> False

52

• The sumbool type can either be seen as:

- the or-connective defined on the Type universe;

- or a boolean with logical justification embeded (note that the extraction of
this type is isomorphic to Bool).

• The last observation suggests that it can be used to define an “if-then-else”
construct in Coq.

- Note that an expression like
 fun x y => if x<y then 0 then 1
doesn’t make sense: x<y is a Proposition - not a testable predicate (function
with type X->X->bool);

- Coq accepts the syntax
 if test then ... else ...
(when test has either the type bool or {A}+{B}, with propositions A and B).

- Its meaning is the pattern-matching
 match test with
 | left H => ...
 | right H => ...
 end.

If - then - else -

53

• We can identify {P}+{~P} as the type of decidable predicates:

- The standard library defines many useful predicates, e.g.

• le_lt_dec : forall n m : nat, {n <= m} + {m < n}

• Z_eq_dec : forall x y : Z, {x = y} + {x <> y}

• Z_lt_ge_dec : forall x y : Z, {x < y} + {x >= y}

- The command SearchPattern ({_}+{_}) searches the instances available in the
library.

• Usage example: a function that checks if an element is in a list.

• Exercise: prove the correctness/completeness of elem, i.e.
 forall (x:Z) (l:list Z), InL x l ↔ elem x l=true.

• Exercise: use the previous result to prove the decidability of InL, i.e.
 forall (x:Z) (l:list Z), {InL x l}+{~InL x l}.

Fixpoint elem (x:Z) (l:list Z) {struct l}: bool :=
 match l with
 nil => false
 | cons a b => if Z_eq_dec x a then true else elem x b
 end.

54

• Combining the use of recursors with higher-order types, it is possible to
encode functions that are not primitive recursive.

• A well-known example is the Ackermann function.

• We illustrate this with the function that merges two sorted lists

• In Coq, it can be defined with an auxiliary function merge’:

Non obvious uses of the primitive recursion scheme

merge :: [a] -> [a] -> a
merge [] l = l
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys) | x <= y = x:(merge xs (y:ys))
 | otherwise = y:(merge (x:xs) ys)

Fixpoint merge (l1: list Z) {struct l1}: list Z -> list Z :=
 match l1 with
 | nil => fun (l2:list Z) => l2
 | cons x xs => fix merge' (l2:list Z) : list Z :=
 match l2 with
 | nil => (cons x xs)
 | cons y ys => match Z_le_gt_dec x y with
 | left _ => cons x (merge xs (cons y ys))
 | right _ => cons y (merge' ys)
 end
 end
 end.

55

• When the recursion pattern of a function is not structural in the
arguments, we are no longer able to directly use the derived recursors to
define it.

• Consider the Euclidean Division algorithm,

• There are several strategies to encode these functions, e.g.:

- consider an additional argument that “bounds” recursion (and then prove
that, when conveniently initialised, it does not affect the result);

(Exercise: define it in Coq and check its results for some arguments)

- derive (prove) a specialised recursion principle.

Non-structural recursion

div :: Int -> Int -> (Int,Int)
div n d | n < d = (0,n)
 | otherwise = let (q,r)=div (n-d) d
 in (q+1,r)

div :: Int -> Int -> (Int,Int)
div n d = divAux n n d
where divAux 0 _ _ = (0,0)
 divAux (x+1) n d | n < d = (0,n)
 | otherwise = let (q,r)=divAux x (n-d) d
 in (q+1,r)

56

• In recent versions of Coq (after v8.1), a new command Function allows to
directly encode general recursive functions.

• The Function command accepts a measure function that specifies how the
argument “decreases” between recursive function calls.

• It generates proof-obligations that must be checked to guaranty the
termination.

• Returning to the div example:

Function command

Function div (p:nat*nat) {measure fst} : nat*nat :=
 match p with
 | (_,0) => (0,0)
 | (a,b) => if le_lt_dec b a
 then let (x,y):=div (a-b,b) in (1+x,y)
 else (0,a)
 end.
1 subgoal
 ============================
 forall (p : nat * nat) (a b : nat),
 p = (a, b) ->
 forall n : nat,
 b = S n ->
 forall anonymous : S n <= a,
 le_lt_dec (S n) a = left (a < S n) anonymous ->
 fst (a - S n, S n) < fst (a, S n)

57

• The proof obligation is a simple consequence of integer arithmetic facts
(omega tactic is able to prove it).

• The Function command generates a lot of auxiliary results related to the
defined function. Some of them are powerful tools to reason about it.

- div_ind - a specialised induction principle tailored for the specific
recursion pattern of the function (we will return to this later...)

- div_equation - equation for rewriting directly the definition.

• Exercise: in the definition of the “div” function, we have included an
additional base case. Why? Is it really necessary?

intros; simpl.
omega.
Qed.
div_tcc is defined
div_terminate is defined
div_ind is defined
div_rec is defined
div_rect is defined
R_div_correct is defined
R_div_complete is defined
div is defined
div_equation is defined

58

• The Function command is also useful to provide “natural encodings” of
functions that otherwise would need to be expressed in a contrived
manner.

• Returning to the “merge” function, it could be easily defined as:

• Once again, the proof obligations are consequence of simple arithmetic
facts (and the definition of “length”).

• As a nice side effect, we obtain an induction principle that will facilitate
the task of proving theorems about “merge”.

Function merge2 (p:list Z*list Z)
{measure (fun p=>(length (fst p))+(length (snd p)))} : list Z :=
 match p with
 | (nil,l) => l
 | (l,nil) => l
 | (x::xs,y::ys) => if Z_lt_ge_dec x y
 then x::(merge2 (xs,y::ys))
 else y::(merge2 (x::xs,ys))
 end.
intros.
simpl; auto with arith.
intros.
simpl; auto with arith.
Qed.

59

Functional Correctness

60

• Functional correctness establishes the link between a specification and an
implementation.

• A direct approach to the correctness consists in:

- Specification and implementation are both encoded as distinct Coq
objects:

• The specification is an appropriate relation (probably, with some
predicate as precondition);

• The implementation is a function defined in coq (probably with some
“logical” precondition).

- The correctness assertion consists in a theorem of the form:

given a specification (relation fRel and a precondition fPre),
a function f is said to be correct with respect to the specification if:

 forall x, fPre x -> fRel x (f x)

Direct approach

61

• Returning to our division function, its specification is:

• The correctness is thus given by the following theorem:

div example

Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=
 let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

Theorem div_correct : forall (p:nat*nat), divPre p -> divRel p (div p).
unfold divPre, divRel.
intro p.
(* we make use of the specialised induction principle to conduct the proof... *)
functional induction (div p); simpl.
intro H; elim H; reflexivity.
(* a first trick: we expand (div (a-b,b)) in order to get rid of the let (q,r)=... *)
replace (div (a-b,b)) with (fst (div (a-b,b)),snd (div (a-b,b))) in IHp0.
simpl in *.
intro H; elim (IHp0 H); intros.
split.
(* again a similar trick: we expand “x” and “y0” in order to use an hypothesis *)
change (b + (fst (x,y0)) * b + (snd (x,y0)) = a).
rewrite <- e1.
omega.
(* and again... *)
change (snd (x,y0)<b); rewrite <- e1; assumption.
symmetry; apply surjective_pairing.
auto.
Qed.

62

• Sometimes, we might be interested in a stronger link between the
specifications and implementations.

• In particular, we might be interested in proving completeness - the
implementation captures all the information contained in the specification:

 forall x y, fPre x /\ fRel x y -> y=f x

• In this form, it can be deduced from correctness and functionality of fRel,
i.e.

 forall x y1 y2, fPre x /\ fRel x y1 /\ fRel x y2 -> y1=y2

• More interesting is the case of predicates implemented by binary
functions. There exists a clear bi-directional implication. E.g.:

 forall x l, InL x l <-> elem x l=true

Function Completness

63

• Coq’s type system allows to express specification constraints in the type of
the function - we simply restrict the codomain type to those values
satisfying the specification.

• This strategy explores the ability of Coq to express sub-types (Σ-types).
These are defined as an inductive type:

• Note that sig is a strong form of existential quantification (similar to the
relation between or and sumbool).

• Using it, we can precisely specify a function by its type alone. Consider the
type
 forall A (l:list A), l<>nil -> { x:A | last x l }

(the last relation was shown earlier).

• Coq also defines

Specification with Types

(* Notation: { x:A | P x } *)
Inductive sig (A : Type) (P : A -> Prop) : Type :=
 exist : forall x : A, P x -> sig P

64

• Let us build an inhabitant of that type:

• And now, we can extract the computational content of the last theorem...

• This is precisely the “last” function as we would have written in Haskell.

Theorem lastCorrect : forall (A:Type) (l:list A), l<>nil -> { x:A | last x l }.
induction l.
intro H; elim H; reflexivity.
intros.
destruct l.
exists a; auto.
assert ((a0::l)<>nil).
discriminate.
elim (IHl H0).
intros r Hr; exists r; auto.
Qed.

Extraction lastCorrect.

lastCorrect :: (List a1) -> a1
lastCorrect l =
 case l of
 Nil -> Prelude.error "absurd case"
 Cons a l0 ->
 (case l0 of
 Nil -> a
 Cons a0 l1 -> lastCorrect l0)

65

• When relying on the Coq’s extraction mechanism, we:

- exploit the expressive power of the type system to express specification
constraints;

- make no distinction (at least conceptually) between the activities of
programming and proving. In fact, we build an inhabitant of a type that
encapsulates both the function and its correctness proof.

• The extraction mechanism allows to recover the function, as it might be
programmed in a functional language. Its correctness is implicit (relies on the
soundness of the mechanism itself).

• Some deficiencies of the approach:

- is targeted to “correct program derivation”, rather than “program
verification”;

- the programmer might lose control over the constructed program (e.g. a
natural “proof-strategy” does not necessarily leads to an efficient program,
use of sophisticated tactics, ...);

- sometimes, it compromises reusing (e.g. proving independent properties for
the same function).

Extraction approach summary

66

• Define a strong version of “elem”

 elemStrong : forall (x:Z) (l:list Z), {InL x l}+{~InL x l}

in such a way that its extraction is “analogous” (or uses) the elem function
defined earlier.

• For the well known list functions app and rev provide:

- a (relational) specification for them;

- prove the correctness assertions.

Exercises

67

Case Study: sorting functions

68

• Sorting functions always give rise to interesting case studies:

- their specifications is non trivial;

- there are well-known implementations that achieve the expected behaviour
through different strategies.

• Different implementations:

- insertion sort

- merge sort

- quick sort

- heap sort

• Specification - what is a sorting program?

- computes a permutation of the input list

- which is sorted.

Sorting programs

69

• A simple characterisation of sorted lists consists in requiring that two consecutive
elements be compatible with the less-or-equal relation.

• In Coq, we are lead to the predicate:

• Aside: there are other reasonable definitions for the Sorted predicate, e.g.

• The resulting induction principle is different. It can be viewed as a “different
perspective” on the same concept.

• ...it is not uncommon to use multiple characterisations for a single concept (and
prove them equivalent).

Sorted Predicate

Inductive Sorted : list Z -> Prop :=
 | sorted0 : Sorted nil
 | sorted1 : forall z:Z, Sorted (z :: nil)
 | sorted2 :
 forall (z1 z2:Z) (l:list Z),
 z1 <= z2 ->
 Sorted (z2 :: l) -> Sorted (z1 :: z2 :: l).

Inductive Sorted’ : list Z -> Prop :=
 | sorted0’ : Sorted nil
 | sorted2 :
 forall (z:Z) (l:list Z),
 (forall x, (InL x l) -> z<=x) -> Sorted (z :: l).

70

• To capture permutations, instead of an inductive definition we will define the
relation using an auxiliar function that count the number of occurrences of
elements:

• A list is a permutation of another when contains exactly the same number of
occurrences (for each possible element):

• Exercise: prove that Perm is an equivalence relation (i.e. is reflexive, symmetric and
transitive).

• Exercise: prove the following lemma:
 forall x y l, Perm (x::y::l) (y::x::l)

Permutation

Fixpoint count (z:Z) (l:list Z) {struct l} : nat :=
 match l with
 | nil => 0
 | (z' :: l') =>
 match Z_eq_dec z z' with
 | left _ => S (count z l')
 | right _ => count z l'
 end
 end.

Definition Perm (l1 l2:list Z) : Prop :=
 forall z, count z l1 = count z l2.

71

• A simple strategy to sort a list consist in iterate an “insert” function that inserts an
element in a sorted list.

• In haskell:

• Both functions have a direct encoding in Coq.

(similarly for isort...)

insertion sort

isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys) | x<=y = x:y:ys
 | otherwise = y:(insert x ys)

Fixpoint insert (x:Z) (l:list Z) {struct l} : list Z :=
 match l with
 nil => cons x (@nil Z)
 | cons h t =>
 match Z_lt_ge_dec x h with
 left _ => cons x (cons h t)
 | right _ => cons h (insert x t)
 end
 end.

72

• The theorem we want to prove is:

• We will certainly need auxiliary lemmas... Let us make a prospective proof attempt:

• It is now clear what are the needed lemmas:
- insert_Sorted - relating Sorted and insert;

- insert_Perm - relating Perm, cons and insert.

correctness proof

Theorem isort_correct : forall (l l':list Z),
 l'=isort l -> Perm l l' /\ Sorted l'.
induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl in H.
rewrite H.
1 subgoal
 a : Z
 l : list Z
 IHl : forall l' : list Z, l' = isort l -> Perm l l' /\ Sorted l'
 l' : list Z
 H : l' = insert a (isort l)
 ============================
 Perm (a :: l) (insert a (isort l)) /\ Sorted (insert a (isort l))

Theorem isort_correct : forall (l l':list Z),
 l'=isort l -> Perm l l' /\ Sorted l'.

73

Auxiliary Lemmas

Lemma insert_Sorted : forall x l, Sorted l -> Sorted (insert x l).
Proof.
intros x l H; elim H; simpl; auto with zarith.
intro z; elim (Z_lt_ge_dec x z); intros.
auto with zarith.
auto with zarith.
intros z1 z2 l0 H0 H1.
elim (Z_lt_ge_dec x z2); elim (Z_lt_ge_dec x z1); auto with zarith.
Qed.

Lemma insert_Perm : forall x l, Perm (x::l) (insert x l).
Proof.
unfold Perm; induction l.
simpl; auto with zarith.
simpl insert; elim (Z_lt_ge_dec x a); auto with zarith.
intros; rewrite count_cons_cons.
pattern (x::l); simpl count; elim (Z_eq_dec z a); intros.
rewrite IHl; reflexivity.
apply IHl.
Qed.

74

• Now we can conclude the proof of correctness...

Correctness Theorem

Theorem isort_correct : forall (l l':list Z),
 l'=isort l -> Perm l l' /\ Sorted l'.
induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl in H.
rewrite H.
elim (IHl (isort l)); intros; split.
apply Perm_trans with (a::isort l).
unfold Perm; intro z; simpl; elim (Z_eq_dec z a); intros; auto with zarith.
apply insert_Perm.
apply insert_Sorted; auto.
Qed.

75

• We have proved the correctness of “insertion sort”. What about other sorting
algorithms like “merge sort” or “quick sort”.

• From the point of view of Coq, they are certainly more challenging (and interesting)

• their structure no longer follow a direct “inductive” argument;

• we will need some auxiliary results...

• The first challenge is to encode the functions. E.g. for the merge sort, we need to
encode in Coq the following programs:

(here, the Function command is a big help!!!)

• Nice projects :-)

Other sorting algorithms...

merge [] l = l
merge l [] = l
merge (x:xs) (y:ys) | x<=y = x:merge xs (y:ys)
 | otherwise = y:merge (x:xs) ys

split [] = ([],[])
split (x:xs) = let (a,b)=split xs in (x:b,a)

merge_sort [] = []
merge_sort [x] = [x]
merge_sort l = let (a,b) = split l
 in merge (merge_sort a) (merge_sort b)

76

