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A B S T R A C T

Computer vision is a vast knowledge subject responsible for traducing digital images and
videos into a higher level of understandable information. Image recognition is one of the
several tasks that are inserted in this subject and it can be subdivided in object recognition
(also called as object classification), segmentation, identification and detection.

Some of the available alternatives for image recognition are based on Machine Learning
(ML) approaches. Deep Learning (DL) is a branch of ML that became very popular in the
last years due to its success in previously considered hard tasks. The lack of large amounts
of data and efficient computational resources a few years ago, were a barrier for the expan-
sion of DL. However, thanks to the current easy data access and due to development of
more powerful computational resources, including CPU and GPU too, the attention turned
back on, and it became easier and faster to train a model than can distinguish different
types of classes with a very low error rate. One interesting fact about DL is its ability to
automatically learn from data and understand the most differentiable features of it.

From the point of view of the industry, many artificial vision inspection lines still do their
jobs relying on traditional computer vision methods/algorithms. Yet, with more complex
domains, for example like texture patterns, things can get more difficult. This is where DL
comes in.

This document begins with an introduction of DL for artificial vision. It starts by ad-
dressing the theoretical fundamentals of DL for image recognition and then focuses on the
general aspects of Convolutional Neural Networks (CNN). Next, are reviewed the state of
the art network configurations that stood out in recently.

A high-level toolkit for image recognition was created to simplify the whole process of
building DL models, from the data pre-processing to the trained model testing phase. It
allowed to easily prepare a set of experiences that address some of the common practices
used on CNNs and highlight the power of DL on image recognition related tasks.

This dissertation was developed under a business environment on a artificial vision com-
pany called Neadvance, Machine Vision, SA. The Neadvance, Machine Vision, SA is also
interested in researching the new trends related to DL for image recognition in order to
know how to apply them on their projects since it opens a new range of challenging oppor-
tunities.
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R E S U M O

A visão por computador é uma área vasta de conhecimmento responsável por traduzir
imagens e vı́deos digitais para um nı́vel mais alto de informação compreensı́vel. O re-
conhecimento de imagem é uma das várias tarefas que está inserida nesta área e pode
ser sub-dividida em reconhecimento de objectos (também designada por classificação de
objectos), segmentação, identificação e detecção.

Algumas das alternativas disponı́veis para reconhecimento são baseadas em abordagens
de ML. O DL é um ramo de ML e tornou-se muito popular nos últimos anos devido ao seu
sucesso em tarefas consideradas difı́ceis, até ao momento. A falta de grande quantidade
de dados e de recursos computacionais eficientes há uns anos atrás, foram uma barreira
para a expansão do DL. Contudo, graças à actual facilidade de acesso a dados e devido ao
desenvolvimento de recursos computacionais mais potentes, incluindo CPU e GPU também,
a atenção à volta do tema voltou a crescer, e tornou-se mais fácil e mais rápido treinar um
modelo que consegue distinguir diferentes tipos de classes com uma taxa de erro baixa. Um
facto interessante sobre o DL, é a sua capacidade para aprender dos dados e compreender
as suas caracterı́sticas mais diferenciadoras.

Do ponto de vista da indústria, muitas linhas de inspecção via visão artifical ainda fazem
o seu trabalho através de métodos/algoritmos tradicionais de visão por computador. To-
davia, com domı́nios mais complexos, como por exemplo padrões de texturas, as coisas
podem tornar-se mais difı́ceis. É aı́ onde entra o DL.

Este documento inicia com uma introdução ao DL para visão artificial. Começa por
abordar os fundamentos teóricos de DL para reconhecimento de imagem e de seguida foca-
se em aspectos gerais das Convolutional Neural Network (CNN)s. Depois, são revistas as
configurações estado da arte das arquitecturas de rede que se destacaram recentemente.

Foi criado um conjunto de ferramentas para simplificar todo o processo de construção
de modelos de DL, desde o pré-processamento dos dados até à fase de testes do modelo
treinado. Este permitiu ainda preparar facilmente uma série de experiências que abordam
algumas das práticas comuns usadas nas CNN e destacar o poder do DL em tarefas rela-
cionadas com reconhecimento de imagem.

Esta dissertação foi desenvolvida sob ambiente empresarial numa empresa de visão arti-
ficial chamada Neadvance, Machine Vision, SA. A Neadvance, Machine Vision, SA também
está interessada em investigar as novas tendências relacionadas com o DL de forma a saber
como aplicá-las nos seus projectos, uma vez que lhe possibilita uma nova gama de desafios.
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I N T R O D U C T I O N

1.1 context

Computer vision is such a vast knowledge subject responsible for traducing digital images
and videos into a higher level of understandable information. In it, are inserted different
kind of tasks just like image recognition in the form of image classification, segmentation,
identification and detection. Image classification is a classic computer vision problem and
consists into assign a category label to an image. Depending on the approach or in the
complexity of the problem, the assignment process can be more or less accurate.

Image classification has a wide range of applications in real world scenarios. For instance,
many industries have inspection lines that rely on artificial vision solutions in order to
guarantee that products are free of defects or without any worrisome issue. The efficiency
of the inspection line is directly influenced by the time it needs to inspect an object and by
its error rate. If the inspection takes too much time analyzing each object, less units will
be inspected per time unit. Also, if many defective objects end up not being discarded it
may require constant human intervention to assert about the status of the object. Both of
these situations result in a loss to the manufacturer. So, in this context, having a reliable
and balanced system is crucial for industries.

Some of the available alternatives for image recognition are based on machine learning
approaches. Deep learning is a branch of machine learning and has been successfully ap-
plied in considered very hard tasks so far. In this sense, it stands as a good choice for image
recognition essentially due to its robustness, even in complicated domains with a lot of data
variance. Deep learning methods learn from data instead of rule based programming. Still,
the same CNN architecture can deal with many distinct problems. However, according to
what was mentioned before, it is also important to know how to configure a balanced deep
neural network with the view to build a system that simultaneously has a high success rate
and it is computationally efficient.

So, the process of building a custom CNN requires some theoretical fundamentals about
their behavior and about which parameters can be tuned. In this context, this dissertation
presents an introduction to deep learning on image recognition by focusing on CNNs. The
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1.2. Motivation 2

state of the art network architectures are a good reference for it since they were meant for
large scale challenges. The same way those concepts can be adapted on less complex but
demanding tasks that require a high level of accuracy as well.

1.2 motivation

The hype around deep learning is huge lately and new advances are constantly emerging.
The deep learning generalization capabilities makes it very efficient and robust for a large
range of tasks and domains. Therefore, this is a subject with a lot of potential that deserves
to be explored in order to know how to take the most profit from it.

As an artificial vision company, Neadvance, Machine Vision, SA deals with projects re-
lated to image recognition everyday. The introduction of deep learning to their software
means an important step and opens a new range of challenging opportunities. Likewise
the inspection lines scenario, some of the projects are limited by the available processing
time per image and efficiency. Thus, the network configuration stands as a major task to
achieve both.

1.3 objectives

In its core, deep learning is a complex area and the adaptation to it can be time consuming.
So, in the foreground this dissertation pretends to offer a didactic and intuitive introduction
to image recognition through deep learning and CNNs. Secondly, this dissertation is meant
to expose the fundamental theories needed to understand how CNN behave through a set of
experiments. These experiments are also intended to suggest a bunch of common practises
when working with deep learning and show the impact of tuning certain parameters, in
search for a good configuration for them, basically as a trade-off between efficiency and
performance.

Along with this dissertation was developed a high-level abstraction toolkit for image
recognition. The toolkit was designed to be the most plug-and-play experience as possible.
Although it was not planned to have any graphical user interface, following the hints given
to in the command line, the user should be able to build a custom deep neural network,
train it on a specific dataset and test the performance of the trained model with just a few
commands.

1.4 dissertation structure

This document is structured in five chapters.



1.4. Dissertation Structure 3

On the first chapter is introduced the purpose of this master’s thesis by contextualizing
what it is all about. Then are referred the motivations that lead to it and the goals that
meant to be achieved.

The second chapter is divided in three main sections and it presents the state of art of
deep learning for image recognition. The first section starts with a brief historical reference
about how deep learning emerged and what pushed it to the landing it has nowadays.
Then, this section is followed by a theoretical fundamentals section that will be useful
for understanding how deep learning works under image recognition, more specifically
on CNNs. The last section exposes a set of state of the art network architectures and
benchmarks that show the evolution of CNNs performance over the recent years.

On the third chapter is described the common procedures for training and deploying a
deep learning model. In it, are also explained some frequently used operations in order to
improve the model generalization capabilities as well as a few assertations about tunning
specific hyper-parameters. The last section of this chapter is entirely dedicated to the de-
scription of the developed high-level deep learning toolkit. There, are explained the reasons
that motivated the creation of this toolkit. Besides that, it comes with minimalist examples
of how to configure a network architecture, train a dataset on that architecture and test the
trained model on the field.

The fourth chapter presents the test environment. It includes the specifications of the
machine where the experiences were done, the datasets used on the experiences as well
as the chosen deep learning framework. Afterwards it exposes the outcomes for a set of
experiments that derived from some of the statements previously presented on chapter 3.

In the fifth and last chapter are presented not only the conclusions that came out of this
whole dissertation but also a couple of suggestions for future work. These suggestions
consist in an alternative high potential deep learning tasks related to image recognition.
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D E E P L E A R N I N G B A C K G R O U N D

This chapter starts by making a brief contextualization about deep learning in general
through a overview and a historical reference of it. Then will be presented the theoreti-
cal fundamentals needed to understand how to properly configure a deep neural network.
At last, are exposed the state of the art network architectures over the last years as well as
the state of the art benchmarks on well known datasets among image recognition tasks.

Therefore, before diving into deep learning fundamentals, lets make a brief contextual-
ization about what it is, from where did it come from and the reasons that pushed it to the
landing it has nowadays.

Machine learning is a field of artificial intelligence and it stands as an alternative to ruled
based programs by learning from examples. Deep learning is a branch of machine learning
and it is meant to move machine learning closer to the conception of Artificial Intelligence
Buduma and Locascio (2015); Tawfique (2016); Team. A Deep Neural Network (DNN)
can be seen as an extension of a traditional Artificial Neural Network (ANN). DNNs have
application on many distinct domains, as Barker (2016); Wang and Raj (2017); Goodfellow
et al. (2016) mention:

• Internet & Cloud - for image classification, speech recognition, in language transla-
tion/processing, sentiment analysis and recommendations.

• Medicine & Biology - on cancer cells detection, diabetic grading and drug discovery.

• Media & Entertainment - with video captioning/search and real time translation.

• Security & Defense - for face detection, video surveillance, satellite imagery and
fraud detection.

• Autonomous Machines - like self driving cars, that require pedestrian detection, lane
tracking and traffic sign recognition.

Deep learning has being used to solve very complex tasks Goodfellow et al. (2016); Wang
and Raj (2017). As a supervised learning approach, it comes down to train a model with
a known set of data in a given network architecture. After that, the model is deployed in
order to deal with new or unknown data.
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5

Actually, the model consists in a DNN which is a deep ANN. An ANN is mathematical
model composed by many simple connected processors Schmidhuber (2014), called arti-
ficial neurons, that are disposed by layers and capable of learning complex functions all
together Barker (2016). The term ”deep” refers to the number of layers in the network, far
surpassing traditional neural networks, with deep networks having dozens of layers Good-
fellow et al. (2016). DNNs are highly data dependent, however with sufficient examples,
they can infer very complex functions that relate raw input data with the desired outputs
Barker (2016).

In summary, deep learning stands out essentially due to three factors: robustness, gen-
eralization capacity and scalability. The model is able to automatically learn from data the
most important features even in the presence of noise Buduma and Locascio (2015). Also,
the model’s predicting performance tends to improve when trained with more data Barker
(2016).

Figure 1 evidences how deep learning outperforms traditional computer vision algo-
rithms on the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in the
recent years. Because of that, many big companies, such as Nvidia, Microsoft and Facebook,
as well as several universities and start-ups, are investing ways to apply this knowledge on
their businesses and on educational programs Barker (2016); Goodfellow et al. (2016).

Figure 1: Comparison between traditional computer vision methods and deep learning
methods accuracy rate on ImageNet dataset. Image by Huang (2016).

https://developer.nvidia.com/deep-learning
https://www.microsoft.com/en-us/cognitive-toolkit/
https://research.fb.com/category/facebook-ai-research-fair/
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2.1 a brief historical reference

This section is meant to introduce a short historical reference of deep learning through
the years. It isn’t very extended and it is intended to focus just in the most remarkable
achievements.

In 1965, Ivakhnenko and Lapa introduced the first deep-learning-like algorithms using
a simple deep network architecture composed of multiple polynomial activation functions.
The best features were selected using statistical procedures and forward to the following
layer. They used least-squares fitting in which previous layers were fitted independently
from later ones Dettmers (2015b); Goodfellow et al. (2016); Schmidhuber (2014).

Figure 2: First deep neural network architecture trained by Alexey Grigorevich Ivakhnenko
in 1965. Image by Dettmers (2015b).

Fukushima presented the first CNN in 1979, and back then they were already very similar
to the current ones, as they were composed by manifold convolutional and pooling layers.
The error back-propagation was still an obstacle at that time Schmidhuber (2014). The
first practical application of error back-propagation under the context of neural networks,
appeared only in 1989 and enabled handwritten digits recognition on the MNIST dataset
Goodfellow et al. (2016); Dettmers (2015b).

Despite of this success, there were not much investments in neural networks research. In
addition, the financial support for research became even more scarce, particularly, during a
period designated as the AI Winter, marked by the failed promises of artificial intelligence
Kurenkov (2015). Even so, some important advances were made in this period, such as the
development of Long Short-Term Memory (LSTM) for Recurrent Neural Network (RNN)
in 1997 by Hochreiter and Schmidhuber. However in 1995, due to the arrival of Support
Vector Machines (SVM) by Cortes and Vapnik, the new results on deep learning became
mostly unnoticed Goodfellow et al. (2016); Dettmers (2015b).
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The lack of computational resources and large amounts of data also contributed for the
deep learning decay. The computers of that time simply weren’t powerful enough to train
DNNs in an acceptable time. With the development of new and better hardware, including
Graphics Processing Units (GPU), it became possible to accelerate the network training
and DNNs started to slowly rise up again, rivalling against SVMs. Actually, the trade-off
between SVMs and DNNs stands on time and precision. SVMs are much faster but DNNs
can give better classification results on the same data. Besides that, DNNs are able to
keep improving with additional training data, while in the SVMs this improvement is more
limited Goodfellow et al. (2016); Dettmers (2015b).

CNNs gained a special attention on 2012 Schmidhuber (2014). Alex Krizhevsky together
with Ilya Sutskever, and Geoffrey Hinton developed a CNN architecture composed by recti-
fied linear units activation functions and dropout layers for regularization Krizhevsky et al.
(2012). Their network performance on the ILSVRC was outstanding Krizhevsky et al. (2012).
It was a turning point to the adoption of feature learning, in the form of deep learning, in-
stead of feature engineering which is based on handcrafted feature extraction. Since then,
the research and hype around deep learning grew up dramatically and it started to take
over traditional computer vision methods Dettmers (2015b,c); Buduma and Locascio (2015).

2.2 theoretical fundamentals

This sections presents the essential theoretical fundamentals to understand the basics of
deep learning starting from the notion of artificial neuron, moving on to how they can be
assembled in a network, and finally introducing CNNs.

2.2.1 Artificial Neuron

The human brain is a massive network of, approximately, 86 billion neurons Karpathy and
Johnson (2016); Buduma and Locascio (2015). The neuron represents the basic computa-
tional unit of the brain. Neurons inputs come from dendrites, which may be eventually
connected to other neurons. The input signals (xn) are processed all together according to
the strength (or weight, wn) of their connection. Finally, the new generated signal is sent
through the output axon to other neurons dendrites Karpathy and Johnson (2016); Buduma
and Locascio (2015).

Figure 3 has a visual representation of a biological neuron that inspired the creation of
the mathematical model for artificial neurons.

So, an artificial neuron, also known as neuron, is the base element of an ANN. It trans-
forms a set of inputs, (x1, x2, ..., xn), into a single value using a weighted sum, since each
input has a respective weight (w1, w2, ..., wn), plus a bias term (b). At last, the neuron output
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(a)
(b)

Figure 3: Visual representations of a biological and an artificial neuron: (a) biological neu-
ron and (b) artificial neuron mathematical model. Both images by Karpathy and
Johnson (2016).

value is calculated by applying an activation function to the weighted sum, as shown in
Equation 1.

f (x) = σ(
n

∑
i=1

xiwi + b) = σ(x1w1 + x2w2 + ... + xnwn + b) (1)

The most commonly used activation functions are represented on Figure 4. Down below
is a short description about the pros and cons of each one of them.

(a) Sigmoid σ(x) = 1
1+e−x (b) Tanh σ(x) = tanh(x) (c) ReLU σ(x) = max(0, x)

Figure 4: Example of the most commonly used activation functions. (a) Sigmoid; (b) Hyper-
bolic tangent and (c) ReLU (Rectified Linear Unit). All images by Karpathy and
Johnson (2016).

• Sigmoid outputs a value between 0 and 1. It saturates low input values closer to 0
and high input values near to 1. Still, this activation function has the drawback of
not being zero centered, which means that the output will be always positive. So, the
gradient of the on the weights will become all positive or negative, depending on its
signal. This can produce some unstable dynamics when updating the weights by the
gradient Karpathy and Johnson (2016); Buduma and Locascio (2015).
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• Hyperbolic tangent, also know as Tanh, returns a value between −1 and 1. In the
same way as the sigmoid activation function, the Tanh also saturates high and low
input values. The difference is that for low input values the output will tend to −1
and for high inputs it will tend to 1. Once this function is zero-centered, this factor
makes it more preferable than the sigmoid function by the reason enumerated on top
Karpathy and Johnson (2016); Buduma and Locascio (2015).

• ReLU operates like a threshold at zero Karpathy and Johnson (2016). Negative input
values are set to zero while the remaining values are left unchanged. Its computa-
tion simplicity accelerates training convergence considerably Krizhevsky et al. (2012).
These characteristics made it very popular and preferable in most cases. However,
the ReLU definition is fragile and many neurons can irreversibly die during training,
in special, with high learning rates Karpathy and Johnson (2016). Its mathematical
definition is on Equation 2.

• Leaky ReLU is a normal ReLU but with a slightly difference. It is intended to attenu-
ate the dying ReLU problem referenced above. Instead of zero, the branch of negative
input values, produces a small negative output by multiplying the input by a tiny
constant (for example, α = 0.01) Karpathy and Johnson (2016). The mathematical
definition of Leaky ReLU is on Equation 3 and as it was already mentioned, differs
from Equation 2 on the branch related to negative inputs.

σ(x) =

 0 if x < 0

x if x >= 1
(2) σ(x) =

 αx if x < 0

x if x >= 1
(3)

• Softmax is an activation function that converts a set of values into a normalized prob-
ability vector that adds up to 1 Karpathy and Johnson (2016); Buduma and Locascio
(2015). It is usually placed on the networks output layer in order to return a score
or probability that associates a certain input to a specific class. Softmax function is
expressed in Equation 4.

σ(x)j =
exj

∑n
i=1 exn

(4)

When alone, each artificial neuron is very limited but when several neurons are connected
in a network and disposed by layers, they are able to learn and solve complex tasks Barker
(2016).
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2.2.2 Artificial Neural Networks

The term Artificial Neural Network (ANN) is used to characterize a mathematical model
composed by a collection of artificial neurons, that are interlinked in a network by layers,
in order to learn complex data relations collectively Buduma and Locascio (2015).

Feedforward Neural Network (FNN) and Recurrent Neural Network (RNN) stand as two
types of ANNs. FNNs are characterized for being an acyclic graph where the data moves
only forward. On the other hand, on RNNs the information can flow in any direction,
including to the same layer. So, RNNs are an extended representation of FNNs with the
addition of feedback connections. Hafemann (2014); Gravelines (2014); Schmidhuber (2014);
Buduma and Locascio (2015); Goodfellow et al. (2016).

(a)
(b)

Figure 5: Example of two types of artificial neural networks: (a) feed-forward network with
three inputs neurons, two hidden layers (both with four neurons) and an out-
put layer with a single neuron; and (b) recurrent neural net unfolded in a time
sequence. Images by Karpathy and Johnson (2016) and Britz (2015), respectively.

Just like Figure 5(a) suggests, traditional FNN models can be disposed into fully-connected
layers of neurons and the data moves solely forward. In these layers, only neurons between
two layers are fully pairwise connected. So, neurons within a single layer don’t have con-
nections between themselves Karpathy and Johnson (2016).

Traditional FNNs are structured in three sections:

• An input layer that receives the data to be learned. The data needs to be in a vec-
torized representation, for instance to deal with images, they must be converted to a
1-dimensional representation, just like a vector.

• One or several hidden layers composed by artificial neurons with the intent of extract-
ing non-linear features from the input data.

• An output layer that combines the set of non-linear features learned on the previous
layers and outputs a score/prediction using a softmax activation function Dettmers
(2015a).
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The RNNs are meant for processing sequential data Goodfellow et al. (2016); Britz (2015);
Buduma and Locascio (2015). The term recurrent refers to their ability to execute the same
job for every element of a sequence Britz (2015). Figure 5(b) shows that, for each time stamp
(t), the hidden state (st) is calculated by adding the current input (Uxt) with the previous
hidden state (Wst−1), where f is an activation function. Equation 5 translates the statement
presented previously.

st = f (Uxt + Wst−1) (5)

For t = 0, s−1 is normally initialized with zero. The ot is the output result at step t. For
example, in a sentence prediction, the operation ot = so f tmax(Vst) would infer which is
the most probable next word Britz (2015).

In the context supervised learning, on both types of ANN the error between the network
predictions and the ground truth is iteratively back-propagated through the network and it
is used to update the network weights so that predictions can get more accurate Dettmers
(2015a).

2.2.3 Convolutional Neural Networks

As previously presented, ANNs are composed by sets of artificial neurons organized into
layers such as input, hidden and output layers. CNNs follow the same rules (as they derive
from ANN) but they differ in one simple thing: they assume that the input are images.
Hence, the architecture of a CNN disposes the neurons in a different and more efficient
way in order to create an improved model Karpathy and Johnson (2016). Neurons are
disposed in three dimensions: width, height and depth, just like a volume Karpathy and
Johnson (2016); Buduma and Locascio (2015). The idea behind CNNs is to use small ANNs
which are convoluted along the image to extract relevant local information. This idea differs
from a fully connected architecture which demands much more parameters.

For example, a single fully-connected hidden layer would require 120, 000 parameters (or
weights) in order to handle a 200x200 RGB image (200x200x3 = 120, 000). Such amount
of parameters is wasteful and it would lead the model to easily overfit on the training
data Karpathy and Johnson (2016); Buduma and Locascio (2015). Besides, the fully-connect
approach relates all image pixels together. In reality, features are usually locally related.
By using a smaller convolutional network, it is possible to identify local features and by
adding successive convolutions layers relate the local information from different networks
to achieve a global classifier. Figure 6 suggests a better understanding of how the neurons
are set on a CNN in comparison with the traditional ANN.

The concept of receptive fields is the key to ensure that neurons inside a layer are only con-
nected to a small region of the previous layers, avoiding the wastefulness of fully-connected
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Figure 6: Representation of a traditional artificial neural network and a convolutional neural
network. Image by Karpathy and Johnson (2016).

neurons. This allows to explore a local connectivity pattern among the neurons of adjacent
layers and progressively assemble small representations on larger areas. The weight shar-
ing is done by replicating filters upon the whole visual field. Each filter results in a feature
map that is stacked in the output volume. When combined, these properties make CNNs
capable of generalization on vision problems and help reducing the number of parameters
needed to be learned as well as the amount of memory required Karpathy and Johnson
(2016). Typically, a CNN is structured in two main sections, as Figure 7 illustrates. Firstly,
comes the feature extraction and then the classification process.

Figure 7: Typical structure of a convolutional neural network. Image by Maurice Peemen.

The main goals of these two sections are:

1. Feature extraction - Feature extraction has an important role on CNNs because it is
responsible for learning the patterns that belong to each class. They learn automati-
cally how to extract the most relevant features and, as the network grows deeper, the
more complex features are extracted. For example, take a look on Figure 8 where it is
shown two levels of features Dettmers (2015a).

This first section of the CNN is computationally expensive essentially due to convo-
lutional layers. Activation and pooling layers are also frequently used on it, however,

http://parse.ele.tue.nl/mpeemen
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Figure 8: Hierarchical features extracted from a convolutional neural network. Image from
a Quora question about how CNNs work.

their computation is not as heavy as the convolutional layers. Below, the typical layers
used in the feature extraction phase will be explained in more detail.

2. Classification - This section receives the high-level features extracted on the previous
step and looks for those which strongly correlate to a particular class. It can be
composed by one, or more, fully connected layers as well as some dropout layers
in between them. In the end of these layers, a softmax function is used so that the
resulting vector is transformed into a probability vector where each element is the
probability associated with a specific class Karn (2016).

As mention before CNNs can have several different types of layers. Next a description is
provided about the most common layers.

Convolutional layers

Convolutional layers represent the base element of CNNs. They are responsible for com-
puting several convolutions, where each one has a specific filter (or kernel) that is meant
to be learned. A convolution is a mathematical operation that aggregates two types of
information:

1. An input feature map, that can be a volume or a raw image.

2. A filter or kernel.

When both are combined, a new feature map its created that highlights where the kernel
features were found. The most correct interpretation for a convolution is a cross-correlation
once the convolutional filter works as a feature detector, i.e., if an input image produces a
big output feature map after being filtered by a certain kernel, it means that the information

https://www.quora.com/How-do-convolutional-neural-networks-work
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of that kernel is present on the image Dettmers (2015a); Buduma and Locascio (2015). Look
at the example on Figure 9.

(a)
(b)

Figure 9: Example of applying a convolution on an image: (a) How it is calculated and (b)
Output feature map. Images by Colah’s blogpost and Dettmers (2015a), respec-
tively.

Nevertheless, there are a few more properties regarding the convolutional layers that
need to be taken into account. As previously said, the local connectivity is essential for
dealing with high-dimensional inputs, such as images Karpathy and Johnson (2016). It
doesn’t make sense to fully connect all neurons to all pixels in an image, because nearby
pixels have a higher probability of being correlated than those that are far apart. So, each
neuron is only connected to a small receptive field that has the same size of the applied
filter, just like Figure 10 shows.

(a)

(b)

Figure 10: Concept of the receptive field used on convolutional neural networks: (a) Recep-
tive field for a convolutional layer with 5 5x5 filters and (b) Demonstration of
how nearby pixels tend to be more correlated. Images by Karpathy and Johnson
(2016) and Nervana’s video lesson about CNNs, respectively.

The convolution operation is controlled by three parameters: depth, stride and zero-
padding Karpathy and Johnson (2016). The output volume spatial arrangement will be
based on them.

http://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://www.youtube.com/watch?v=SQ67NBCLV98&t=135s
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• Depth - The depth of an output volume is equal to the number of convolutional filters.
Each slice contains the feature map for one particular kernel.

• Stride - Stride handles how receptive fields overlap each other, hence, it determines
the spatial dimensions of the output volume. For example, a big stride means less
overlap between receptive fields, resulting on a smaller output volume and vice-versa.

• Zero-padding - Zero-padding is sometimes conveniently used to preserve input vol-
ume spatial size. By adding zeros to the volume borders, kernels can be applied even
if they ”get out” of the volume dimensions. On Figure 11 the ”valid” padding corre-
sponds to the zero-padding taking zero value. In turn, the ”same” padding means
one zero-padding border around all the volume since the convolutional layer has 3x3
kernels. ”Valid” and ”same” padding are two Tensorflow Abadi et al. (2015) conven-
tions.

Figure 11 summarizes graphically the notions presented for a 28x28x1 input volume on
a 8 3x3 filters convolutional layer.

Figure 11: Output volumes spatial arrangement variation according to depth, stride and
zero-padding. Image by Vanhoucke.

For a squared input volume sized I, a filter size F, a stride S and a zero-padding P, the
size of the output volume O is given by the following equation (note that, in case of a
fractional result, it is only considered the unit part):

O =
(I − F + 2P)

S
+ 1 (6)

Weight sharing enables translation invariance once it’s assumed that it can be useful to
compute one feature on two distinct spatial positions. Moreover, it helps controlling the
number of free parameters by sharing the neuron’s weight and biases required memory in
every depth slice Karpathy and Johnson (2016).



2.2. Theoretical Fundamentals 16

Activation layers

Activation layers are meant to add non-linearity properties to the data. They keep the
volume unchanged and perform an element-wise fixed mathematical operation Karpathy
and Johnson (2016). On Figure 4 are graphically represented the most frequently used
activation functions on CNNs, likewise on ANNs. From all functions presented on Figure
4, ReLU layer is the simplest and hence makes the training faster without compromising
the network’s generalization Krizhevsky et al. (2012).

Pooling layers

Pooling layers are usually inserted in-between convolutional layers and they perform down-
sampling along the spatial dimensions (width and height only; depth remains untouched).
They shrink a certain area to a single value. So, a larger aggregation area condenses more
information. This procedure brings benefits in many aspects because:

1. It improves the computational performance by reducing the number of parameters
through down-sampling.

2. Down-sampling also contributes for less memory required, which is helpful to fit
inputs on GPUs (limited RAM) in order to accelerate the training operation.

3. Still, the parameter reduction helps preventing overfitting.

4. It provides a form of local translation invariance. Even if the inputs shifts a little bit,
the output will remain constant.

Nevertheless, a large pooling area may result on data loss. Figure 12 shows an example
of a max pooling operation. On a average pooling operation it would, instead, calculate the
average value covered by the filter Karpathy and Johnson (2016); Dettmers (2015a); Buduma
and Locascio (2015).

The two most common pooling layer parameters are the 2x2 filter with stride 2 and the
3x3 filter with stride 2 Buduma and Locascio (2015).

Fully-connected layers

As the name suggests, the neurons of a fully connected layer are connected to all previous
layer’s outputs. Just like it was discussed on the classification item, on CNNs they are
placed right after the feature extraction. CNNs output layer is also a fully-connected layer
that has as many neurons as the number of classes. The main difference, is that it uses
a softmax activation function to ensure a normalized probabilistic output, in which, the
predicted class is the one with highest probability. On Figure 5(a) is presented a feed-
forward neural network composed by two fully-connected hidden layers.
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Figure 12: Example of a max pooling operation using a 2x2 kernel with stride 2. Image by
Karpathy and Johnson (2016).

Dropout layers

Dropout layers are also used to prevent overfitting. This regularization method is only
applied on training and randomly discards some nodes according to a probability. So, it
helps decreasing the time spent on training too. It is meant to avoid that well trained
neurons, with high activation values, influence neurons nearby. In other words, it avoids
units from co-adapting too much and be influenced by highly activated neurons Srivastava
et al. (2014); Wager et al. (2014). Check Figure 13 for a better explanation.

Figure 13: Illustration of how dropouts works. Image by Karpathy and Johnson (2016).

In fact, besides preventing overfitting, dropout also represents an efficient way of com-
bining many different neural networks since each node discarded can represent a distinct
network topology Srivastava et al. (2014).

Normalization layers

Although normalization layers have fallen out due to its minimal contribution for training,
they were originally intended to accelerate the training and make the trained model more
robust to variations Karpathy and Johnson (2016); Buduma and Locascio (2015).
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1. The batch normalization fixes the means and variances of layers input. It reduces the
dependency on the parameters initialization (less careful initialization) and allows
the use of higher learning rates Buduma and Locascio (2015). In some cases, it also
reduces the need of dropout layers too. Besides that, the training can taker shorter
while maintaining the same accuracy level Ioffe and Szegedy (2015).

2. Local response normalization layers (LRN) are useful to deal with unbounded activa-
tions, like it happens on ReLU activation functions. Once detected a high-frequency
feature, it uniformly damps large responses in a local neighborhood. This type of reg-
ularizer encourages ”competition” for big activities among nearby groups of neurons
Krizhevsky (2014).

3. L1 and L2 normalization add an extra term to the cost function that penalizes large
weights forcing the network to prefer smaller weights Nielsen.

Inception modules

Inception modules were inspired by the indecision of which convolution would be the best:
1x1, 3x3 or a 5x5? Vanhoucke. The idea of inception modules is to concatenate multiple
convolution and pooling filters on the same input. With it, the model is then able to learn
multi-level features simultaneously through smaller (1x1), medium (3x3) and larger (5x5)
filters Szegedy et al. (2014).

Figure 14: Example of an inception module. Image by Vanhoucke.

The output of an inception module is a big feature map which is then fed into the next
layer which can be, eventually, another inception module Dettmers (2015a).

Deconvolutional layers

The deconvolutional layers, also known as the transposed convolutional layers, do the in-
verse operation of the convolution layers Gao et al. (2017); Odena et al. (2016). Instead,
they learn filters in order to reconstruct the shape of an object. Therefore, they associate a
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single input to multiple outputs Noh et al. (2015). Stacked deconvolutional layers produce
a hierarchical structure of features too. Lower deconvolutional layers tend to capture the
overall shape of the object while higher deconvolutional layers tend to capture class-specific
(finer) details Noh et al. (2015). Due to its properties, these layers are commonly used for
semantic segmentation on encoder-decoder architectures in order to perform feature map
up-sampling Gao et al. (2017).

(a)
(b)

Figure 15: Visual representation deconvolutional layers: (a) Comparison with convolutional
layer and (b) Output feature maps from lower level to higher level layers (from
(ii) to (x)) . Images by Noh et al. (2015).

Figure 15(a) suggests that deconvolutional layers can produce larger feature maps from
smaller feature maps. However, this process adds some checkerboard artifacts to the output
feature map as well Gao et al. (2017); Zeiler et al. (2010); Odena et al. (2016). In turn,
Figure 15(b) indicates that the deconvolutional layer output feature maps get finer and
more evident along with increase of the number of deconvolutional layers.

Residual Blocks

Residual blocks are the base element of Residual Neural Networks He et al. (2015b). As
Figure 16 points out, the output of a residual block is an element-wise addition among its
input (X) and a transformation of the input (F(X)). This requires that X and the output of
F(X) must have exactly the same size.

Figure 16: Exemplary of a residual block. Image by He et al. (2015b).
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The transformation F(X) represents a sequence of convolutional layers (two or more)
interspersed by activation functions He et al. (2015b). This operation bypasses the input
and adds the features learned on the current layer to it so the next layer/block can learn
from both.

2.3 state of the art network architectures and benchmarks

Convolutional Neural Networks represent the state of the art for image recognition Si-
monyan and Zisserman (2014); Russakovsky et al. (2015); He et al. (2015b); Zhang et al.
(2017). Although its complexity in terms of computational load and memory usage, CNNs
are robust enough to deal with data variance such as illumination, occlusion, rotation and
scale Achatz (2016). Even so, they are also capable of understanding the essential features
that distinguish one class from the others.

To train a CNN based image classifier are needed a dataset and a network architecture.
So, in the next sections will be presented the state of the art network architectures as well
as benchmarks on well known datasets among image recognition tasks.

2.3.1 State of the Art Network Architectures

The CNN architectures presented underneath established relevant achievements over the
state of the art for image recognition in the last years. They delineate the evolution of CNNs
and suggest good practises for building tough network architectures Dettmers (2015b); Cu-
lurciello (2017); Kurenkov (2015).

AlexNet

The year of 2012 was a turning point for the adoption of feature learning approaches in-
stead of feature engineering. Besides, this year was marked by the affirmation of deep
learning against traditional computer vision methods. Dettmers (2015b); Krizhevsky et al.
(2012) Alex Krizhevsky, along with Ilya Sutskever and Geoffrey Hinton developed a net-
work architecture composed by rectified linear units (ReLU) for higher performance (since
they compute faster than tanh) and dropout regularization to improve its generalization
capacity Dettmers (2015b); Culurciello (2017).

Its architecture includes five convolutional layers (some of them followed by overlapping
max-pooling layers) and three fully-connected layers interleaved by dropout layers at its
end Krizhevsky et al. (2012). Additionally, local response normalization (LRN) layers were
used because of the unbounded ReLUs activation functions. The large size of the network
in terms of parameters could lead to overfitting Krizhevsky et al. (2012). In order to avoid
overfitting at all costs, both dropout layers and data augmentation techniques were used.
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Figure 17: Alexnet network architecture. Image from Krizhevsky et al. (2012).

Dropout layers prevent overfitting by forcing the network to learn even in the absence of
some neurons while data augmentation techniques artificially generate extra data in order
to get an enlarged dataset Culurciello (2017); Krizhevsky et al. (2012). These procedures
contibute for a more generic trained model. Table 1 has a detailed description of the Alexnet
architecture.

Table 1: Detailed description of Alexnet architecture.
Layer Filters Filter size Stride Activation

Convolutional 96 11x11 4x4 ReLU
Max Pooling 1 3x3 2x2 -

Local Response Normalization
Convolutional 256 5x5 1x1 ReLU
Max Pooling 1 3x3 2x2 -

Local Response Normalization
Convolutional 384 3x3 1x1 ReLU
Convolutional 384 3x3 1x1 ReLU
Convolutional 256 3x3 1x1 ReLU
Max Pooling 1 3x3 2x2 -

Local Response Normalization
Fully-Connected 4096 TanH
Dropout 0.5
Fully-Connected 4096 TanH
Dropout 0.5

Fully-Connected nclasses Softmax

As Table 1 points out, the filter size gets smaller as the the network gets deeper. The
first convolutional layer is the only on with stride 4 because it is the distance between the
receptive field centers of neighboring neurons in a kernel map Krizhevsky et al. (2012). The
LRN layers appear on each block of convolutional layers right after max pooling layers .
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The success of AlexNet on ILSVRC-2010 and ILSVRC-2012 encouraged many researchers
to take CNN-based approaches in the following years. So, in 2013 two more CNNs were
proposed: ZFNet Zeiler and Fergus (2013), that derived from Alexnet and the Network in
Network (NiN) Lin et al. (2014).

ZFNet

The first two initials of ZFNet came from the authors surname (Zeiler and Fergus) Zeiler
and Fergus (2013). This network is more than a fine tuning of AlexNet. Even though
it has a similar architecture, it introduced some new concepts that helped improving the
performance of the CNNs. In the first layer, Alexnet has 11x11 filters with stride 4. On
ZFnet, 7x7 filters with stride 2 are used instead. This modification was made because
smaller filters on the first layer tend to retain more original pixel information. On the
other hand, 11x11 filters with stride 4 may skip relevant information. Still, the respective
paper Zeiler and Fergus (2013) explains how it is possible to visualize the network weights
through deconvolution 2.2.3. It allows the visualization of the features learn by the network,
which can be used to tune the network more carefully. Moreover, this visualization helped
understand that as the model grows deeper, more complex features are learned. Figure
18 describes the ZFnet architecture and as it can be seen, it is very similar to Alexnet
architecture. The main differences are on the first convolutional layer (which has a lower
filter size and stride) and in the addition of a deconvolutional network to visualize the
network weights.

Figure 18: ZFnet network architecture. Image by Zeiler and Fergus (2013).

In fact, the model visualization supports the idea that the learned features assume a
hierarchy (from low-level to high-level features) and that the network performance tends
to improve as long as it gets deeper. Hereupon, besides winning ILSVRC-2013, ZFNet
contributed not only on performance improvements on CNNs but also with a visualization
method that gives great intuition and insight about which features CNNs learn.
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Network in Network

The Network in Network architecture was built with the intent of better combine features
before feeding them to another layer. It has the particularity of using spatial multi-layer
perceptron layers in form of 1x1 convolutions, referred by the authors as mlpconv Lin et al.
(2014). Although it may not make much sense, in the context of CNNs, 1x1 convolutions
can actually reduce the number of network parameters and represent an universal function
approximator Lin et al. (2014). For example, a 20 1x1 convolutional layer converts a 200x200
input with 50 features (200x200x50) into the size of 200x200x20.

Figure 19: Network in Network network architecture with mlpconvs between convolutional
layers. Image by Lin et al. (2014).

The network is composed by three mlpconv layers with ReLU activaction functions. All
mlpconv layers are followed by a overlapping max polling layer, except for the last one,
which has an global average pooling instead. This layer outputs a vector with size equal to
the number of features maps. Each element of the vector contains the average value of one
input feature map. It is meant to replace the usual fully connected layers. Here are some of
the reason why global average pooling is preferable Lin et al. (2014):

1. It enforces correspondences among features maps and categories. This is more native
to the convolution structure. For instance, feature maps can be easily interpreted as
categories confidence maps.

2. Avoids overfitting since it doesn’t have any parameter to optimize.

3. It is more robust to spatial translations because it sums out the spatial information.

So, there is only a single fully connected layer that has the softmax activation function
in order to output the network predictions. Table 2 shows the network performance on
the datasets CIFAR-10 Krizhevsky (2009), CIFAR-100 Krizhevsky (2009), Street View House
Numbers (SVHN) Netzer et al. (2011), and MNIST LeCun et al.. Its performance is com-
pared with the state of the art performances at the time this architecture came out.
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Table 2: Network in Network architecture best performance on CIFAR-10, CIFAR-100,
SVHN and MNIST datasets compared with the state of the art at the time Lin
et al. (2014).

CIFAR-10 CIFAR-100 SVHN MNIST

SoA 9.32% 36.85% 1.94% 0.45%
NiN 8.81% 35.68% 2.35% 0.47%

Further research took advantage of these ideas and applied it into more recent networks
architectures, such as the GoogLeNet Szegedy et al. (2014) and the Redisual Neural Net-
works He et al. (2015b). These ideas were essential for enabling deeper networks that don’t
compromise inference times.

VGG

The VGG (stands for Visual Geometry Group) architecture appeared on year 2014 and it is
characterized by two words: simplicity and depth. It enforces the idea that deeper (16 to 19
layers) architectures with small filters (3x3 is the smallest filter size to capture shifts) and
stride 1 lead to a significant improvement on the prior-art configurations Simonyan and Zis-
serman (2014). Furthermore, deeper networks have a superior hierarchical representation
of the learned features. Because of its depth, and in order to balance the network weight,
small filters were used to help reducing the number of parameters and consequently the
training time. This network also gives a great insight that a sequence of multiple 3x3 con-
volutions can simulate the same effect of larger filters, like 5x5 or 7x7 filters.

As Figure 20 shows, the VGG network architecture configurations follow a generic design
and differ in depth Simonyan and Zisserman (2014). The networks are composed by stacks
of 3x3 convolutional layers with stride 1 and zero padding in order to preserve the spatial
resolution. Max pooling layers appear in-between blocks of convolutional layers and down
sample the features maps through 2x2 filters with stride 2. Figure 20(c) is the only VGG
configuration that uses 1x1 convolutional layers. They can be seen as a linear transformation
of the input channels Simonyan and Zisserman (2014). In addition, there is also a single
architecture that makes use of LRN layers but the authors claim that they didn’t bring any
improvements on performance. In fact, LRN contribute for a higher usage of memory and
an increase on the computation time. At the end, are disposed three fully connected layers
with 4096, 4096 and nclasses hidden units. All layers use ReLU activation functions except
the last fully connected layer which uses softmax. One throwback of these networks are the
size of the trained models Canziani et al. (2017). The large number of parameters makes a
trained model of round the 500MB for 224x224x3 input images.
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Figure 20: VGG network architecture configurations. From the left (a) to the right (e) the
network depth increases (more layers), all with stride 1. The convolutional layers
are denoted as conv <receptive field size>-<number of channels>. For simplic-
ity, ReLU activation functions are not shown. Image by Simonyan and Zisserman
(2014).

GoogLeNet

The GoogLeNet network architecture was built with focus on efficiency not only for tradi-
tional computers but also thinking on mobile and embedded computing. To achieve that,
reducing the number of parameters was a crucial restriction Szegedy et al. (2014). Here, the
term deep refers to the new network organization through the introduction of the incep-
tion modules and the network depth itself. So, this architecture changed a lot compared
to the typical network structure, which is based on stacked blocks with one or more con-
volutional layers, followed by a activation function and a max pooling operation. Instead,
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it stacks several inception modules. These modules aggregate miscellaneous information
once they contain distinct operations that are done in parallel Szegedy et al. (2014).

(a) (b)

Figure 21: Inception module structure: (a) concept of inception module and (b) example
of an inception module and how it reduces the total number of parameters by
using 1x1 convolutions. Image by Szegedy et al. (2014).

As shown in Figure 21, inception modules can be composed by several convolutional
layers and even max or average pooling operations. Therefore, these layers can collectively
extract a diverse levels of information:

1. 1x1 convolutions can capture fine grain details and simultaneously decrease the di-
mension of model which is essential to get it deeper. Lin et al. (2014); Szegedy et al.
(2014).

2. 3x3 filters were shown to be very effective when disposed is mass Simonyan and
Zisserman (2014). Its impact is still diminished by prior 1x1 convolution.

3. Higher receptive fields, such as 5x5 filters, extract bigger information and in the same
way, are amortized by preceding 1x1 convolution.

4. Max pooling layers are responsible for reducing the volumes spatial size and help
prevent overfitting.

5. The ReLU activation layers come after each convolutional layer and add non-linearity
to the network.

Although all this complexity (a total of 27 layers), the balance of the network performance
and computational efficiency is very good Canziani et al. (2017).

From the original GoogLeNet represented on Figure 22, derived the Inception-vx, x ∈
{2, 3, 4}, architectures that were able to reach even lower error rates. In fact, on those newer
version, inception modules were re-adapted in order to became more efficient Szegedy et al.
(2015). On Appendix A.2.1 is presented the network architecture of Figure 22 yet in a higher
resolution, for a better understanding of its components.
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Figure 22: GoogLeNet network architecture. Image by Szegedy et al. (2014).

Once again, more recent architectures used the concepts stated soo far on newer exper-
iments. On 2015, one more network architecture arised and established a new baseline
for CNN capabilities. It is the Residual Neural Network from Microsoft Research He et al.
(2015b).

Residual Neural Networks

Nearly at the same time as the Inception-v3 network came out, the ResNet (abbreviation
for Residual Neural Networks) were announced. The idea behind the Residual Neural
Networks is to feed to the next block (or layer) the output of two or more convolutional
layers, interleaved by activation functions, and the input of the residual block bypassing
it He et al. (2015b). It was also tested with just a single layer bypass instead two or three
however it didn’t bring considerable improvements He et al. (2015b).

(a)
(b)

Figure 23: Two examples of a residual block: (a) illustration of a residual block and (b)
practical example of a residual block. Images by He et al. (2015b).
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Figure 23(a) shows that the output of a residual block is the input plus a transformation
of it. It looks similar to computing a delta or a slightly change to the original input. In
order to compute the element-wise addition their size must be equal He et al. (2015b).
On traditional CNNs, x would represent the input while F(x) would represent the output
of a convolutional layer. In turn, on Figure 23(b) is presented a practical situation that
exemplifies the functionality of a residual block. So, given an 256-dimensional input, the
number of features at each layer is reduced to 64, first by a 1x1 convolution, followed by a
3x3 convolution and at last, it restores the original input dimension through a 1x1 in order
to add it with the input. Identically to what happens on inception modules, this operation
provides a rich combination of features and simultaneously guarantees low computation
impact.

Figure 24: Comparison of VGG-19 architecture (bottom) with two 34-layers networks: one
plain (middle) and other residual (top). Images by He et al. (2015b).

Figure 24 compares the VGG-19 architecture with two 34-layer networks along the spatial
size. It shows an increasing gap on VGG-19 as the network spatial size gets smaller. Be-
sides that, the initial layers of the 34-layer networks have 7x7 convolutional filters and after
entering another block of convolutional layers, the spatial size is already on 56x56. The
fully-connected output layer with softmax activation function is preceded by an average
pooling layer.

Furthermore, it was also trained a network with 1000 layers, yet the results weren’t con-
vincing at all since the trained model was unnecessarily large and even so its performance a
slightly worse than a network with 110 layers He et al. (2015b). So, the experiences around
this architecture indicate that there is a top-limit on the networks performance when stack-
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ing residual blocks. In other words, stacking residual blocks can effectively improve the
network capabilities however, just up to a certain point He et al. (2015b).

2.3.2 Benchmarks

The benchmarks section is intended to expose the current state on recognizing well know
datasets such as the MNIST LeCun et al., CIFAR-10 Krizhevsky (2009) and the subset of
the ImageNet Russakovsky et al. (2015). The first two are commonly used on tutorials to
teach people how CNNs work. By the other hand, the subset of the ImageNet is a large
scale dataset which promotes an annual competition called ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) Russakovsky et al. (2015); Krizhevsky et al. (2012). This
competition stands as one of the most challenging image recognition tasks. Most of the state
of the art networks presented on the previous section were built for that purpose. Their
success turn them on a reference to anyone that pretends to make a CNN-based image
classifier.

MNIST dataset

MNIST is a balanced database composed by 70, 000 gray-scale images of handwritten digits
LeCun et al. (from 0 to 9). The recognition of MNIST is very often used as the ”Hello World!”
of convolutional neural networks.

Currently, the recognition performance on MNIST has an error rate of 0.21% Wan et al.
(2013). The state of the art approach uses a CNN architecture based on the one presented
in Bottou et al. (1998). In addition, it applies a similar method to the dropout regularizer
on fully-connected layers. Instead of the common dropout which discards a set neurons
activation, this method discards a subset of network connections randomly, turning the
network sparsely connected Wan et al. (2013), like Figure 25(c) suggests.

CIFAR-10 dataset

In turn, the CIFAR-10 Krizhevsky (2009) dataset contains 60, 000 RGB images equally sepa-
rated into ten miscellaneous classes. Likewise the MNIST, CIFAR-10 is frequently used on
tutorials for introducing how CNNs work.

The best performance on CIFAR-10 achieved an error rate of 2.86% and relies on a resid-
ual neural networks architecture, as the paper Gastaldi (2017) refers.

ImageNet Large Scale Visual Recognition Challenge

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual competition
that evaluates algorithms for object detection and image classification at large scale on
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(a) (b) (c)

Figure 25: Illustration of how drop-connect works: (a) without dropout and drop-connect;
(b) with dropout, represented by function m(.) and (c) with drop-connect. Images
by Wan et al. (2013).

a subset of the ImageNet dataset. The subset of the ImageNet dataset is composed by
1, 261, 406 training images categorized into 1, 000 classes1, 50, 000 validation images and
150, 000 testing images Russakovsky et al. (2015); Canziani et al. (2017); Krizhevsky et al.
(2012). It is one of the biggest challenges of computer vision and machine learning and it
represents an important reference, as well as a significant benchmark, for image recognition
state of the art.

This competition requires that the submitted models must be evaluated by a specific
performance metric: the top-k error. Usually, in the form of top-1 and top-5 error. When
classifying an image, the model returns the five most probable class labels ci for i = 1, ..., 5
in a decreasing order of confidence. The top-1 error is calculated by asserting if c1 is the
correct class label. On the other hand, the top-5 error checks if the the correct class label is
among ci. So, considering:

• ci for i = 1, ..., 5 as the five most probable class labels inferred by the model for an
image, in a decreasing order of confidence.

• Ck for k = 1, ..., n with n ground truth class labels.

• d(ci, Ck) = 0 if ci = Ck

• d(ci, Ck) = 1 if ci 6= Ck

Then, the model classification performance is computed by the following equation Rus-
sakovsky et al. (2015):

e =
1
n

. ∑
k

min
i

d(ci, Ck) (7)

1 http://image-net.org/challenges/LSVRC/2010/browse-synsets

http://image-net.org/challenges/LSVRC/2010/browse-synsets
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Next, the most relevant achievements on ILSVRC are presented by year. On 2012, AlexNet
exceeded the ILSVRC state of the art at that moment, achieving a top-1 and top-5 errors of
37.5% and 17.0% on ILSVRC-2010, respectively. The network was trained with an extended
version of the original training set by using data augmentation techniques. A variant of
this network was also submitted to the ILSVRC-2012 competition and it won with a top-5
error rates of 15.3%. For instance, the second best entry stood on 26.2% Krizhevsky et al.
(2012). By the time it came out, ZFnet set a new record with a top-5 error of 14.8% on
ILSVRC-2013 Russakovsky et al. (2015). In 2014, the two networks with best performance
on the ILSVRC-2014 classification task were the GoogLeNet and VGG. GoogLeNet won the
competition by achieving a top-5 error of 6.67% Szegedy et al. (2014); Russakovsky et al.
(2015) while VGG got the second place with a top-5 error of 7.3% Russakovsky et al. (2015);
Simonyan and Zisserman (2014). The residual neural network architecture was submitted
to the ILSVRC-2015 achieved an outstanding top-5 error of 3.57% which surpassed the
human-level performance He et al. (2015b,a).



3

T R A I N I N G M E T H O D O L O G Y

In this chapter, the work developed for this dissertation will be detail. First we discuss
some common issues regarding CNNs. Based on this discussion we also propose some
procedures to improve the training result. This discussion is supported by the experiments
in chapter 4. We will start by discussing issues related to how the dataset should be used to
train and test a CNN. Considering training we compare existing stopping criteria and pro-
pose a novel criterion. It will also be adressed the batch size and learning tuning. Focusing
on the architecture we discuss the role of multiple convolutional layers.

Afterwards, we present a toolkit that extends TFLearn Damien et al. (2016) in order to
provide an easier entry point for users starting to use CNNs.

Figure 26 outlines the typical proposed procedures for training CNNs and it is supported
by the work flow presented on it. This figure is a graphical summary of those procedures
for that will be described in the following sections.

Figure 26: Common deep learning work flow for a training methodology. Image based on
Buduma and Locascio (2015).

The state of the art network architectures were already described on Section 2.3. So, in
the next sections will be exposed the issues related with the preparation of the data for
training, such as pre-processing and data augmentation, and the training procedure itself.

32
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3.1 dataset preparation and usage

This section details procedures related to the dataset, ranging from the preparation of the
dataset, to its possible subsets for training, validation and testing, and finally describing on
how to feed the training set to the CNN.

3.1.1 Pre-processing

With image datasets we get pixel values ranging from 0 to 255. This interval implies that
all inputs are positive. To provide a more balanced set it is common to zero center the pixel
values. This can be done simply by shifting all pixel values from the interval [0, 255] to
[−127.5, 127.5]. A more sophisticated approach computes the average image of the training
set and subtracts it from every image in the data set.

These input intervals may cause the weights from the first layers, those more directly
affected by the magnitude of the inputs, to have large updates, causing an erratic learning
procedure. Therefore it is common to use normalized values in the range [−0.5, 0.5]. Again
to be more precise we can use normalization by standard deviation which will provide
a dataset dependent interval, but in average the range remains similar. This process is
depicted in Figure 27.

Figure 27: Image pre-processing operations: zero-center and normalization. Image adapted
from Karpathy and Johnson (2016).

3.1.2 Data Augmentation

As mentioned before this thesis focuses on the use of CNN on classification tasks. Hence,
the datasets we consider are composed of a number of labeled samples, distributed among
several classes. Ideally all classes would have a similar number of samples. However, some
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datasets are unbalanced. To restore the balance data augmentation is required. Whenever
possible we can simply gather more data.

Another common approach involves augmenting the dataset with variations of the orig-
inal images. These variations may include brightness and contrast changes, random blur,
image displacement, rotation, scaling, mirroring, flipping, among other possibilities as Fig-
ure 28 suggests.

Figure 28: Example of data augmentation operations like flips, noise, rotation random blur.

Data augmentation can also be done to increase the range of samples to teach the CNN.
This is done to expose the neural network to a wider range of variations, making it more
likely to have a good performance when classifying unseen data. An example where this
has been put to good use can be found in Staravoitau (2017).

The German traffic signs training set (Section 4.2.3) is very unbalanced. The number of
images per classes varies between 210 to 2250 as Figure 29 evidences.
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Figure 29: Images per class distribution on German traffic signs training set.
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In order to balance the number of images per class, the data augmentation operations
presented above can be applied. Note that, not all classes can be artificially augmented
by those procedures. For instance, it is not expected to see a flipped stop sign. In other
cases, other signs may belong to other class when transformed. The same problem applies
to other datasets but in a similar context.

Moreover, the size of the training set can also be reduced by pre-processing. For example,
dimensionality reduction is one type of pre-processing methods that is mean to convert the
RGB channels into a single gray-scale channel. In the case of the signs, although its colors
help on distinguish each category, they can be differentiated by its shape too. That’s what
this approach relies on.

3

32

32 32

1

32

Figure 30: Dimensionality reduction by converting RGB chanels to a single gray-scale chan-
nel.

Of course, this can only make sense in the context of colorized images. The example
presented above on Figure 30 reduces the input size by a factor of 3.

3.1.3 Splitting The Dataset

CNNs are renowed by their capability of performing the classification task with a high
degree of accuracy. The accuracy is particularly relevant when the CNN is confronted with
previously unseen samples. Therefore, the main goal of training a CNN is not to learn the
data used during training, but rather to be able to correctly classify unseen samples.

A successful training session with the entire set would guarantee the required accuracy
on the samples of the dataset, but this does not imply getting a similar, or even acceptable
level of accuracy on new data.

Considering this we could partition the dataset into two subsets: the training set and the
validation set. Yet, the original dataset could also be partitioned in order to have a third
subset: the testing set.
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Training Set

The training set is used to fit the model. The network weights will be updated from it. The
training set must be representative so the model can learn the most important features to
distinguish all classes.

The accuracy on the training set tells if the network configuration used is able to learn
the data. So, if the model does not perform well on the training data this means that the
network architecture must be reviewed and improved.

Validation Set

In turn, the validation set helps guiding the training and it is useful to know how the
general learning is progressing. One of the big features of deep learning is the ability to
generalize in variate types of images. The validation set is intentionally used to measure
the model generalization capabilities and helps understanding if the model it’s getting over-
fitted to the training data.

Nevertheless, it is also important to take into account how the validation set is considered.
Lets consider three options: a dedicated validation set; a percentage from the original
shuffled data and a proposal for a custom method for generating a validation proportional
to the training set.

In the first option, it is assumed that there is already a dedicated validation set that is
loaded like a training set and then it is passed as an argument for the training operation.
This method is useful when the validation set is already explicit. So, there is no need to
spend time on generating it.

Instead, in the second option is to set a percentage of the original data that will be used
only for validation purposes. This method is provided by TFLearn Damien et al. (2016). In
this case, the original data is all shuffled first and then it picked the last percentage of it,
as specified. This process doesn’t give guarantees about the heterogeneity of the validation
set because the shuffling operation is random and it may not gather samples of all classes
in the last percentage of the data. Figure 31 illustrates how to define a validation set from
the original data, using a percentage value.

In addition to the methods presented before, it was implemented a custom data split
method that work as Figure 32 suggests. This procedure assures that the validation set is
created from the original data and, most importantly, proportional to it. The user is also
free to enable or disable this functionality or set the amount of percentage he wants for
validation.

In case of unbalanced datasets, the implemented data split method helps in not let the
validation set get even more unbalanced. The random factor may not be beneficial in
situations where there are some classes over-loaded with more images than the remaining
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Figure 31: TFLearn method to split data into training and validation set through a percent-
age.

Figure 32: Proposed data split method to create a validation set.

classes. Nevertheless, the original data can be intentionally unbalanced in cases where
some classes are more significant than others.

Testing Set

The testing set is meant to test the generalization capabilities of the trained model. Note
that, similarly to the validation set, the test set is completely unknown to the network. The
objective of training CNNs is to train on a specific dataset and infer in similar instances
(not equal at all). Hence, the test set is also important to test how far can the model go on
different data compared with the data that it was trained on.

3.1.4 Feeding The Training Set

One epoch corresponds to one pass over all training images. Some datasets are too big
which mean that they can be feeded to the training as a single piece due to hardware
limitations. So, they must be splitted into smaller batches of images.

The batch size is a training hyper-parameter that quantifies the size of the image batch
which will be propagated forward through the network in order to calculate the error
between the networks predictions and the ground truth targets. Then, according to the error
the network weights are updated by back-propagation. So, the error back-propagation is
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directly influenced by the number of samples of each batch as well as by its heterogeneity. In
addition, this hyper-parameter also controls the frequency which the weights are updated
Goodfellow et al. (2016).

If it is set too low, the image batch is more likely to be biased in favor of a particular class
or group of classes, therefore, the computed gradient might not be the best estimate of the
overall gradient, and, hence, the optimization algorithm may take a longer path. This can
in part be avoided by considering a small learning rate. On the other hand, if the learning
rate is too small, it may imply longer training time.

Hardware features can also be taken into account in order to determine the batch size.
How many samples can we fit in the memory of a GPU? How many samples can be pro-
cessed in parallel? These are relevant questions to consider if the goal is to optimize the
training time per epoch. The size is advised to be base 2 once some hardware devices are
specially designed for dealing with those sizes Goodfellow et al. (2016).

In fact, smaller batch sizes have a regularizer effect due to the noise they introduce on
the learning process by several weights update Goodfellow et al. (2016).

3.2 training CNNs

The training method can be categorized in supervised, unsupervised and reinforcement
learning. On supervised learning, the model is iteratively exposed to new or unknown
information. Given a set of inputs and targets, the models weights are updated and ad-
justed according to its error, measured as a function relating the predictions to the ground
truth. In turn, unsupervised learning algorithms try to understand data relationships with-
out knowing any information about it. Reinforcement learning differs from the previous
two because it isn’t supervised neither unsupervised. In this type of learning there isn’t
labeled data. The model learns by receiving rewards which are the outcome of specific pre-
defined actions. So, the model will try to follow the actions that give him the most rewards.
Hereupon, that’s why it can be considered unsupervised learning.

For this dissertation was only considered supervised learning. The purpose of super-
vised learning is to use an optimization algorithm capable of finding such weights that
minimize the error among network predictions and ground truth values. At the same time
as the network weights are updated based on the training set, the model is also evaluated
on validation set. The validation set is useful because it guides the training and tells if
the model is getting over-fitted to the training data. As soon as the validation set accuracy
reaches a pre-established value, the training operation finishes. Later, the model’s perfor-
mance should still be evaluated on a test set, which is completely unknown to the model
Tawfique (2016).

In the enumeration below are exposed two possible approaches for training a CNN:
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1. Training from scratch means start the training from the beginning with a random
weight initialization. In this approach, the network weights are solely updated around
the input data.

2. Transfer learning starts from a previously trained net (for another dataset). Many
models trained with the state of the art architectures on the ImageNet subset can
be found online Simonyan and Zisserman (2014). In order to use them to classify a
custom dataset, the output layer must be adapted to the number of classes and then
trained on the new data. These procedure is useful because the feature extraction part
is heavily supported by a model that was trained on a large variety of data, including
in different levels of information. Some researches use this approach as a start point
for considerable complex problems.

3.2.1 Definition Of Training Stop Criteria

This section is meant to delineate a training stop criteria. There are some universal appli-
cable procedures to CNNs but since each dataset has it own properties, some experiments
need a specific approach. After getting used to the mechanics of the deep learning frame-
work, it started to make sense to establish a stop criteria for the training procedure.

By default, the TensorFlow Abadi et al. (2015) stop criteria is reaching a specific top-1
accuracy (item 2.3.2) on the validation set together with a maximum number of training
epochs. Considering a particular sample, this criteria states that the prediction is correct
if the output for the correct class is the highest among all predictions. While this is true,
it also may be the case where two or more classes have very close output values, which
could be interpreted as if the network is not really confident about which class the sample
belongs to.

Hence, four stop checks were set for the training procedure that are better explained next:

1. The classification confidence threshold only considers well predicted images with a
confidence above a certain value. This restrain will be used on the validation set in
order to force the model to separate the data properly.

2. The validation accuracy must be greater or equal to a specific value considering the
classification confidence threshold described on the previous item.

3. Learning progress to check if the learning status has evolved. If not, the training ends
after some epochs due to no progress.

4. A maximum number of training epochs, just for safeguard.
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The classification confidence is an issue that needs a special attention in order to achieve
a proper model. The definition of a proper performance metric is a crucial step to get
trustworthy results, able to be interpreted correctly.

The proposed accuracy metric for the validation set combines two crucial aspects. When
an image is sent to the network it returns a probability array, where each element corre-
spond to a single class and its sum is equal to 1. Instead of just checking if the class with
the highest probability is the correct one, it is also verified if that probability (or confidence)
exceeds a specific value, for example, 75%. Basically, this new metric is a more restricted
version of the top-1 accuracy once it also takes the classification confidence into account.
So, using this discretion enforces the confidence on the predicted class because it promotes
a higher separating between the correct class and the other classes.

Moreover, it avoids situations where the network can infer correctly the true class but
there is another class with a similar confidence. For example, suppose a 4 classes image
classification task where the model outputs the probabilities array [0.1, 0.1, 0.41, 0.39]. If the
image belongs to the class 2 (consider indexation starting on zero) the network would have
inferred it well using the maximum probability method. Yet, class 3 confidence is pretty
close to class 2 which doesn’t give a total trust regarding the network ability to distinguish
those two classes. This is the limitation that the developed metric aims to overcome. In this
case, the developed metric would penalize this result because although the network made
a right prediction it doesn’t have enough confidence. In other situation, for example, with
a probabilities array of [0.1, 0.1, 0.75, 0.05], there is a clear gap from the well predicted class
and the remaining ones, eliminating any doubts about it. Utmost, it would only consider a
good prediction when the probabilities array gets like this [0, 0, 0.75, 0.25] and even so, the
true predicted class confidence is three times bigger than the network’s best second guess.
It also works fine as a solid and robust stop criteria for training, specially when it starts to
achieve high accuracy values. Nevertheless, the user is free to define or use other custom
accuracy metric.

So, similarly to the TensorFlow default training stop criteria, this verification on vali-
dation accuracy asserts if it reaches a top value. However, remember the classification
confidence threshold previously described. This time, the validation accuracy must hit a
certain value whose the classification confidence is 75%, at least.

After a number of epochs without any learning progress (consider it as an increase in the
validation or testing accuracy), the training will automatically stop. The intention of this
criteria was to detect if the learning process has stagnated. If true, it early stops the training
operation and saves the trained model according to the last best checkpoint registered.

Finally, the maximum number of epochs is the last check. This verification is optional
and it is only triggered when the previous two don’t. It is used just as a safeguard.
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By default these parameters are set to a 75% of classification confidence, a validation
accuracy threshold of 97.5%, 250 evaluations for no learning progress early stop and a
maximum of 1000 training epochs. Yet, they can be parameterized to whatever the user
wants. Take a special look on the experience at Section 4.3 to how the training stop criteria
behaves in practice.

3.2.2 Learning Rate

The learning rate is a hyper-parameter that influences how much the network weights will
be updated. A higher learning rate results in a more abrupt update with large jumps which
may hinder on finding the global minima. On the contrary, low learning rates update the
weights through small steps. However, with such small steps the training can end up on
saddle points where it may be stuck for a very long time.

Thus, its a good practise to use an adaptative learning rate scheduler. According to the
chosen optimizer, the learning rate can also be automatically updated during the training
progress by a decay factor. Figure 33 illustrates two different scenarios of how the learning
can influence the model performance.

(a) (b)

Figure 33: Influence of learning rate on the model performance: (a) Loss values depend-
ing on the learning rate and (b) Stochastic gradient descent possible paths with
different learning rates. Image by Karpathy and Johnson (2016).

3.3 proposal for a toolkit

During this dissertation it was developed a test toolkit with the intent of ease the training,
validation and testing deep learning models for image recognition. Its purpose is to offer a
set of tools that can effectively train a network on a certain dataset as simply as possible.
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In terms of level of abstraction, this toolkit is entirely written in Python (version 3.5.2)
and it is an extension of the TFlearn Damien et al. (2016) (version 0.3.2) code which in turn,
stands on top of Tensorflow Abadi et al. (2015) (GPU version 1.4). Figure 34 illustrates the
abstraction level of the tools mentioned above.

Figure 34: Proposed toolkit level of abstraction.

Comparing with the original Tensorflow syntax which is very extended, the TFLearn
syntax offers a much cleaner way of building network architectures. On Listing 3.1 are
compared both syntaxes in order to build a convolutional layer.

1 # Tensorflow syntax
2 with t f . name scope ( ’ conv1 ’ ) :
3 W = t f . Var iab le ( t f . random normal ( [ 5 , 5 , 1 , 3 2 ] ) , dtype= t f . f l o a t 3 2 ,
4 name= ’ Weights ’ )
5 b = t f . Var iab le ( t f . random normal ( [ 3 2 ] ) , dtype= t f . f l o a t 3 2 ,
6 name= ’ b i a s e s ’ )
7 x = t f . nn . conv2d ( x , W, s t r i d e s =[1 , 1 , 1 , 1 ] , padding= ’SAME’ )
8 x = t f . add bias ( x , b )
9 x = t f . nn . r e l u ( x )

10

11 # proposed t o o l k i t syntax ( supported by TFLearn syntax )
12 t f l e a r n . conv 2d ( x , n b f i l t e r s =32 , f i l t e r s i z e =5 , s t r i d e s =1 ,
13 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ , name= ’ conv1 ’ )

Listing 3.1: Comparison between Tensorflow and the TFLearn syntax for building a
convolutional layer. TFLearn syntax is cleary more appealing and intuitive. This
code snippet was get from Damien et al. (2016).

In practise, Listing 3.2 presents how to train and test a single model on the proposed
toolkit. The appendix A.3 has a more detailed explanation about the training behaviour.
Nevertheless, the three required arguments for training and testing are the path to the
training data, the architecture name and the run identifier. There are other arguments that
can be parameterized but they assume default values on these cases.
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1 # to t r a i n a model
2 > python t r a i n i n g . py −−d a t a d i r=<p a t h t o t r a i n i n g s e t >
3 −−arch=<archi tecture name> ( check L i s t i n g 3 . 3 )
4 −−run id=<t r a i n i n g r u n i d>

5

6 # to t e s t a t r a i n e d model
7 > python c l a s s i f y . py −−d a t a d i r=<p a t h t o t e s t s e t >
8 −−arch=<archi tecture name> ( check L i s t i n g 3 . 3 )
9 −−model=<path to tra ined model>

Listing 3.2: Example of how to train and test a model on the developed toolkit (Note:
arguments are diposed vertically just for a clearer visualization).

The data directory must be organized in a way where classes are separated into sub-
directories. For example, class-0 images should be in a folder, class-1 images in other folder,
and so on, just like Figure 35 suggests. In fact, it is an efficient way of labeling data too.
The same rule applies to the validation and testing sets. In alternative, data can also be
loaded through a comma-separated-value (CSV) indexing file in which the first column
corresponds to the path to the image and the second column corresponds to its respective
class or label.

datasets/

gtsd

training

class0

img0-0.bmp img0-1.bmp (...)

class1

img1-0.bmp img1-1.bmp (...)

(...)

testing

class0 class1 (...)

fabric

training testing

(...)

Figure 35: Datasets directory structure.

The architecture name is a string that maps the corresponding network architecture def-
inition on the utils/architecture.py module (explained in detail on Appendix A.3). In it are
expressed the issues related with the configuration of convolutional, max-pooling and fully-
connected layers. Listing 3.3 has a code snippet that demonstrates how the architectures
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module operates. The function build network is the one responsible for matching the archi-
tecture name to its definition.

1 import t f l e a r n
2

3 # a l e x n e t network a r c h i t e c t u r e
4 def b u i l d a l e x n e t ( n c l a s s e s ) :
5 net = t f l e a r n . input data ( shape =[None , 224 , 224 , 3 ] ,
6 data preprocess ing=img prep
7 data augmentation=data aug )
8

9 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =96 , f i l t e r s i z e =11 , s t r i d e s =4 ,
10 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
11 net = t f l e a r n . max pool 2d ( net , k e r n e l s i z e =3 , s t r i d e s =2)
12 net = t f l e a r n . l o c a l r e s p o n s e n o r m a l i z a t i o n ( net )
13

14 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =256 , f i l t e r s i z e =5 , s t r i d e s =1 ,
15 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
16 net = t f l e a r n . max pool 2d ( net , k e r n e l s i z e =3 , s t r i d e s =2)
17 net = t f l e a r n . l o c a l r e s p o n s e n o r m a l i z a t i o n ( net )
18

19 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =384 , f i l t e r s i z e =3 , s t r i d e s =1 ,
20 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
21 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =384 , f i l t e r s i z e =3 , s t r i d e s =1 ,
22 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
23 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =256 , f i l t e r s i z e =3 , s t r i d e s =1 ,
24 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
25 net = t f l e a r n . max pool 2d ( net , k e r n e l s i z e =3 , s t r i d e s =2)
26 net = t f l e a r n . l o c a l r e s p o n s e n o r m a l i z a t i o n ( net )
27

28 net = t f l e a r n . f u l l y c o n n e c t e d ( net , n u n i t s =4096 , a c t i v a t i o n = ’ r e l u ’ )
29 net = t f l e a r n . dropout ( net , keep prob = 0 . 5 )
30 net = t f l e a r n . f u l l y c o n n e c t e d ( net , n u n i t s =4096 , a c t i v a t i o n = ’ r e l u ’ )
31 net = t f l e a r n . dropout ( net , keep prob = 0 . 5 )
32 net = t f l e a r n . f u l l y c o n n e c t e d ( net , n u n i t s =nc lasses ,
33 a c t i v a t i o n = ’ softmax ’ )
34

35 net = t f l e a r n . r e g r e s s i o n ( net , opt imizer= ’momentum ’ ,
36 l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
37 l e a r n i n g r a t e = 0 . 0 0 1 )
38

39 re turn net
40

41 # vgg16 network a r c h i t e c t u r e
42 def build vgg16 ( ) :
43 ( . . . )
44 re turn net
45
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46 # general network a r c h i t e c t u r e bui lder
47 def build network ( archi tecture name , n c l a s s e s ) :
48 i f ( archi tec ture name == ” a l e x n e t ” ) :
49 net = b u i l d a l e x n e t ( n c l a s s e s )
50 e l i f ( archi tec ture name == ”vgg16” ) :
51 net = build vgg16 ( n c l a s s e s )
52 ( . . . )
53 e l s e :
54 net = None
55

56 re turn net

Listing 3.3: Snippet of how to configure the Alexnet network architecture on the proposed
toolkit architectures.py module.

The run identifier argument must be unique in order to preserve the results obtained on
several runs. Besides, it also gives the name to the trained model that will be saved after
the training. In case of a repeated run identifier, the previous results as well as the trained
model will be overwritten.

However, when it comes to plan a experience on a larger scale things can get time con-
suming. DNNs are characterized for having a lot of hyper parameters to tune. Tuning
those parameters manually, one by one, becomes impractical. Hereupon, this toolkit is also
meant to expedite the process of combining different sets of parameters in order to find
which one gives the best outcome. To achieve it, this toolkit includes a schedule script in
where it can be explicit the training parameters such as the the training data, the network
architecture, the batch size and many others. The schedule script is exposed on Listing 3.4.

1 import os
2 import sys
3

4 # ready c o n t r o l f l a g
5 t r y :
6 ready = sys . argv [ 1 ] . lower ( ) in [ ”go” , ” ready ” ]
7 except :
8 ready = Fa lse
9

10 operat ions = [ ”python t r a i n i n g . py” ]
11

12 t r a i n d i r s = [ ”/path/to/d a t a s e t 1/ t r a i n i n g /” ,
13 ”/path/to/d a t a s e t 2/ t r a i n i n g /” ,
14 ”/path/to/d a t a s e t 3/ t r a i n i n g /” ]
15

16 t e s t d i r s = [ ”/path/to/d a t a s e t 1/ t e s t i n g /” ,
17 ”/path/to/d a t a s e t 2/ t e s t i n g /” ,
18 None ]
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19

20 a r c h i t e c t u r e s = [ ” a l e x n e t ” , ”vgg16” , ” r e s n e t ” ]
21

22 batches = [ 1 2 8 , 256 , 512 ]
23

24 n runs = 3

25

26 width = 224

27 height = 224

28

29 # f o r a l l commands
30 f o r op in operat ions :
31 # f o r each t r a i n / t e s t data pa i r
32 f o r tra ind , t e s t d in zip ( t r a i n d i r s , t e s t d i r s ) :
33 # get data ID from path
34 data id = t r a i n d . s p l i t ( os . sep )
35 data id . reverse ( )
36 data id = d ata id [ 2 ]
37 # f o r each a r c h i t e c t u r e
38 f o r arch in a r c h i t e c t u r e s :
39 # f o r each batch s i z e
40 f o r bs in batches :
41 # repeat f o r N times
42 f o r run in range ( 0 , n runs ) :
43 # bui ld run ID automat i ca l ly
44 run id = ”%s %s b s%d r%d” % ( data id , arch , bs , run )
45 # bui ld command to execute
46 cmd = ”%s −−d a t a d i r=%s −−arch=%s ” % ( op , tra ind , arch )
47 cmd += ”−−run id=%s −−bs iz e=%d ” % ( run id , bs )
48 cmd += ”−−width=%d −−height=%d ” % ( width , height )
49 cmd += ”−−t e s t d i r=%s ” % ( height , t e s t d )
50

51 p r i n t (cmd)
52 i f ( ready ) :
53 t r y :
54 # t r y to execute command
55 os . system (cmd)
56 except Exception as e :
57 # otherwise , goes to next i t e r a t i o n
58 pass

Listing 3.4: Code snippet of experience planning using the schedule script.

When called in the commands prompt without any extra argument, the schedule script
will just print the commands ready to be executed. If the script is executed with an addi-
tional argument like go or ready it starts executing the commands configured on it.
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As evidenced on Figure 36, from the schedule script of Listing 3.4 will be performed 81
training operations by combining 3 datasets on 3 network architectures through 3 distinct
batch sizes and repeating each experience for 3 times. The (...) symbol represents the
procedures replication for the other cases.

DATA

dataset1 (..)

dataset2 ARCHITECTURE

alexnet (...)

vgg (...)

resnet BATCH SIZE

128 (...)

256 (...)

512 RUN

0

1

2

dataset3 (..)

Figure 36: Combination of commands that will be executed from the schedule script de-
scribed on Listing 3.4.

This automation saves a lot of time because it only requires one single configuration
in order to obtain several outcomes. Meanwhile, the toolkit produces one report file (see
Listing 3.5) at each training that shows how the learning evolves.

1 # ############### TRAINING REPORT #################
2 # Images path | <p a t h t o d a t a s e t>
3 # Val idat ion | 0 . 3 0

4 # Images shape | (<height >,<width>,<channels >)
5 # Archi tecure | <archi tecture name>
6 # Bacth S ize | <b a t c h s i z e>
7 # Snap/Epoch | 5

8 # Max epochs | 1000

9 # Eval c r i t e r i a | 0 . 7 5

10 # #################################################
11 t r a i n , va l ida t ion , t e s t , time
12 0 . 0 0 , 0 . 0 0 , 0 . 0 0 , 0 . 0 0

13 7 9 . 8 7 , 7 8 . 2 3 , 7 2 . 8 6 , 6 6 . 1 0

14 9 2 . 0 0 , 9 0 . 6 1 , 8 5 . 5 4 , 1 3 0 . 8 9

15 1 0 0 . 0 0 , 9 9 . 1 3 , 9 8 . 2 1 , 1 9 9 . 3 4

16 ( . . . )

Listing 3.5: Snippet of a training report file.

Once plotted, these reports allow a visual interpretation of the results and help under-
standing the impact of tuning a specific parameter.

On Appendix A.3 is exposed the structure of the whole toolkit and a more detailed
description about all its components.
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E X P E R I M E N T S

This chapter describes the most relevant experiments performed during this dissertation
work. These experiments act as support for Chapter 3 which was more theoretically ori-
ented.

We’ll start by presenting the experimental environment, Section 4.1. Then, in Section 4.2,
the datasets used for the experiments are described. Afterwards, experiments related with
the training stopping criteria are detailed in Section 4.3. Learning consistency is addressed
in Section 4.4. Next, comes the experiments on the images color-space on Section 4.5. On
Section 4.6 are shown which filters does the CNN automatically learns. Tuning the batch
size is explored in Section 4.7. Then it is studied the learning rate tune in Section 4.8.
Finally, some general performance considerations are presented in Section 4.9.

4.1 experimental environment description

All the experiments were executed on a computer with specifications as presented in Table
3. The information was gathered from Intel Support and HP Costumer Support.

Table 3: Testing machine specifications.
Processor Intel Core™ i7-6700HQ
Processor’s base frequency 2.60 GHz
Max turbo frequency 3.50 GHz
# Cores 4
# Threads 8
Cache memory 6 MB SmartCache
RAM memory 2x 8 GB SDRAM DDR4 2133 MHz
Storage 256 GB PCIe ® NVMe ™ M.2 SSD
GPU Nvidia ® GTX 960m 4GB
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http://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up-to-3_50-GHz
https://support.hp.com/us-en/document/c05192494/
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4.1.1 Deep Learning Framework

In the beginning, a very important decision stood in the choice of a deep learning frame-
work. An intuitive framework is crucial for a quick adaptation and implementation of
different network architectures. From this reference1, there are several alternatives and Ten-
sorFlow was the chosen one. TensorFlow was originally developed by Google’s machine
learning engineers Abadi et al. (2015); Buduma and Locascio (2015). Although it isn’t the
framework with the best performance in terms of execution time and memory consumption,
TensorFlow is very flexible and it has a growing community of users as well as contributors
Bahrampour et al. (2016); Shi et al. (2016); Kuster (2016); Buduma and Locascio (2015).

In order to accelerate the creation and adaptation of architectures, a TensorFlow high-
level API called TFLearn Damien et al. (2016) was used. It offers a higher level abstraction,
the code gets a lot simpler, clearer and much more understandable. It also allowed the
training and building of an image classifier in just a few code lines. The available user-
friendly examples bring already some of the state of the art network architectures that were
referenced before. In addition, both TensorFlow and TFLearn syntax can be written all
together, enabling to go into a deeper-level when needed. Hence, besides the abstraction
level, the main reason for choosing this framework is the possibility of taking advantages
of all TensorFlow features and maintain a readable code Damien et al. (2016); Silver (2016).
However, the lack of pre-trained models stands as one drawback of this API.

4.2 datasets

In order to have a wide range of domains several image datasets were used. Every test has
a purpose and the choice of a good input dataset is one of the key points to achieve the
pretended conclusions. This data diversity also brings different levels of features, which
means that specific network architectures will be needed in order to learn them. Table 4

contains a summary of the dataset properties detailed underneath.

4.2.1 Subset of Kylberg Texture Dataset

Kylberg texture dataset is composed by 28 texture classes and is available in two different
subsets, one with and other without rotated patches Kylberg (2011). All images are com-
posed by low-level features. The subset without rotated patches has less classes as well as
less samples and is described on the following points:

• 6 classes (canvas, cushion, linseed, sand, seat and stone);

1 http://deeplearning.net/software_links/

http://deeplearning.net/software_links/
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Table 4: Summary of the datasets properties.

Dataset Classes Samples per Class Total Samples Images size

Subset of Kylberg texture 6 640 3, 840 64x64x1
Fabric texture 7 363 2, 541 64x64x3

MNIST 10 7000 70, 000 28x28x1
Digits 11 705 to 873 8, 634 64x64x1

German Traffic Signs 43 210 to 2, 250 51, 839 32x32x3
Subset of Parking Lot 2 3, 038 and 3, 244 6, 957 64x64x3

• 40 images per class (30 for training + validation and 10 for testing);

• 576x576 gray-scale images (single channel);

• Source: http://www.cb.uu.se/~gustaf/texture/.

On Appendix A.1.1 is presented one original sample of each texture class. However,
those images weren’t used for training on its original size because they are too big and it
would take unnecessary resources and time to process them. In addition, they would lose
texture detail when resized to a smaller dimension. So, a set of 64x64 crops were extracted,
from each training image, using a sliding window, as shown in Figure 37.

(a) (b) (c) (d) (e) (f)

Figure 37: Example of cropped textures used for training networks: (a) Canvas; (b) Cushion;
(c) Linseeds; (d) Sand; (e) Seat and (f) Stone.

This approach has benefits because these crops contain the main features necessary to
distinguish one texture from another. In this dataset, these crops are big enough to catch, at
least, 3 texture elements from any texture image. Textures are defined by a certain pattern
that is repeated along the whole image and 3 texture elements encompass the minimum
requirements to represent those patterns. Moreover, smaller images make the training and
the classification procedures lighter and faster, since the number of parameters will be
smaller too. The training set contains 3, 600 images and the test set has 240 images.

http://www.cb.uu.se/~gustaf/texture/
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4.2.2 Fabric Texture Dataset

This image dataset was captured and provided by Neadvance, Machine Vision, SA. In total,
it contains 2, 541 RGB images equally distributed by seven classes (363 images per class).
The training set has 2, 310 images and the test set has 231 images. In Figure 38 one sample
of each class is illustrated.

(a) (b) (c) (d) (e) (f) (g)

Figure 38: Samples of the fabric texture dataset.

Here are some particularities about this fabric dataset that deserve to be mentioned:

1. Although Figure 38(b) and Figure 38(g) look like the same class, there is a little detail
that differs them. The color of a wispy diagonal line (left bottom to top right) is brown
and grey, respectively;

2. Figure 38(c) and Figure 38(d) represent two classes with suchlike colors yet with two
different levels of grain pattern, a finer and a thicker one, respectively;

3. Figure 38(e) and Figure 38(f) have exactly the same pattern but the first has grey dots
while the second has blue dots;

4. The remaining class pairs can be easily differentiated either by color or pattern.

Technically, this dataset can also be considered as texture based and like the previous
one, its images are composed by low-level features.

4.2.3 German Traffic Signs Dataset

The German traffic sign recognition dataset is known for being used as a image recognition
benchmark Stallkamp et al. (2011). The training operation requires that all images have
the same dimensions. Since this dataset contains images with different sizes, they were
all resized to 32x32. Comparatively to the previous texture datasets, this one has high-
level features and it is expected to perform better in a network configuration with more
convolutional layers. Relatively to the dataset specifications, it contains 51, 839 RGB images,
with 39, 209 images for training and 12, 630 images for testing, distributed by 43 classes.
Each class represents a specific sign.
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(a) (b) (c) (d) (e) (f)

Figure 39: Samples of the German taffic signs dataset.

From Figure 39 it is possible to verify that the illumination is not constant along all im-
ages. For instance, Figure 39(c) is much brighter than Figure 39(d). Moreover, some images
have partial shadows (Figure 39(a)) and others are saturated (Figure 39(f)). Furthermore,
signs can assume miscellaneous shapes (circles, squares, triangles, rectangles or even dia-
mond) and a range of four colors (red, blue, white or yellow).

4.2.4 MNIST Dataset

The MNIST dataset LeCun et al. is a handwritten digits database commonly used as the
”Hello World!” of the CNN. It contains a training set of 60, 000 images and a test set of 10, 000
images, all in grayscale with size 28x28 LeCun et al.; Bottou et al. (1998). The state of art
test error rate, in this dataset, stands on an impressive 0.21% Wan et al. (2013).

Figure 40: MNIST samples. Image by TensorFlow’s MNIST tutorial.

4.2.5 Digits Dataset

The digits dataset was also provided by Neadvance, Machine Vision, SA and was extracted
from images of mechanical energy counters through an automatic segmentation method. It
has eleven classes that include ten digits, ranging from 0 to 9, and an eleventh class that was
intentionally designed to store all non-digits images, such as noise or other artifacts that
result from the segmentation method (Figure 41(g)). Original digit sizes had considerable
variation, so they were all resized to 64x64 and converted to gray-scale since there is no
useful color information present on these images.

The training and test sets have 7, 835 and 799 images respectively. As for the MNIST
dataset, the main challenge on this dataset will be the recognition of the same digit but in

https://www.TensorFlow.org/get_started/mnist/beginners
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(a) (b) (c) (d) (e) (f) (g)

Figure 41: Samples of the digits dataset. (g) Represents one of the non-digit characters.

different fonts. This dataset was meant to train a model for a optical character recognition
tasks (OCR).

4.2.6 Parking Lot Dataset

The parking lot dataset Almeida (2015) has 695, 899 RGB images of parking spaces labeled
in just two classes: empty/free or busy/occupied with an approximated rate of 44% and
56%, respectively. These images were captured during daytime in different ways in order to
achieve a representative and sturdy dataset Almeida (2015). In Figure 42 is a representation
of the images that constitute this dataset.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 42: Samples of the parking spaces dataset.

The following enumeration has a few facts about the diversity of the images. On the
Appendix A.1.2 Figure 66 shows the three top views of each entire parking lot from where
these smaller images were extracted. In summary, these images were captured in following
conditions:

1. From three distinct angles, each one corresponding to a specific parking lot;

2. Under three types of weather (cloudy, rainy and sunny) and, consequently, different
illumination conditions and also with shadows;

3. Partially occluded by trees or afforestation.

For training CNNs was extracted a subset of 6, 957 parking spaces images that respects
the original dataset proportion of busy/free images. The training and testing sets contain
6, 262 and 695 images.
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In this context, the dataset was intended for a binary classification problem. However, it
can be used for other tasks, such as image segmentation and object detection, because it
comes with XMLs files that map each parking space location on the parking lot images.

4.3 definition of training stop criteria

This experience was meant to find out the robustness of the defined training stop criteria.
The motivations behind the training stop criteria were presented on the Section 3.2.1. Two
models were trained: One model was trained on the Kylberg texture dataset 4.2.1 with the
network topology described on Table 5 and another model was trained on the Digits dataset
4.2.5 using the architecture presented in Table 6.

Table 5: Architecture used on Kylberg texture dataset to test the stop criteria robustness.
Layer Filters Filter size Stride Activation

Convolutional 8 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 16 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 24 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Fully Connected 128 ReLU
Dropout 0.5

Fully Connected 6 Softmax

Regarding the datasets, both contain gray-scale images, but the first one is composed by
textures while the second one is composed by digits. As opposed to a texture, a digit can be
represented by a combination of features. Because of that, a more complex network (with
more convolutional filters) was selected to train on Digits dataset.

Besides, both architectures have characteristics in common. They are composed by three
blocks with a convolutional layer followed by a 2x2 max pooling and a batch normalization
layer. On the Kylberg dataset were used 8, 16 and 24 3x3 filters while on the Digits dataset
were used 16, 32 and 64 3x3 filters for the first, second and third convolutional layers, respec-
tively. ReLU was used in all activations. Zero-padding was used on convolutional layers
in order to preserve the dimensions after the convolutions. It avoids loosing information
at the volumes borders. At the end, the architecture used on the Kylberg texture dataset
has two fully connected layers with 128 and nclasses units. In turn, the architecture used
on the Digits has three fully-connected layers with 256, 128 and nclasses units. Between
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Table 6: Architecture used on Digits dataset to test the stop criteria robustness.
Layer Filters Filter size Stride Activation

Convolutional 16 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 32 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 64 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Fully Connected 256 ReLU
Dropout 0.5
Fully Connected 128 ReLU
Dropout 0.5

Fully Connected 11 Softmax

fully-connected layers were added dropout layers with a keep probability of 50%, to force
the model to handle absence of information.

In all these experiments, for each dataset the initial conditions are the same.
Figure 43 illustrates the training evolution on the Kylberg texture dataset considering the

TensorFlow default stop criteria and the proposed stop criteria.
As expected, on Figure 43 the training took much more epochs when using the proposed

stop criteria. In both cases, the training finished when a validation accuracy of 97.5% was
achieved. However, with the TensorFlow default stop criteria the accuracy on validation
set is calculated by only asserting if there is a match among the predicted and the ground
truth classes. Beyond that, on the proposed stop criteria the classification confidence must
be greater or equal to 75% in order to be considered a well classified image. Although it
takes more time to train, the proposed stop criteria, ensures that images are classified more
correctly since it forces the model to create a better data separation. In addition, the test
accuracy also achieved a higher value when the proposed stop criteria was enabled.

At this point, Figure 44 shows the percentage of images from the Kylberg texture test set
that are classified correctly and with a confidence above a certain parameter.

As it can be seen on Figure 44, with the proposed stop criteria the accuracy on the Kylberg
texture test set maintains stable independently to the presented classification confidences.
Considering the TensorFlow stop criteria the accuracy stood a little lower along the way.
In particular, for a classification confidence greater or equal than 60% the accuracy drops
slightly which evidences the role of the proposed criteria.

Additionally, and in order to test both models generalization capabilities, an additional
test set was created. This new test set contains the same images as the original Kylberg
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Figure 43: Training evolution with both TensorFlow default stop criteria and proposed stop
criteria on Kylberg texture dataset. The star marks represent the moment when
the stop criteria were hit.
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Figure 44: Kylberg texture test set accuracy according to the classification confidence using
both stop criteria.

texture test set but with salt and pepper noise. Figure 45 shows one noisy sample of each
class.
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(a) (b) (c) (d) (e) (f)

Figure 45: Samples of noisy Kylberg textures test set: (a) Canvas; (b) Cushion; (c) Linseeds;
(d) Sand; (e) Seat and (f) Stone.

Then, was done the exact same verification for the classification confidence on both crite-
ria but in the noisy test set. If the model generalized well it may behave similarly. Figure
46 shows the performance of the two models in the noisy test set.

0 15 30 45 60 75
Confidence (%)

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Classification confidence
on Kylberg noisy test set

Proposed criteria
TF criteria

Figure 46: Noisy Kylberg texture test set accuracy according to the classification confidence
using both stop criteria.

Once again, the accuracy for the proposed stop criteria kept almost constant around the
99%. For a classification confidence greater or equal than 75%, we get a little decrease. In
turn, compared with the previous figure, the accuracy for the TensorFlow stop criteria went
even lower by a three percentage points, approximately. The most accentuated drop was
registered for classification confidences of at least 75%. So, it means that the model trained
on the proposed stop criteria is more generic and it can handle data with more variation.

To reinforce the role of the proposed stop criteria, all the procedures already described
above on this experiment were repeated on the Digits dataset. First, it starts by comparing
the training evolution on the two models. For the TensorFlow stop criteria the validation
accuracy scaled up very quickly and the stop criteria was easily hit. For the proposed
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stop criteria it took more epochs to achieve good classification confidences and so the test
accuracy was able to reach a higher value. Compared to Figure 43, the training evolution
on Figure 47 was much more irregular, indeed. Actually, the Kylberg texture dataset is
more regular than the Digits dataset. For instance, variation of the linseed class boils down
to transformations as shifts and small rotations. Beside these, the variations of the digit 1
include also different fonts.
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Figure 47: Training evolution with both TensorFlow default stop criteria and proposed stop
criteria on Digits dataset. The stars represent the peak validation accuracy on
both cases when the stop criteria is hit.

Figure 48 compares the classification confidences of the two models trained on the Digits
dataset. Here, the distinction of the models is more evident. Again, the major differences
were registered from confidences higher than 60%, which exactly points out the restrain of
the proposed classification stop criteria.

Figure 49 shows a few samples of the noisy Digits test set. The images black background
makes clearer to highlight the noise. This dataset was intended to test the generalization
capabilities of both trained models.

As Figure 50 indicates, this time the noisy Digits test set accuracy values started to decay
earlier. The first occurrences of classification confidence loss appear already on the 30%
and they get bigger along with the increase of the classification confidence threshold.
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Figure 48: Digits test set accuracy according to the classification confidence using both stop
criteria.

(a) (b) (c) (d) (e) (f) (g)

Figure 49: Samples of noisy Digits test set.

Figures 51 (a) and (b) present a comparison of the same procedure that was previously
shown on Figure 50 but with higher levels of noise.

For the noise level 2 was registered a similar behaviour with regard to accuracy drop
compared with Figure 50. On the 45% of confidence was noticed a considerable difference.
From there, the gap between both criteria becomes more evident and accuracy values get
gradually lower.

It is notable on both experiences the gap among the two validation accuracy values for
each stop criteria. The proposed stop criteria restrain offers a better resolution about the
model predicting capabilities. It is useful because it clarifies if the model can predict cor-
rectly and most importantly without doubts.

This experience suggests that the proposed training stop criteria can be adequate for the
kind of tasks it had been used on. In short, all further experiments will used this criteria.
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Figure 50: Noisy Digits test set accuracy according to the classification confidence using
both stop criteria.
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Figure 51: Noisy Digits test set accuracy according to the classification confidence using
both stop criteria: (a) Noise level 1 and (b) Noise level 2.

4.4 learning consistency

The training procedure isn’t deterministic at all because it contains operations with random
processes. For example, by default the network weights are initialized with random values
from an uniform distribution. In addition, if the network topology includes any dropout
layer, the neurons dropped during training are also randomly selected. This means that,
unless the seed points are fixed, it can’t be assured that two training operations will have
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the same results. Because of that, 100 training operations were performed under the same
conditions in order to figure out the dispersion of the results.

Figure 52 shows two box plots that present the number of epochs needed to finish each
training: on left with the Fabric dataset and on right with the German traffic signs dataset.
Both used the stop criteria exposed in the preceding experiment, on Section 3.2.1. These
datasets were trained with the architectures presented on Table 7 and Table 8, respectively.

Table 7: Architecture used on the Fabric dataset for asserting the learning consistency.
Layer Filters Filter size Stride Activation

Convolutional 8 5x5 4x4 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Fully Connected 50 ReLU
Dropout 0.5

Fully Connected 7 Softmax

The architecture used on the Fabric dataset is very tiny. It has only one convolutional
layer of 8 5x5 filters with stride 4 followed by a max-pooling layer. 50 units are enough on
the fully-connected layer. In general, this dataset is regular and it is composed by images
with low-level features. Images were captured in a controlled environment with good
illumination conditions and without brusque variations. The differences among images
from the same class are essentially shifts.

Table 8: Architecture used on German Traffic Signs dataset for asserting the learning con-
sistency.

Layer Filters Filter size Stride Activation

Convolutional 32 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 64 3x3 1x1 ReLU
Convolutional 64 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Fully Connected 512 ReLU
Dropout 0.5

Fully Connected 43 Softmax

In turn, the architecture used for the German Traffic signs dataset needs to be more
complex. Despite its image have higher-level features, they also appear in a lot of light-
ning variations. So it requires a more robust feature extraction. Thus, were used three
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convolutional layers with 32, 64 and 64 3x3 filters, respectively. This time, the number of
fully-connected units is also bigger and it has 512 units.

In both architectures, the batch normalization layers are meant to normalize the inputs
before feeding them to the next layers.
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Figure 52: Number of epochs needed to finish training in 100 runs: (a) on the Fabric texture
dataset and (b) on the German traffic signs dataset.

In the box plot of Figure 52(a), most of the runs ended up between about 200 and 400
epochs. On Figure 52(b) the values are more condensed in a range from 50 to 140 epochs
instead. These results shows that the number of epochs needed to achieve a properly
trained model can vary significantly depending on the starting conditions. This is to be
expected since the random initialization can get closer or farther away from the optimal
weight values. Depending on that, the stochastic gradient descending optimization method
may take more or less iterations.

However, the main purpose of experiment was to pay attention to the accuracy values
distribution, to check how they stand, together or apart from each other. The two box-plots
of Figure 53 present the training, validation and testing accuracy values distribution on the
100 runs.

The Figure 53(a) shows that the training accuracy is so concentrated (nearly not visible)
that all its values are very close to 100%. Validation accuracy values are densely inside the
97.75% and 99.5% range with an outlier reaching the 97.5%. However, the top validation
accuracy reached near to 99.5%. At last, testing accuracy values stand a little bit lower
between 96% and 98%.

On Figure 53(b) it can be seen that once again the training accuracy is very close to
100%. Besides the validation accuracy got slightly lower values compared with the other
experience, they are still all concentrated under a range delimited by 97.5% and 98.5%,
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Figure 53: Final accuracy values distribution on the 100 runs: (a) on the fabric dataset and
(b) on the German traffic signs dataset.

approximately. Testing accuracy stood one more time below the corresponding validation
accuracy with values ranging from around 93.5% to 95.5%.

So, this experience suggests that there is a coherence on the learning method and its
ability to converge despite the training operation randomness.

4.5 color spaces

The designation color space stands for a abstract mathematical model that describes a color
by a tuple, typically through one, three or four values components. The RGB and gray-scale
color spaces are the mostly common when dealing with image processing Knoche (2017).
However, there are many others color spaces that can favor particular computer vision tasks.
For example, the HSV (Hue, Saturation, Value) color space is very useful when detecting
objects by its color because it makes easier to use restrict color ranges in the Hue channel.
Figure 54 illustrates the detection of blue color pixels through the HSV color space.

Figure 54: Detection of blue color in an image through the HSV colorspace. Image picked
from Python’s OpenCV changing color space tutorial.

http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html
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Most color spaces encode the same information, but with different representations. In
fact, they can be converted to another and (back to the original) just by applying a matrix
multiplication.

(a)

(b)

(c)
(d)

Figure 55: Color spaces represented geometrically: (a) RGB; (b) gray-scale; (c) HSV; and (d)
YCrCb. Images by Purdue University, Collage of Engineering and Knoche (2017)

• The RGB color space describes each color as a combination of three colors red, green,
and blue. On Figure 55(a) they are represented by the three Cartesian axis. The
intensity of each component determines the final color: the black color result from
zero intensity on every channel; and full intensity from each channel results in the
white color Knoche (2017).

• As the designation says itself, the Grayscale colorspace encodes the color intensity
into a gray shade scale that ranges from 0 to 255 (traduced to color from black to
white). In certain cases, this range is normalized to [0, 1]. So, colorized features can’t
be considered in this color space.

• The HSV (Hue, Saturation, Value) color space is a cylindrical representation of the
RGB color space.

• The YCrCb is another representation of the RGB colorspace but with the components
Luminance (luminous intensity), Chrominance red and Chrominance blue, respec-
tively.

The signs that constitute the German traffic signs dataset 4.2.3 are have a color component
that allows to filter some on them immediately. Mandatory and information signs are
characterized by the blue color. Similarly, prohibition and warning signs are characterized
the red color or by a red border. By these statements, the color seems to be a considerable
factor to distinguish the signs. However, signs can also be distinguished by their shape
and by the symbols they contain in the middle. So, it makes sense to test single channel
colorspaces too. In fact, as it as suggested on Section 3.1.2, converting color image datasets
to a single color channel is a way of reducing data dimensionality.

https://engineering.purdue.edu/~abe305/HTMLS/rgbspace.htm
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For this experiment was used the German Traffic Signs dataset with the architecture
described on Table 8.
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Figure 56: Image colorspace impact on training a CNN.

From Figure 56 it can be extracted that the HS (Hue and Saturation channels only) and
HSV were both unable to reach a decent accuracy on the test set. On the contrary, with the
remaining color spaces the accuracy on the test set reached similar high values even in the
single channel color spaces. Thereby, the alternative of reducing the data dimensionality by
squashing the color channels into a single one seems to be reliable on this dataset.

As Figure 57 evidences, on the HSV color space the red color ranges from [330; 360] and
[0; 30] due to hue channel circular representation. The pixels represented by the blue and
yellow boxes seem to be equal and their color don’t differ too much visually. However, on
the hue channel their value suffers a big deviation and that could be the cause for the model
not being able to converge using the HSV color space. Furthermore, the saturation is very
similar on both cases and the value channel is exactly the same. For that reason, was only
considered the combination of the hue and saturation channel for this experiment.

4.6 learned filters

The deep learning literature emphasizes the network learning as an assembly of hierarchical
features Zeiler and Fergus (2013); Simonyan and Zisserman (2014). The learned filters go
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Figure 57: HSV color space values variation on red color range in the hue channel.

from a lower-level to high-level features as the network goes deeper Zeiler and Fergus
(2013).

In this experience was used a single network architecture to train two models on two
similar datasets which have features in common since they represent the same information
in terms of data. So, for ir were used the Digits and MNIST datasets with architecture
described by Table 9.

Table 9: Architecture used on MNIST and Digits datasets visualizae the learned filters.
Layer Filters Filter size Stride Activation

Convolutional 32 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 64 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Fully Connected 256 ReLU
Dropout 0.5
Fully Connected 128 ReLU
Dropout 0.5

Fully Connected Nclasses Softmax

The reason to choose these two dataset was because of the similarities they have. Despite
each one has a specific font, both contain images with digits that share common features.
And since a single architecture can solve many problems, it will be interesting to check how
does it will behave on two similiar datasets. On Figure 58 are represented the learned filters
on the first convolutional layer. As Table 9 indicates, it contains 32 learnable filters. Note
that whiter regions represent higher values and vice verse.
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(a) (b)

Figure 58: Learned filters on the first convolutional layer: (a) on MNIST dataset and (b) on
Digits dataset.

As expected, at this stage filters can’t describe such high level features. Most of them
resemble to well known edge detector kernels. Some filters look like Laplacian and others
are more likely to Sobel. Compared to the originals, they are slightly shifted or rotated
(in diverse directions) but the main structure resemble to the matrices presented on the
matrices.  0 −1 0

−1 4 −1
0 −1 0


−1 −1 −1
−1 8 −1
−1 −1 −1


−1 0 1
−2 0 2
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On the other hand, Figure 59 shows the 64 filters learned on the second convolutional

layer. Note that these filter also derived from combining the filters learned in the previous
layers.

The filters learned on the second convolutional layer are a little bit different. Their struc-
ture is much more complex and irregular. Still, some features are visible which constitute
a partial part of a digit and that combined form an entire digit.

4.7 batch size tuning

During the training, the network is constantly fed with image batches. Each batch makes
a forward pass through the network and the error among the network predictions and the
ground truth is back-propagated in order to update the weights. So, depending on batch
size the model can get better or worse trained and the training will require more or less
memory, proportionally.
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(a) (b)

Figure 59: Learned filters on the second convolutional layer: (a) on MNIST dataset and (b)
on Digits dataset.

In this experience will be tested the impact of tuning the batch size. For it, were used
batch sizes with power of 2 as Goodfellow et al. (2016) advises, ranging from 2 to 4096. The
motivation to stop was the GPU memory limitation. Once it exhausts, no larger batch sizes
are tested. This restriction ensures that the GPU memory will be used in order to process
as much as it can.

The MNIST and the subset of PKLot datasets were considered and they have 10 and 2
classes respectively. Assuming a perfect scenario each training batch would be balanced.
However, there is no guarantees of that once the data is shuffled before being fed to the
network.

The MNIST dataset was trained on an architecture defined on Table 9 and the subset of
PKLot was trained on the architecture described on Table 10.

The architecture presented on Table 10 was based on the original VGG16 network archi-
tecture Simonyan and Zisserman (2014). In fact, this configuration is a pruned version of it
with less parameters and kernels.

According to the previous brief theory explanation about the impact of tuning the batch
size and on Section 3.1.4, it is expected that the best outcomes will stand in intermediate
batch sizes. The reasons are:

1. A smaller batch size means that the weights will be updated very frequently by a
small image set. This set may not be representative for all classes . Yet, it produces a
regularizer effect due to the noise it introduces on the learning process. To compensate
that, it might require a smaller learning rate to stabilize the large number of updates.

2. In principle, a larger batch size can be more data representative. However, the network
weights will be updated with less frequency and once they will be updated based on
a bigger image set. Thus, the estimate of the gradient can be more precise but less
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Table 10: Architecture used on subset of parking lot dataset for batch size tuning.
Layer Filters Filter size Stride Activation

Convolutional 32 3x3 1x1 ReLU
Convolutional 32 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 64 3x3 1x1 ReLU
Convolutional 64 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Convolutional 96 3x3 1x1 ReLU
Convolutional 96 3x3 1x1 ReLU
Convolutional 96 3x3 1x1 ReLU
Max Pooling 1 2x2 2x2 -

Batch Normalization
Fully Connected 512 ReLU
Dropout 0.5
Fully Connected 512 ReLU
Dropout 0.5

Fully Connected 2 Softmax

linear and the model may be not able to converge. In addition, it allows to process
more data per time unit which means that it can also accelerate the training.

This experience pretends to clarify if there is any relation between the batch size and the
number of classes. The obtained results are presented on Figures 60 and 61.
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Figure 60: Batch size tunning on MNIST dataset.
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Curiously, on Figure 60 for batch sizes smaller than the number of classes, the model
wasn’t able to learn. That’s why there is no accuracy registered for those batch sizes. On
the other hand, on Figure 61 the minimum batch size corresponds to the number of classes
and the model reached a testing accuracy of 91.37%.
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Figure 61: Batch size tuning on the Subset of the Parking Lot dataset.

From Figures 60 and 61 it can be seen that the time per epoch gets evenly smaller along
the increase on the batch size. This evidences the GPU paralelization efficiency when deal-
ing with large inputs. As both stagnated from the batch size 256 it suggests that the time
per epoch would increase for bigger batch sizes. For instance, the amount of required mem-
ory was an issue on this experiment for the subset of the PKLot dataset with a batch size of
1024. For that reason, it is not shown on Figure 61.

Despite, considering the testing accuracy as the most privileged decisive factor of this ex-
perience once it describes the network’s generalization capacities, the experiences suggests
that the best batch size registered for the MNIST dataset trained with the architecture de-
fined by Table 6 is 1024. This batch size nearly one hundred times bigger than the number
of classes and the testing accuracy achieved a value of 98.70% respectively.

On the other hand, for the subset of the PKLot dataset which was trained on the architec-
ture defined by Table 10, the best model was achieved with a batch size of 32 which is 16
times bigger than the number of classes. In turn, the testing accuracy hit 98.99%.

This experience wasn’t meant to indicate a global batch size that may be applicable to
any dataset. Instead, it suggests that the batch size must be, at least, greater or equal to
the number of classes. In short, lower batches sizes introduce a lot of noisy during the
training process due to the small number of samples from whose the model weights will
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be updated. In addition, it compromises the training time by the larger number of batches
that will be processed and the overhead that exists when sending data to the GPU. On the
other hand, bigger batches sizes contain a more representative set of samples that can infer
a more accurate path to the optimum solution. Besides, larger batches can take the most
profit of the GPU computation capabilities. Yet, it can turn more difficult for the model to
find a ”sharp” local minima.

4.8 learning rate tuning

In order to support the statements made on Section 3.2.2, the experience of tuning the learn-
ing rate was done. The Fabric dataset was used together with the architecture explained on
Table 7.
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Figure 62: Learning rate tune on Fabric dataset.

Curiously, the model was capable of reaching the stop criteria even in the lowest learning
rate but it took more than 3, 000 epochs to finish the training operation. That’s why it is not
presented on Figure 62 in order to not distort the obtained results.

On the contrary, using the highest learning the validation and testing accuracy stagnated
on 15%, approximately. The training ended early because there was no increase on both
accuracy lines during the period of time defined by training stop criteria tolerance. The
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large learning rate might not help finding the descending direction to the global minima.
So the validation and test accuracy couldn’t get over the 15%.

In general, the accuracy line raised exponentially. The noisiest variation was registered
for the learning rate 0.01 which stands on the intermediate value of the tested learning
rates.

Taking into consideration the results in Figure 62, and as expected, it is clear that the
learning rate is an important parameter to achieve faster training. On the other hand
setting a high learning rate can lead to early progress halt. Nevertheless, each dataset,
as well as each architecture, have their own properties that influence the training evolution.
Considering a different dataset or a different architecture the most adequate learning rate
may not be the same as the evidenced here.

4.9 performance

Deep learning is also seen as hierarchical feature extraction method. Its literature states
that deeper networks tend to extract more features and thus the trained model is able to
generalize better.

Therefore, this experience is intended to tune three network architectures that can ef-
fectively recognize three distinct feature level datasets with a high rate of confidence (one
architecture for each dataset). The datasets are: the Fabric textures, the Digits and the
German Traffic Signs datasets. It would be impossible to test all the possible network com-
binations due to the large number of hyper-parameters that can be tuned. The filter size
could be one of those possibilities as well as the number of fully-connected units or layers.

So, the start point of this experiment stood in considering the higher feature level dataset
(the German Traffic Signs) and vary the number of units on the fully-connected layer. For
that, was considered a single layer CNN with only 1 3x3 convolutional layer. Then, the
number of fully-connected units assumed base 2 values ranging from 8 to 512 as Figure 63

shows.
From Figure 63 it can be seen that with less than 64 units, the model under-fits because

it is not able to learn even in the training data. That’s why it is not presented the accuracy
values when the number of units is lower than 8. From 64 units, the accuracy on the
training set gets around the 100% which means that the model is able to learn the training
data. However, at this point, the accuracy on the test set stands around the 75% indicating
that the model isn’t able to generalize still. Hereupon, the focusing now to the accuracy
on the test set, in general, the test accuracy climbed until 256 units and then it decreased.
Since the test accuracy got a drop for 512 units, it was not tested with more units to avoid
over-fitting to the training data.
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Figure 63: Fully-connected units tune on German Traffic Sign dataset. Squares represent
the training accuracy and circles represent the accuracy on the test set.

Table 11 describes the network architectures used to test the model performance taking
into account the network depth and the number of filters. The fully-connected units were
fixed at 256 based on the results got on Figure 63. In addition, the filter size was also fixed
to 3x3 following the principles of the VGG16 network Simonyan and Zisserman (2014)
that emphasizes the use of small filters. Since images spatial size is 32x32, are performed
two down-sampling operations which reduce its dimension down to 8x8. Basically, these
networks are composed by two blocks of convolutional layers. The batch normalization
layers helped accelerating the training and normalize the input before feeding it to the next
layers. The number of filters ranged from 1x1 to 128x128, assuming base 2 values once
again.

To figure out which network configuration would give a reasonable trained models, all
the architectures described on Table 11 were trained on the Fabric textures, Digits and
German Traffic Signs datasets.

The obtained results are exposed on Figure 64 and they are organized firstly by network
depth and then by the number of filters. From left to right, the tested network architectures
get deeper. Inside each depth and in the same direction, the number of filters increases and
take the values {1, 2, 4, 8, 16, 32, 64}.

Figure 64 suggests that the models performance tend to improve as the network architec-
ture gets deeper and with more learnable filters. In general, it was registered a considerable
improvement each time the network got one more convolutional layer. In general, the best
results were obtained for number of filters 32, 64 and 128.
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Table 11: Architectures used on 3 different feature level datasets for network tuning, where
N f ilters is in {1, 2, 4, 8, 16, 32, 64}.
1 Layer 2 Layers 3 Layers 4 Layers 5 Layers

ConvN f ilters ConvN f ilters ConvN f ilters ConvN f ilters ConvN f ilters
ConvN f ilters ConvN f ilters

Max Pooling
Batch Normalization

ConvN f ilters∗2 ConvN f ilters∗2 ConvN f ilters∗2 ConvN f ilters∗2
ConvN f ilters∗2 ConvN f ilters∗2 ConvN f ilters∗2

ConvN f ilters∗2
Max Pooling

Batch Normalization
Fully Connected 256

Dropout 0.5

Fully Connected Nclasses
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Figure 64: Network tuning on three different feature level datasets: Digits, Fabric textues
and German Traffic Signs datasets.

It was shown previously that the Fabric dataset can be learned effectively with a 1 con-
volutional layer network architecture. The low-level features on the dataset images can be
distinguished using 8 filters. Figure 64 indicates a similar behaviour because the test accu-
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racy on the Fabric dataset reaches around the 100% immediately on 1 convolutional layer
with 16 filters.

The digits dataset images contain medium level features. So, it was expected that for
this case it would need a deeper network in order to recognize them. In fact, as Figure
64 evidences the best accuracy was achieved with a 3 convolutional layer depth network.
However, strangely in each depth level, the best accuracy was obtained with only 1 or 2
convolutional filters which means that 3 kernels are enough to build up a digit structure
effectively.

On the German Traffic Signs dataset, images contain high level features that can result
from the combination of lower level features. For every odd number of layers a slightly
decrease along with the increase of the number of filters was recorded. For 1 layer depth
that decrease emerged already with 16 filters. Yet, for 3 and 5 layers depth the drop occurred
on the 64 filters. The best state registered was for 4 convolutional layers depth together with
32, 64 and 128 filters on the respective layer.

Nevertheless, the statements just mention only refer to these datasets, in particular. For
instance, for a simpler dataset with lower-level feature images, the peak on test accuracy
may occur a little bit sooner. For example, the tiny architecture defined on Table 7 can learn
the Fabric dataset with high confidence. By the same reasoning, for a more complex dataset
it might be need a deeper network which was the case of the Digits and German Traffic
Signs datasets.
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C O N C L U S I O N

5.1 conclusions

Image recognition by deep learning approaches proved to be very successful in diverse
contexts. As a machine vision company, Neadvance, Machine Vision, SA is interested
on integrating deep learning methods for image recognition on their software because it
enables a new range o challenging opportunities.

In conclusion, this dissertation stands as an introduction of deep learning for image
recognition. The theoretical fundamentals of CNNs together with the review the state of
the art network architectures and benchmarks were essential to understand how CNNs
work and how they evolved to the current state.

A step-by-step description of common procedures to train a models serves as a guideline
for those who are starting on deep learning. It gives a bunch of hints when it comes to train
a model.

The definition of a custom training stop criteria was a crucial step because it was a
key point to obtain well trained models once the default stop criteria doesn’t seems to be
robust enough. Thus, for the validation set the custom training criteria only considers well
classified images if their predicted label matches with the ground truth labels and if the
classification confidence is greater or equal to a certain value. This forces the model to
learn how to separate the data.

Although its randomness, the learning algorithm has consistency enough to give very
close results on several runs in the same conditions. Yet, sometimes it can take more or less
time to reach the best trained model.

The choice of a suitable color space can determine the model competence on learning the
data. In addition, this procedure stood also as a reliable option for dimensionality reduction
by squashing color images into a single color channel.

As a hierarchical feature extraction method, the filters learned by CNNs were shown.
They get more complex along with the network depth.

The experience of tuning the batch size didn’t conclude which is the best batch size for
each data set. Instead it hints that the batch size must not be, not too low and not too high
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either. Of course, this is an universal statement among researches and it stands as an useful
insight about the batch size.

The learning rate tuning supported the supposed theoretical fundamentals since it showed
that high learning rates hinders the learning process. Huge jumps on the stochastic gradi-
ent descent make it more difficult to reach the combination of weights that minimize the
cost function defined as the difference between the network predictions and the ground
truth values. Due to that, the model wasn’t able to learn the data. By the other hand, the
model was capable of learning even in the lowest tested learning rate (it didn’t get stuck in
a local minima) but it took too much time. This experiment suggested that an adequated
learning rate is crucial to let the training evolve properly.

In terms of performance was evidenced the impact of the network depth on the models
generalization capacities. Stacking convolutional layers can actually improve the model
recognizing capabilities but it goes until a certain point. As soon as the model starts to
be too overpowered, its gets each time more over-fitted to the training data and then it is
unable to distinguish different but similar data. Beyond that, this experience hinted that
along with the increase on the data set images feature level, the network architecture may
need to get deeper in order to understand the data.

The proposal for a toolkit was intended to offer a high-level tool that can simplify the
entire process of training CNNs for image recognition tasks. So, in it are included methods
from the pre-processing and data-augmentation until the network architecture configura-
tion and testing phases. In addition, this toolkit helped on preparing set of experiments
that not only suggest ordinary practises when training CNNs but also highlight the gener-
alization capabilities of deep learning for these kind of tasks.

5.2 prospect for future work

For future work stand some suggestions about image recognition by deep learning that
were not mentioned on this dissertation.

One of the characteristics of deep learning is the huge number of hyper-parameters that
can be tuned. Of course, it was not possible to test them all on time. So many others
hyper-parameters could be tuned in order to understand their impact on training a model.

The experiences made can also be extended for the remaining datasets. Since each dataset
has it own properties, extending the experiences on the remaining datasets would enrich
the results consistency.

Currently, the hype around deep learning is outstanding. Besides image recognition,
there are other several domains where deep learning methods can be applied on and could
not be referred in this dissertation. In the enumeration below are presented some of those
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deep learning branches that are have potential to be studied in a future work. Having the
knowledge of how CNN work on classifying images makes it easier to learn them.

1. Unlike FNN, RNN allow the data to move to other directions instead of just forward.
In addition, they are able to learn temporal dependencies. Dettmers (2016b,a); Good-
fellow et al. (2016). Reinforcement learning is associated to RNNs. Typically, it works
by setting one or more intelligent agents interacting with an environment and getting
feedback from it. Depending on their actions, they are rewarded (or not) and its learn-
ing state is updated. Buduma and Locascio (2015). An autonomous agent must learn
to perform a task by trial and error, without any guidance from human intervention
or labeled data Goodfellow et al. (2016).

2. Dense neural networks are a recent type of neural network architectures based on the
concept of residual neural networks. Every layer is connected to each other layer in a
feed-forward way, which means that the feature-maps of all preceding layers are used
as inputs, and its own feature-maps are used as inputs into all subsequent layers.
Still, authors claim that this architecture requires less computation to achieve high
performance Huang et al. (2016).

3. Image segmentation is another task related to image recognition. It can be achieved
by using fully convolutinal neural networks, for example, in the type of an autoen-
coder (encoder-decoder) through convolutions and deconvolutions Badrinarayanan
et al. (2015), or through other pixel-wise approach Long et al. (2014).

4. Combined with image recognition there are few methods for object localization such
as YOLO (You Only Look Once), ROLO (Recurrent You Only Look Once), R-CNN (Re-
gions with Convolutional Neural Networks) and SSD (Single Shot Detection). So, be-
sides classifying, these type of networks output the localization of the objects present
on it.

5. Image caption combines CNN with RNN. CNNs are responsible to recognize regions
of the image while RNNs attribute a description to it Karpathy and Fei-Fei (2015).

Nevertheless, there are also some points about the developed toolkit that could be im-
proved.

The integration of a graphic user interface would be useful for users that don’t appreciate
working directly through the commands line. On it, all the settings of selecting a dataset,
prepare the data, configure a network architecture, train, test the trained model... and so
on, could be done with a few clicks instead of just typing on the keyboard. In fact, it would
make the toolkit much more user-friendly.
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a.1 inputs

a.1.1 Subset of kylberg texture dataset

(a) (b) (c)

(d) (e) (f)

Figure 65: Subset of kylberg texture dataset represented with an example of each class: (a)
Canvas; (b) Cushion; (c) Linseeds; (d) Sand; (e) Seat and (f) Stone.
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a.1.2 Parking lot

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 66: Three parking lot perspectives (each line represents one perspective) on different
weather conditions: (a) (d) (g) Cloudy; (b) (e) (h) Rainy and (c) (f) (i) Sunny.
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a.2 network architectures

a.2.1 GoogLeNet

Figure 67: GoogLeNet network architecture in higher resolution. Image by Szegedy et al.
(2014).
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a.3 proposed toolkit

The proposed toolkit root directory is structured as Figure 68 demonstrates. Down below
is a short description about each sub-directory.

root/

datasets/

fabric/

training/

class-0/

img0-0.bmp (...)

class-1/

img1-0.bmp (...)

(...)

testing/

class-0/ class-1/ (...)

(...)

output/ logs/ models/ scripts/ utils/

architectures.py classifier.py communicator.py dataset.py helper.py

training.py classify.py

Figure 68: Developed deep learning toolkit directory tree.

• The datasets folder is used to store the data (in this case images) to be used for train-
ing, validation and testing. This directory aims to simplify the data input, however, if
the data is stored on other directory, the toolkit also accepts the most convenient path
(either relative or absolute). Inside the training data directory, the program expects
that classes are separated in sub-directories. For example, class-0 images should be
in a folder, class-1 images in other folder, and so on. It is a practical way of labeling
data too. The same rule applies to the validation and testing sets. Another alternative
is to load the images set by a index. This file must be in a comma-separated-values
(CSV) format where the first column corresponds to the global path to the image and
the second column to its respective class or label.

• The output folder is meant to store report files that result from training and testing.
These files are created with the aim of letting the user know the evolution of the learn-
ing, how the training is evolving and figure out the network’s inference capabilities.
The report files are stored in CSV format and contain the training, validation, test
accuracy and the elapsed time. By default, each write is done at every 5 epochs. Yet,
the user can set the snapshot frequency to a higher/lower value. By one hand, a lower
value, will increase the number of network’s evaluations and consequently increase
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the training time. It will also give a good resolution how the learning process is evolv-
ing. By the other hand, with a higher value, the resolution of the learning evolution
is less precise. That’s why it is important to tune an intermediate value that does
not overload the training operation with evaluation and simultaneously offers a good
representation of the learning progress.

1 # ############### TRAINING REPORT #################
2 # Images path | <p a t h t o d a t a s e t>
3 # Val idat ion | 0 . 3 0

4 # Images shape | (<height >,<width>,<channels >)
5 # Archi tecure | <archi tecture name>
6 # Bacth S ize | <b a t c h s i z e>
7 # Snap/Epoch | 5

8 # Max epochs | 1000

9 # Eval c r i t e r i a | 0 . 7 5

10 # #################################################
11 t r a i n , va l ida t ion , t e s t , time
12 0 . 0 0 , 0 . 0 0 , 0 . 0 0 , 0 . 0 0

13 7 9 . 8 7 , 7 8 . 2 3 , 7 2 . 8 6 , 6 6 . 1 0

14 9 2 . 0 0 , 9 0 . 6 1 , 8 5 . 5 4 , 1 3 0 . 8 9

15 1 0 0 . 0 0 , 9 9 . 1 3 , 9 8 . 2 1 , 1 9 9 . 3 4

16 ( . . . )

Listing A.1: Snippet of a training report file.

• The logs directory holds the original Tensorflow output logs that can be viewed on
Tensorboard. It allows to visualize the network architecture through a node graph
representation. Tensorboard can be initialized by the following command:

1 > tensorboard −−l o g d i r =” path/to/log/ f i l e o r d i r ”

Listing A.2: How to initialize Tensorboard to visualize training logs.

This command creates a local server that can be accessed by an internet browser.

• By default, the network’s trained models are saved on the models directory. This
feature is very useful because it allows the user to pick up those trained models and
do whatever he wants, whether for continuing the training or immediately using it
for image classification tasks.

• The scripts folder contains a bunch of auxiliary scripts that can be helpful for the user
in certain situations. Sometimes, the original datasets cannot be directly fed to the
network due to its properties. So they may need some pre-processing, like cropping
or resizing, in order to suit properly on the network.
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• The utils directory contains a set of modules and a script that are critical for the good
execution of the toolkit. The modules inside this folder are imported by the training
and testing scripts in order to scope things to a even higher level of abstraction and
minimize the number of lines needed to do a certain action. This was meant to
maintain a simple and readable code.

– The module architectures.py has a main function that matches an architecture
nomenclature with a network topology. Each network topology has its definition,
like the configuration of the convolutional, max-pooling and fully-connected lay-
ers. The user can create/edit the network topology that he wants. Listing A.3
has a snippet of how to configure the Alexnet Krizhevsky et al. (2012) architec-
ture on the toolkit. The function build network is responsible for matching the
architecture name to its definition.

1 import t f l e a r n
2

3 # a l e x n e t network a r c h i t e c t u r e
4 def b u i l d a l e x n e t ( n c l a s s e s ) :
5 net = t f l e a r n . input data ( shape =[None , 224 , 224 , 3 ] ,
6 data preprocess ing=img prep
7 data augmentation=data aug )
8

9 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =96 , f i l t e r s i z e =11 , s t r i d e s =4 ,
10 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
11 net = t f l e a r n . max pool 2d ( net , k e r n e l s i z e =3 , s t r i d e s =2)
12 net = t f l e a r n . l o c a l r e s p o n s e n o r m a l i z a t i o n ( net )
13

14 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =256 , f i l t e r s i z e =5 , s t r i d e s =1 ,
15 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
16 net = t f l e a r n . max pool 2d ( net , k e r n e l s i z e =3 , s t r i d e s =2)
17 net = t f l e a r n . l o c a l r e s p o n s e n o r m a l i z a t i o n ( net )
18

19 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =384 , f i l t e r s i z e =3 , s t r i d e s =1 ,
20 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
21 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =384 , f i l t e r s i z e =3 , s t r i d e s =1 ,
22 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
23 net = t f l e a r n . conv 2d ( net , n b f i l t e r s =256 , f i l t e r s i z e =3 , s t r i d e s =1 ,
24 a c t i v a t i o n = ’ r e l u ’ , padding= ’ same ’ )
25 net = t f l e a r n . max pool 2d ( net , k e r n e l s i z e =3 , s t r i d e s =2)
26 net = t f l e a r n . l o c a l r e s p o n s e n o r m a l i z a t i o n ( net )
27

28 net = t f l e a r n . f u l l y c o n n e c t e d ( net , n u n i t s =4096 , a c t i v a t i o n = ’ r e l u ’ )
29 net = t f l e a r n . dropout ( net , keep prob = 0 . 5 )
30 net = t f l e a r n . f u l l y c o n n e c t e d ( net , n u n i t s =4096 , a c t i v a t i o n = ’ r e l u ’ )
31 net = t f l e a r n . dropout ( net , keep prob = 0 . 5 )
32 net = t f l e a r n . f u l l y c o n n e c t e d ( net , n u n i t s =nc lasses ,
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33 a c t i v a t i o n = ’ softmax ’ )
34

35 net = t f l e a r n . r e g r e s s i o n ( net , opt imizer= ’momentum ’ ,
36 l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
37 l e a r n i n g r a t e = 0 . 0 0 1 )
38

39 re turn net
40

41 # vgg16 network a r c h i t e c t u r e
42 def build vgg16 ( ) :
43 ( . . . )
44 re turn net
45

46 # general network a r c h i t e c t u r e bui lder
47 def build network ( archi tecture name , n c l a s s e s ) :
48 i f ( archi tec ture name == ” a l e x n e t ” ) :
49 net = b u i l d a l e x n e t ( n c l a s s e s )
50 e l i f ( archi tec ture name == ”vgg16” ) :
51 net = build vgg16 ( n c l a s s e s )
52 ( . . . )
53 e l s e :
54 net = None
55

56 re turn net

Listing A.3: Snippet of how to configure the Alexnet network architecture on the
proposed toolkit architectures.py module.

– The module classifier.py contains multiple classification methods including one
by sliding window. For instance, this method, allows the classification of high
resolution images that can’t be directly fed to the network. So, firstly they are
splitted into smaller images and then feeded to the network. Other option is to
load a trained model for classification as a local TCP/IP server that can be ac-
cessed remotely in a local area network. The need of this module appeared from
many desynchronized versions of multiple scripts that used the same classifica-
tion algorithm. Thus, from now, when something need to be updated/fixed, it is
done just once.

– The communicator.py script creates a socket communication with a local server.
Loading a moderated size trained models takes a few seconds and it can be a
little frustrating to make it several times. The module classifier.py has a method to
create a local server that loads a trained model once and then the communicator
script is used to communicates with the local server by sending the path to the
image that will be classified and its respective class label.
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– The dataset.py module is responsible for loading the training and testing data and
shape it according to the network’s definition. This module can also be used to
pre-processing and data augmentation operations.

– The helper.py module has a set of auxiliary functions to make the code even
cleaner. For example, it contains functions that are responsible for printing to
screen or to file and check if certain stop criteria are attained or monitor the
hardware resources being used.

• The training.py script suffered several updates along the toolkit implementation.
Prior versions only allowed the training of the network and saving of the resulting
models. The current version mixes both training and testing. To be clearer, during the
training, the validation and test set are also evaluated in the current model. Whenever
it reaches a new best learning state, the model is saved on disk. By default, the train-
ing script considers that a correct classification on the validation set has a confidence
of, at least, 75%. Once the accuracy on the validation set reaches a value of 97.5% (con-
sidering the classificaton confidence threshold). If there is no progress in the learning
process in 250 epochs, the training is automatically stopped and the model is saved
on disk. The maximum number of training epochs is set to 1000. Once again, the user
can disable this option or create a custom stop criteria with other constraints more
interesting to their specific problems.

1 usage : t r a i n i n g . py [−h ] −−d a t a d i r DATA DIR −−arch ARCH −−run id RUN ID
2 [−−bs iz e BSIZE ] [−−v a l d i r VAL DIR ]
3 [−− t e s t d i r TEST DIR ] [−−height HEIGHT]
4 [−−width WIDTH] [−−v a l s e t VAL SET ] [−−gray GRAY]
5 [−−snap SNAP] [−−pproc PPROC] [−−aug AUG [AUG . . . ] ]
6 [−−n epochs N EPOCHS] [−− e v a l c r i t EVAL CRIT ]
7

8 High l e v e l deep learn ing t o o l k i t t r a i n i n g s c r i p t .
9

10 l i s t of arguments :
11 −h , −−help show t h i s help message and e x i t
12 −−d a t a d i r DATA DIR <REQUIRED> d i r e c t o r y to the t r a i n i n g data
13 −−arch ARCH <REQUIRED> a r c h i t e c t u r e name
14 −−run id RUN ID <REQUIRED> run i d e n t i f i e r
15 −−bs iz e BSIZE batch s i z e ( d e f a u l t =16)
16 −−v a l d i r VAL DIR d i r e c t o r y to the v a l i d a t i o n data ( d e f a u l t =None )
17 −−t e s t d i r TEST DIR d i r e c t o r y to the t e s t i n g data ( d e f a u l t =None )
18 −−height HEIGHT images height ( d e f a u l t =64)
19 −−width WIDTH images width ( d e f a u l t =64)
20 −−v a l s e t VAL SET percentage of t r a i n i n g data to v a l i d a t i o n
21 ( d e f a u l t = 0 . 3 )
22 −−gray GRAY convert images to g ra ys ca le ( d e f a u l t =Fa l se )
23 −−snap SNAP evaluate t r a i n i n g / v a l i d a t i o n / t e s t s e t s
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24 frequency ( d e f a u l t =5)
25 −−pproc PPROC enable/ d i s a b l e pre−process ing ( d e f a u l t =True )
26 −−aug AUG [AUG . . . ] enable data augmentation ( d e f a u l t = [ ] )
27 −−n epochs N EPOCHS maximum number of t r a i n i n g epochs ( d e f a u l t =1000)
28 −−e v a l c r i t EVAL CRIT c l a s s i f i c a t i o n conf idence ( d e f a u l t = 0 . 7 5 )

Listing A.4: Training script help menu.

On Listing A.5 is presented a minimalist snippet of code that explains how the train-
ing script is structured.

1 import t f l e a r n
2 from u t i l s import a r c h i t e c t u r e , dataset , c l a s s i f i e r , helper
3

4 # load data
5 X , Y , nc = d a t a s e t . l o a d d a t a s e t ( ’ path/to/ t r a i n i n g d a t a / ’ )
6 Xv , Yv = d a t a s e t . l o a d d a t a s e t ( ’ path/to/ v a l i d a t i o n d a t a / ’ )
7 Xt , Yt = d a t a s e t . l o a d d a t a s e t ( ’ path/to/ t e s t i n g d a t a / ’ )
8

9 # bui ld network
10 network = a r c h i t e c t u r e . build network ( archi tec ture name= ’ archi tec ture name ’ ,
11 n c l a s s e s =nc )
12 # bui ld model
13 model = t f l e a r n .DNN( network )
14

15 # v a r i a b l e s to help c o n t r o l i n g the t r a i n i n g stop c r i t e r i a
16 epoch = 0

17 b e s t t e s t i n g a c c = 0 . 0

18 no progress = 0

19 snapshot = 5

20

21 # t r a i n model a t maximum of 1000 epochs
22 while epoch < 1000 :
23 t r a i n a c c = c l a s s i f i e r . my evaluate (X , Y)
24 # c a l c u l a t e v a l i d a t i o n s e t accuracy with c l a s s i f i c a t i o n
25 # conf idence above 75%
26 v a l a c c = c l a s s i f i e r . my evaluate (Xv , Yv , conf idence = 0 . 7 5 )
27 t e s t a c c = c l a s s i f i e r . my evaluate ( Xt , Yt )
28 helper . p r i n t a c c u r a c y ( t r a i n a c c , va l acc , t e s t a c c , o n f i l e =True )
29

30 # i f reached a new bes t l earn ing s t a t e
31 # − r e s e t s no learn ing progress counter
32 # − saves current bes t t r a i n e d model
33 i f ( t e s t a c c > b e s t t e s t i n g a c c ) :
34 no progress = 0

35 model . save ( ’ path/to/save/trained model ’ )
36 e l s e :
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37 # e lse , increments the no learn ing progress counter
38 no progress += snapshot
39

40 # check i f v a l i d a t i o n accuracy has achieved a s p e c i f i c value OR
41 # i f the no learn ing progress counter reached the l i m i t
42 i f ( v a l a c c > 9 7 . 5 or no progress > 250 ) :
43 break
44

45 # t r a i n f o r i n t e r v a l s of ’ snapshot ’ epochs
46 model . f i t (X , Y , n epoch=snapshot , b a t c h s i z e =16 , run id= ’ run ID ’ ,
47 v a l i d a t i o n s e t =(Xv , Yv) )
48 epoch += snapshot
49

50 # p r i n t t r a i n i n g , v a l i d a t i o n and t e s t i n g accuracy on screen
51 helper . p r i n t a c c u r a c y ( t r a i n a c c , va l acc , t e s t a c c , on screen=True )

Listing A.5: Training script minimalist sample.

• The classify.py script is meant for testing a trained model on the field. It relies on
the classification methods that are defined on the utils/classifier.py module described
previously. This script is essentially used like a test application template that is edited
depending on the requirements of the problem.

1 usage : c l a s s i f y . py [−h ] −−d a t a d i r DATA DIR −−arch ARCH −−model MODEL
2 [−−height HEIGHT] [−−width WIDTH] [−−gray GRAY]
3 [−−pproc PPROC] [−− e v a l c r i t EVAL CRIT ]
4 [−−aug AUG [AUG . . . ] ] [−−video VIDEO]
5 [−−save SAVE]
6

7 High l e v e l deep learn ing t o o l k i t c l a s s i f y i n g s c r i p t .
8

9 l i s t of arguments :
10 −h , −−help show t h i s help message and e x i t
11 −−d a t a d i r DATA DIR <REQUIRED> d i r e c t o r y to the t e s t i n g data
12 −−arch ARCH <REQUIRED> a r c h i t e c t u r e name
13 −−model MODEL <REQUIRED> t r a i n e d model path
14 −−height HEIGHT images height ( d e f a u l t =64)
15 −−width WIDTH images width ( d e f a u l t =64)
16 −−gray GRAY convert images to g ra ys ca le ( d e f a u l t =Fa l se )
17 −−pproc PPROC enable/ d i s a b l e pre−process ing ( d e f a u l t =True )
18 −−e v a l c r i t EVAL CRIT c l a s s i f i c a t i o n conf idence ( d e f a u l t = 0 . 7 5 )
19 −−aug AUG [AUG . . . ] enable data augmentation ( d e f a u l t = [ ] )
20 −−video VIDEO use video capture device/video f i l e ( d e f a u l t =0)
21 −−save SAVE save output image ( d e f a u l t =Fa l se )

Listing A.6: Classifying script help menu.
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Both training and the classifying scripts, as well as many others auxiliary scripts, when
called in the command prompt with the ’-h’ argument, give a minimalist hint about their
usage, as Listings A.4 and A.6 suggest.
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