
VisualLISA

Visual Attribute Grammars

Nuno Oliveira

University of Minho
Informatics Department

Braga,Portugal

Abstract. This document reports the work concerned with the develop-
ment of an environment for visual attribute grammars, named VisualLISA.
Its main purpose is to be used as a front-end for LISA(a compiler gen-
erator tool based on textual attribute grammars), in order to ease and
enrich the way language engineers design their attribute grammars.

This environment is generated from the specification of a visual language,
and ensures the possibility to draw, syntactically and semantically cor-
rect, attribute grammars, in an integrated editor. The visual specification
of the attribute grammar is production-oriented and incremental. Se-
mantic rules are drawn, together or separately, over the syntactic layout
(in the form of a tree) of the respective production. Attribute declara-
tions are collected and gathered from tree nodes. Moreover, the editor
translates the drawn attribute grammar directly into LISA notation (gen-
erating LISA textual specifications) or alternatively into a universal XML
representation designed to support Attribute Grammar specifications.

Special focus will be devoted to specification of visual languages and
consequent automatic and systematic generation of visual programming
environments. The visual programming environments generator, DEViL,
will be introduced and its use explained.

Key words: Attribute Grammars, LISA, Compiler Generator, Visual
Programming Environment Generation, Visual Languages, Code Gener-
ation, Intermediate Representation, DEViL, VisualLISA

1 Introduction

Attribute Grammars (AGs) [7] are a well-known and powerful artifact to create
language processors. But AG definitions are not as easy as people would de-
sire. The difficulties of choosing the appropriate attributes and conceiving the
attribute evaluation rules are significant, but the effort required to write the
complete specification is enormous. Normally is easier to sketch up on paper the
complex dependencies among symbols, attributes and functions in an AG. This
strategy allows the developers to think abstract and syntax-independent.

However, after being sketched the productions and the semantic dependencies
between the attributes, they are not more than gibberish on paper. The person

2 Nuno Oliveira, University of Minho

who draw it must go through the translation of the (sometimes imperceptible)
pencil strokes into the concrete syntax of the compiler generator.

These problems make the developers avoid the usage of AGs and go through
non systematic ways to achieve the same results. This fact lead gEPL team, from
University of Minho, some time ago, to propose a Visual Language (VL) as a
meta-language to write AGs.

VLs are not easy to define, because there is not a consensual definition. The
notion of VL is deeply connected with the notion of Visual Programming Lan-
guage (VPL). In fact, it can be established the following relation between them:
VPL ⊂ VL

VLs or VPLs aim at offering the possibility of solving complex problems by
describing their properties or their behavior through graphical/iconic defini-
tions [3]. Icons are used to be composed in a space with two or more dimensions,
defining sentences that are formally accepted by parsers, where shape, color and
relative position of the icons are relevant issues. Thus, a good definition for VPL
can be found in [12]:

A Visual Programming Language defines a set of sentences formed
by the spatial disposition of graphical objects with a very well defined
semantics.

There are many types of VL. Examples cover a large range from Musical
Scores, Traffic Signals, Modeling Languages (Entity-Relation Diagram, Class-
Diagrams, Use Cases Diagrams, State-Machines) until programming environ-
ments like graph transformations, ETL tools, Grafcet for digital equipment con-
trol and robotics, Prograph, etc.

The literature about VL is also very large and distinct addressing several
areas in this topic. Regarding these differences, to classify the various articles,
other documents, projects and prototypes in VL area a classification system was
developed.

A visual language implies the existence of a Visual Programming Environ-
ment (VPE) [6, 2], because its absence makes the language useless. Commonly,
a visual programming environment consists in an editor, enriched by several
tools for analyzing, processing and transforming the drawings resultant from
the association of the VL’s icons.

LISA [10, 8, 9] is a compiler generator based on attribute grammars, de-
veloped at University of Maribor. It generates a compiler from a textual AG
specification, and also other graphical tools as can be seen in [5]. The fact of
generating many graphical and visualization tools makes the textual specification
of the AG very rudimental. Moreover, as a textual AG-based compiler generator,
LISA pushes its users into the difficulties raised before. So that, under the bi-
lateral work between Universities of Minho and Maribor, the members of the
researching group intended to enhance the front-end of LISA by developing a
VPE. The concretization of this work led to a project for the master’s UCE-15,
whose objectives are the development of a VPE, named VisualLISA, that assures
the possibility of specifying visually AGs, and to translate it into LISA textual

VisualLISA: Visual Attribute Grammars 3

specifications or alternatively into a universal XML representation designed to
support AG specifications. The main objective of this environment is to diminish
the difficulties regarding the specification of AGs not only in LISA but also for
other similar systems.

This paper is concerned with the development of VisualLISA, emphasizing
the methodologies of work adopted for its development resorting to automatic
VPE generators. Moreover it aims at the definition of what should be done and
what is achieved as final outcome. For the sake of space, the detailed information
about the specification and the implementation are not presented. That informa-
tion can be found in the technical report that documents the entire project [11].

The remainder of this document has the following outline: in Sect. 2 the
architecture and features of VisualLISA are exposed. In Sect. 3 the syntax for
the new VL is defined along with its semantic constraints and dynamic semantics.
In order to clearly produce the output textual notations, an overview of LISA’s
syntax and the definition of a universal XML notation that abstractly support
AGs structures will be specified. Then, in Sect. 4 is described the implementation
of VisualLISA, using a systematic approach. In Sect. 5 the system is presented
resorting to images. Finally, conclusions about the system and the work are
drawn in Sect. 6.

2 VisualLISA, Problem Statement

Regarding the literature, there are no tools to specify AGs by means of visual
composition of icons, that also generate code compliant with traditional compiler
generators. So that, VisualLISA is a completely new approach for AG specifica-
tion.

The arquitecture of VisualLISA complements the architecture of the associ-
ated AG-based compiler generator, since it is a front-end for such tools.

Figure 1 shows that the component labeled as VisualLISA environment,
is composed by an editor and by mechanisms used to validate syntactic and
semantically the model sketched up on the editor.

The syntax validation restricts some spatial combinations among the icons
of the language’s alphabet. This validation is a task to be performed at edition-
time, originating a syntax-directed editor. The semantic validation deals with
syntactic restrictions that can not be expressed by the productions, and covers
a set of constraints concerning the AG definitions.

Besides that, VisualLISA generates code from the drawings. As told before,
the target code will be LISA or XML. The generated LISA specification can then
be passed straightforward to LISA system, and finally be used to create the
compiler for the language defined with VisualLISA. With this approach, the
programming environment emulates the two-steped behavior of the language
designers referred before — i) sketch up the attribute dependencies w.r.t. the
semantic rules and productions, and ii) mental effort to translate the drawings
into LISA notation — into a single step effort.

4 Nuno Oliveira, University of Minho

Fig. 1. Architecture of VisualLISA

The use of XML as the generated code gives to the system more versatility
because it allows a functional separation between the visual environment and
the compiler generator tool. Besides that separation of concerns, it transforms
VisualLISA in a VisualAG — visual programming environment for AGs inde-
pendent of the target compiler generator.

The development of VisualLISA must be systematic and based on the tra-
ditional compiler tasks [1]. This implies the use of an automatic environment
generator tool.

Through out this document, references to the environment and to its un-
derlying language will be used. Henceforth the following words will be used: i)
VisualLISA to refer to the visual environment and ii) VLISA to identify the
visual language underlying the environment.

3 VisualLISA, Formal Specification

The specification of VisualLISA lies on three main issues: i) the definition of
the underlying language’s syntax; ii) its semantics and iii) the description of
the textual specifications into which the iconic compositions will be translated.
This section addresses this topic, discussing separately each of the three issues.

3.1 Syntax

An AG can be seen as a decorated tree, and each production as sub-part of it, then
the image required for the representation of a production is a tree, but, for the

VisualLISA: Visual Attribute Grammars 5

VL, that representation must not be fixed. The terminals and nonterminals of the
Righ-Hand Side (RHS) should be connected to the production’s Left-Hand Side
(LHS). Moreover the production should be decorated with attributes. Then con-
nections between terminal or nonterminal symbols and attributes are mandatory
to understand to which symbol the attribute belongs. At the end, the attributes
should be associated to computation rules in order to define their values.

With this summary it was exposed what should be expected from the visual
language in a visual point of view. But, besides it, syntactic constraints need
to be defined. The following sentence defines a syntactic constraint concerning
attributes and terminals: “SC.1 - An intrinsic attribute can only be associated
with a terminal symbol”. Other constraints can be seen in [11].

The Picture Layout Grammar (PLG) formalism [4], is an attribute grammar
to formally specify visual languages. It assumes the existence of pre-defined ter-
minal symbols like text, circle, rectangle and line, which are used to represent,
abstractly, the icons which compose the VL. It uses a set of spatial relation op-
erators which hide the computation of implicit spatial attributes. over(A, B) is
an example of one operator; it relates two symbols vertically, saying that the
second symbol must be above the first. More on this topic can be seen in [12].

This formalism is used to specify the syntax of the VLISA. Listings 1.1 and 1.2
present some parts of the VLISA specification. Notice how the syntactic constraint
(SC.1) highlighted before was specified with PLG.

Listing 1.1. Syntax Specification -
Part 1

1 AG → c o n t a i n s (VIEW, ROOT)
2
3 VIEW → l a b e l s (text , rectangle)
4
5 ROOT → l e f t t o (PRODS, SPECS)
6
7 SPECS → c o n t a i n s (VIEW,
8 o v e r (LEXEMES, USER FUNCS))
9

10 PRODS → g r o u p o f (SEMPROD)
11
12 SEMPROD → c o n t a i n s (VIEW, l e f t t o (
13 g r o u p o f (g r o u p o f (RULE ELEM)) ,
14 g r o u p o f (AG ELEM)))
15
16 AG ELEM → LEFT SYMBOL
17 | NON TERMINAL
18 | TERMINAL
19 | SYNT ATTRIBUTE
20 | INH ATTRIBUTE
21 | TREE BRANCH
22 | INT ATTRIBUTE
23 | SYNT CONNECTION
24 | INH CONNECTION
25 | INT CONNECTION

Listing 1.2. Syntax Specification -
Part 2

1 RULE ELEM → FUNCTION
2 | IDENTITY
3 | FUNCTION ARG
4 | FUNCTION OUT
5
6 TERMINAL → l a b e l s (text , rectangle)
7
8 INT ATTRIBUTE → l a b e l s (text , tr iangle)
9

10 SC . 1 :
11 INT CONNECTION → p o i n t s f r o m (
12 p o i n t s t o (dash l ine ,
13 ∼INT ATTRIBUTE) ,
14 ∼TERMINAL)
15
16 FUNCTION → o v e r (rectangle , text)
17
18 FUNCTION OUT → p o i n t s f r o m (
19 p o i n t s t o (arrow ,
20 ∼INH ATTRIBUTE) ,
21 ∼FUNCTION)
22 | p o i n t s f r o m (
23 p o i n t s t o (arrow ,
24 ∼SYNT ATTRIBUTE) ,
25 ∼FUNCTION)

Some nonterminals were specified resorting to the PLG operators labels and
points to/from, which define final derivation rules. This means that those non-
terminal symbols derive in a terminal, i.e., an icon of the VL. Figure 2 shows the
concrete and connector icons used for VLISA specification.

LeftSymbol is the LHS of a production, while NonTerminal and Terminal are
used to compose the RHS. The second line of icons present the several classes
of attributes. Function, along with Identity are used to compute the attribute
values. The other lines connect the concrete symbols rigging up the AG.

6 Nuno Oliveira, University of Minho

LeftSymbol NonTerminal Terminal

SyntAttribute InhAttribute IntrinsicValueAttribute

Function SyntConnection InhConnection

IntrinsicValueConnection FunctionArg FunctionOut

Identity TreeBranch

Fig. 2. The Icons for VLISA

3.2 Semantics

In order to correctly specify an AG, many semantic constraints must be held. The
semantic constraints (or contextual conditions) of a programming language are
directly related with attributes and their values. These values can be evaluated
or inferred from the specific context in which symbols occur in a sentence.

For the sake of space, the set of attributes of each symbol X of the grammar,
A(X) (the set of attributes of X), is not presented. However, the most important
constraints concerning the semantic correctness of VLISA, and AGs in general, are
listed and defined in natural language.

The constraints for VLISA can be separated into two major groups. One
concerning the syntactic rules and another the respective computation rules.
The former will be referred to as Production Constraints (PC), and the latter
will be referred to as Computation Rules Constraints (CRC).

Apropos of the productions the following constraints were elicited:

PC.1 The number of LHS symbols in a production must be one;
PC.2 Every NonTerminal and Terminal symbol on a production must be con-

nected only once to a the LHSby a TreeBranch;
PC.3 Every InhAttribute or SyntAttribute on a production must be attached to

a NonTerminal or to the LHS by a unique InhConnection or SyntConnection,
respectively.

PC.4 Every IntrinsicValueAttribute on a production must be attached to a
Terminal by a unique IntrinsicValueConnection.

PC.5 Every NonTerminal specified on the grammar must be root of one pro-
duction.

PC.6 One occurrence of X.s, where s ∈ AS(X) (the set of synthesized at-
tributes of symbol X)in a production must be coherent in the sense that
s ∈ AS(X) in any occurrence of X.s in other productions.

VisualLISA: Visual Attribute Grammars 7

PC.7 One occurrence of X.i, where i ∈ AI(X) (the set of inherited attributes
of symbol X) in a production must be coherent in the sense that i ∈ AI(X)
in any occurrence of X.i in other productions.

PC.8 The data type of an attribute X.a in a production, must be the same in
any production that X.a occurs.

In attribute grammars, computation rules are the assignment of values to
the attributes of the production symbols. In order to fully understand some
constraints below, it is needed to recall the formal definition of In and Out
attributes of a production described in [11].

CRC.1 Only Out attributes can be the target of an Identity or a FunctionOut
connection;

CRC.2 Only In attributes can be the source of an Identity or a FunctionArg
connections;

CRC.3 If there are some out attributes declared in a Semprod, then, at least
one rule must exist for that production;

CRC.4 The type of the target attribute and the return type of a function, when
they are connected by a FunctionOut symbol, must match;

CRC.5 The type of the target and the source attribute of an Identity connec-
tion, must match.

CRC.6 A Function symbol must be the source of one and exactly one Func-
tionOut connection symbol;

CRC.7 The number of arguments of a Function must match the number of
arguments used on Function’s operation.

3.3 Translation

Besides the obvious objective of specifying visual AGs, VisualLISA has, as im-
portant objective, the translation of iconic AG into textual notations. LISA and
XML are the target output code. The translation (Ls → τ → Lt) is the transfor-
mation of a source language into a target language. τ is a mapping between the
productions of the Ls (VLISA) and the fragments of Lt (LISA and XML). These
fragments will be specified in this sub-section.

A Context Free Grammar (CFG) is a formal and robust way of representing
LISA specifications’ structure. Listing 1.3 presents that CFG, using EBNF notation.

Listing 1.3. LISA structure in a CFG.
1 p1 : LisaML → language id { Body }
2 p2 : Body → Lexicon Att r ibute s Product ions Methods
3 p3 : Lexicon → lexicon { LexBody }
4 p4 : LexBody → (regName regExp)?
5 p5 : Att r ibute s → attributes (type symbol . attName ;) ?
6 p6 : Product ions → rule id { Der ivat ion } ;
7 p7 : Der ivat ion → symbol : := Symbs compute { SemOperations }
8 p8 : Symbs → symbol+
9 p9 : | epsilon

10 p10 : SemOperations → symbol . attName = Operation ;
11 p11 : Operation → . . .
12 p12 : Methods → method id { j avaDec la ra t i on s }

8 Nuno Oliveira, University of Minho

Reserved words, written in bold, indicate, in its majority, the beginning of
important fragments. The fact of separating the structure in smaller chunks,
makes the process of generating code easier and modular.

The second part of this section concerns with the explanation of an XML
notation, universal enough, to support the generic and abstract structure of an
AG.

The use of XML has been growing due to several reasons, but the most high-
lighted is its portability and readability. Therefore it is being used in several
areas, from healthcare to astronomy, creating standard notations. Regarding
the literature, there is not an XML standard notation for AGs.

So that, XAGra was defined. Assembling all the knowledge about AGs with the
one acquired from the study of LISA structure, the new dialect was defined by
means of a schema. The whole structure of this schema can be separated into five
big fragments: i) symbols — where the terminal, nonterminal and the start sym-
bols are defined; ii) attributesDecl — where is stored information about the
attributes and the symbols to which they are associated; iii) semanticProds —
where the productions and the semantic rules are declared: in each production,
is defined the LHS, the RHS and the attribute computations in a very modular
way; iv) importations — where the modules or packages necessary to perform
the computations are declared and v) Functions — is the element where the
user declare necessary functions.

A more detailed explanation about these elements, its sub-elements and at-
tributes can be seen in [11].

4 VisualLISA, Implementation

Usually, the development of VPEs is neither a systematic nor an automatic work.
But underlying these environments always lies a VL. Then systematization can
be attained by using traditional compiler development approach; and the au-
tomatization of the environment generation is accomplished by using tools for
the effect.

4.1 Visual Programming Environment Generator

There are some tools that can help on the automatic generation of VPEs and
underlying VLs.

Three of these tools (TIGER1, VLDesk2 and DEViL3) were experimented in
order to choose the most featured and comfortable for VisualLISA’s develop-
ment. For a fair decision, all of the tools were submitted to the development of
a visual language and an environment for visually specify Topic Maps (TM), and
to translate them into customizable textual code.
1 http://tfs.cs.tu-berlin.de/~tigerprj/
2 http://www.scienzemfn.unisa.it/vldesk/
3 http://devil.cs.upb.de/

VisualLISA: Visual Attribute Grammars 9

TIGER generates an editor (an Eclipse plugin) based on a formal graph-
transformation visual language specification. The systematization on the process
of the visual language development is possible, because it imposes a step-by-step
definition of the language components. However this tool don’t have any facility
for translating the models into textual specifications.

VLDesk generates a VPE based on the eXtended Positional Grammars (XPG)
formalism. The several steps of language definitions are supported, achieving the
systematization. It provides tools for all of these tasks. Blends visual with YACC-
based textual specifications, which have to be specified by the user. Moreover is
only supported on Windows operating system.

DEViL generates languages and its environment from an Object-Oriented AG-
based specification. The systematization can be achieved in a very modular and
concern-separeted way. Is flexible, extensible and offers features for structure
reuse. The code generation is a straightforward task. Besides that, it works in
the most popular operating systems and generates stand-alone and very complete
VPEs.

During the experiment, DEViL was the most convincing tool. Despite the
initial difficulties, it revealed to be the most complete compared to the others:
i) runs in the most important operating systems; ii) generates stand-alone and
intuitive VPEs; iii) is extensible in the sense that is not limited to the base func-
tionalities; iv) allows layout reutilization by coupling stuctures; v) the generation
of customizable code is an easy AG-based translation task; vi) the specifications
are easy to maintain and evolve; etc. For these reasons and several others, DEViL
was the chosen tool.

4.2 Step-by-Step Systematic Implementation

After having all the requirements formally specified (Sect. 3) and a VPE generator
chosen, the implementation of VisualLISA is a straightforward work and can be
systematized in four main steps: i) Abstract Syntax Specification; ii) Interaction
and Layout Definition; iii) Semantics Implementation and iv) Code Generation.

Abstract Syntax. The specification of the abstract syntax of VLISA, in DEViL,
must follow an object-oriented AG specific notation. This means that the nonter-
minal symbols of the grammar are defined modularly: the symbols can be seen
as classes and the attributes of the symbols as class attributes.

The syntax of the visual language is determined by the relations among their
symbols. Therefore, for a higher level representation of the language’s syntax, a
class diagram can be used. This diagram should meet the structure of the PLG
model in Listings 1.1 and 1.2. The final specification for the language is then an
easy process of converting the diagram into DEViL-compliant notation. Figure 3
shows a small example of the diagram and the resultant specification.

There are two types of classes in this notation: concrete and abstract. The
concrete classes are used to produce an Abstract Syntax Tree (AST), which is
manipulated in the other steps of the environment implementation. The abstract

10 Nuno Oliveira, University of Minho

1CLASS Root {
2name : VAL VLString ;
3semprods : SUB Semprod ∗ ;
4de f s : SUB De f i n i t i o n s ! ;
5l i b r a r y : SUB Library ? ;
6}

Fig. 3. Class Diagram and Respective DEViL Notation

classes are used to group concrete classes with the purpose of defining robust
syntactic constraints.

In order to make possible the specification of separated computation rules
over the same syntactic layout of a production, was used the derived construc-
tor [14]. It couples the syntactic structure of a given symbol — for VLISA the
symbol used was the one used to model a production: Semprod. In practice, it
means that the layout defined for a production is replicated whenever a compu-
tation rule is defined, maintaining both models synchronized all the time.

Interaction and Layout. After the abstract structure of the language is de-
fined, it is needed to give it a layout and make it usable. This concerns the second
step of the VPE generation. This implementation, in DEViL, consists in the defi-
nition of views. A view can be seen as a window with a dock and a specification
area, where a part or the whole language is used to specify the drawing.

In a first moment the buttons of the dock are defined. They are used to
create the icons in the specifications area. In a second moment is defined the
visual layout of the concrete symbols of the grammar. Figure 4 shows parts of
view definitions and the respective results created in the editor.

1 VIEW rootView ROOT Root{
2 BUTTON IMAGE ”img : : btnProd”
3 INSERTS Semprod
4 INFO ”Production ” ;
5 }

1SYMBOL pview NonTerminal
2INHERITS VPForm
3COMPUTE
4SYNT. drawing =
5ADDROF(ntDrawing) ;
6END;

Fig. 4. Parts of View Definitions and Respective Visual Outcomes

The code on the left side of Fig. 4 is a chain of simple instructions used to
declare a button and assign its behavior. The default behavior is the insertion of
a symbol of the grammar in the specification area, but it can be extended. The
bluish rectangular image represents the button resultant from that code.

Symbol NonTerminal is represented by the orange oval in Fig. 4. The code on
the right reveals the semantic computation to define the shape of that symbol.

VisualLISA: Visual Attribute Grammars 11

Shape and other visual aspects of the tree-grammar symbols are automatically
defined associating them, by inheritance, visual patterns.

“Visual patterns are reusable implementations of common representation con-
cepts like lists, sets, line connections and forms” [13]. Since these patterns are
already implemented, the effort to define the layout of the visual language is the
same of understanding all the patterns and know how and when to apply them.

Semantics. As long as VLISA is defined by an AG, the contextual conditions
could be verified using the traditional approach. DEViL is very flexible and offers
at least two different ways, besides the traditional one, for implementation of
the semantic constraints.

One of these approaches is based on the events that are risen whenever an
edition (like creation or deletion of a symbol) occurs. These events are always
associated to a symbol, i.e., a context in the tree generated by DEViL. This makes
possible the change of the normal behavior of the event’s action, in order to verify,
in the given context, several conditions. However, more complex verifications can
not be implemented using this approach.

The other approach is completely focused on the contexts of the gener-
ated tree. DEViL offers a tree-walker, named addCheck, that traverses the tree-
grammar and for a given context — a symbol of the tree — executes a verification
code, returning an error whenever it occurs. With this approach is easy to define
data-structures that help on the verification process.

The latter approach is the one advised to use. Using it may seem that seman-
tics module is tool-dependent, but it is not. The approach is very similar to the
generic AG approach, but instead attributes and semantic rules, it uses variables
which are assigned by the result of queries on the tree of the model.

Listing 1.4 shows the code for the implementation of the constraint PC.1
defined before.

Listing 1.4. Implementation of Constraint PC.1
1 che cku t i l : : addCheck Semprod {
2 set n [l l e ng th [c : : g e tL i s t {$obj . grammarElements .CHILDREN[LeftSymbol] }]]
3 set symbName [c : : get {$obj . name .VALUE}]
4 i f { $n == 0 } {
5 return ”Production ’$symbName ’ must have one Root symbol ! ”
6 } e l s e i f {$n > 1} {
7 return ”Production ’$symbName ’ must have only one Root symbol ! ”
8 }
9 return ””

10 }

A great part of the constraints defined in Sect. 3.2 were verified resorting to
Identifier Tables, which are very used for that purpose in language processing
area.

Code Generation. The last step of implementation concerns with the transla-
tion of the visual AG into LISA or XAGra notation. This task, as usually in lan-
guage processing, can be done using the AG underlying the visual language. DEViL
does not offer other ways, besides that, to attain it. Instead presents i) powerful
mechanisms to ease the semantic rules definition; ii) facilities of extending the

12 Nuno Oliveira, University of Minho

semantic rules by using functions and iii) template language incorporation to
structure out the output code.

The use of templates is not mandatory. But as can be seen by the formal
definition of LISA and XAGra notation (Sect 3.3), both of them have static parts
which do not vary from specification to specification. Hence templates are very
handy here. But even with templates (which are converted into functions), the
translation of the visual AG into text is not a pacific task. Some problems arise
from the fact that there is not a notion of order in a visual specification.

For VLISA, is important to know the order of the RHS symbols. On one hand
that order could be achieved by relying on the temporal order of the creation of
symbols; on the other hand the same order could be retrieved from the position
of these symbols, but only regarding their alignment over the X-axe. Both were
possible to do, but time is abstract and invisible, then the order would not be
perceptible in the drawing, only in the textual specification. Instead, the position
is a visual aspect, therefore it could be apprehended from the drawing. Based on
this approach, several other problems, like numbering repeated symbols in the
production definition, were considered and solved.

To complete the translation it is needed to define the name of the processor
— this name will be associated with a button in the final editor — and to specify
the process. Figure 5 shows a small part of the code generated for LISA and for
XAGra.

a) b)

Fig. 5. Example of small parts of the generation of a) LISA and b) XAGra

5 VisualLISA, The Environment

With so short specifications distributed by several files, DEViL generates a very
intuitive and complete programming environment. In Figure 6 can be seen the
main window with three opened sub-windows. The main window is automatically
generated. It offers functionalities like save and load, cut and paste, undo and
redo, export to several types of files from HTML to PNG, zoom, and many
others. Yet it can be extended to support other functionalities.

VisualLISA: Visual Attribute Grammars 13

Fig. 6. VisualLISA Environment

14 Nuno Oliveira, University of Minho

The sub-windows define the views of VLISA. In each window lies a dock with
buttons and the specification area, where some icons are already composed. No-
tice the replication of structures in the two topmost windows. Like specified
in the requirements, the computation rules reuse the layout of the respective
production, avoiding the necessity of recreating such structure and possible con-
sistency problems. Figure 7 shows an example of an highlighted computation
rule and Fig. 8 presents the global definitions area. In Fig. 7, to define the se-
mantic rule it was taken the base layout of the production, and was incremented
with the icons that syntactical and semantically define a semantic rule.

Fig. 7. Computation Rule

Fig. 8. Global Definitions

VisualLISA: Visual Attribute Grammars 15

The star-shaped blue symbol represents a function or operation that takes
two arguments. The arguments are attribute values, and are represented as red
dashed arrows in the figure. The operation assigns a value to an attribute by
using the blue full arrow. The mathematical operation is set in the form that
appears when clicking twice on the function symbol. That operation can use
simple functions, operators, or even user defined functions. The latter must be
defined in the global definitions area of the visual language shown in Fig. 8. Here
it is possible to define new lexemes, data-types or even user-defined functions,
and modules or packages to import.

6 Conclusion

In the project reported in this paper was developed a completely new concept
on the specification of attribute grammars: a new visual language (VLISA) to
attribute grammars specification was defined and a visual programming envi-
ronment (VisualLISA) was generated taking advantage from the usage of the
DEViL tool.

A new XML dialect, called XAGra, was defined to make possible the translation
of the visual AG specification into an abstract representation of an AG.

Moreover, from this work, some lessons were learnt. Firstly it was confirmed
that using automatic VPE generator tools, a complete and usable visual envi-
ronment can be developed, resorting to small and maintainable specifications
separated by several files. Secondly, regarding the fact that developing a visual
environment has always underlying the specification of a visual language, it is
possible to resort to a systematic approach based on the compilers construction
to specify and develop the complete environment. This approach was proposed
and followed. It is characterized in four main steps: Abstract Syntax Specifi-
cation; Interaction and Layout Definition; Semantics Implementation and Code
Generation.

At the end, the environment development was completed meeting all the
requirements elicited. VisualLISA allows the visual specification of attribute
grammars and its translation into LISA textual notation. Optionally, it allows
the translation into XAGra, what opens, in different ways, the purposes of
VisualLISA’s usage, and therefore originates new work around this tool.

During the development of VisualLISA, several talks about underlying issues
to different audiences were given. An intermediate and simple usability test,
resorting to a group of students, was made, in order to gather information to
improve VisualLISA. Also a web-site4 was created to spread widely the ideas
and to distribute the software versions as well as the technical report of this
work and other documentation published.

4 www.di.uminho.pt/~gepl/VisualLISA/

16 Nuno Oliveira, University of Minho

6.1 Future Work

A complete usability test is lacking for this tool. In the future is important
to submit VisualLISA through an usability test, to see how well it does with
cognitive dimensions. Depending on the results of these tests, improvements
should be made.

The fact of generating XAGra, allows the use of VisualLISA to specify AGs
for other compiler generators rather than LISA. This implies the creation of
translators that take XAGra as input, and transform it into the target com-
piler notation. The other way around is also a possibility. The latter makes of
VisualLISA a visualization tool to help on AG comprehension.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques and
Tools. aw, 1986.

[2] Gennaro Costagliola, Genoveffa Tortora, Sergio Orefice, and Andrea De Lucia.
Automatic generation of visual programming environments. Computer, 28(3):56–
66, 1995.

[3] Luis Miguel da Sivla Dias. Linguagens visuais de programação - paradigmas e am-
bientes. Master’s thesis, Universidade do Minho, Escola de Engenharia, December
1996.

[4] Eric J. Golin. A Method for the Specification and Parsing of Visual Languages.
PhD thesis, Brown University, Department of Computer Science, Providence, RI,
USA, May 1991.

[5] Pedro Rangel Henriques, M. J. V. Pereira, Marjan. Mernik, Mitja. Lenič, J. Gray,
and H. Wu. Automatic generation of language-based tools using the lisa system.
Software, IEE Proceedings -, 152(2):54–69, 2005.

[6] Uwe Kastens and Carsten Schmidt. Vl-eli: A generator for visual languages -
system demonstration. Electr. Notes Theor. Comput. Sci., 65(3), 2002.

[7] Donald E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, June 1968.

[8] Marjan Mernik, Nikolaj Korbar, and Viljem Žumer. Lisa: a tool for automatic
language implementation. SIGPLAN Not., 30(4):71–79, 1995.

[9] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer. A reusable
object-oriented approach to formal specifications of programming languages.
L’Object, 4:273–306, 1998.

[10] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer. Lisa: An
interactive environment for programming language development. Compiler Con-
struction, pages 1–4, 2002.

[11] Nuno Oliveira, M. J. V. Pereira, Daniela da Cruz, and Pedro Rangel Henriques.
Visuallisa. Technical report, Universidade do Minho, February 2009. (To be
published).

[12] Jorge Gustavo Rocha. Especificação de linguagens visuais de programação. Mas-
ter’s thesis, Universidade do Minho, Departamento de Informática, June 1995.

[13] Carsten Schmidt, Uwe Kastens, and Bastian Cramer. Using devil for implemen-
tation of domain-specific visual languages, 2006.

[14] Carsten Schmidt, Uwe Kastens, and Bastian Cramer. Specifying coupled struc-
tures for implementation of visual languages, 2007.

