
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Helder Manuel Pereira Novais

Community Based Repository
for Georeferenced Traffic Signs

February 2018

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Helder Manuel Pereira Novais

Community Based Repository
for Georeferenced Traffic Signs

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
António José Borba Ramires Fernandes

February 2018

A C K N O W L E D G E M E N T S

I would like to express my deep gratitude to Professor António Ramires Fernandes for his
patient guidance and valuable suggestions and critiques throughout the development of
this dissertation.

I would like to thank Alexandra Ferreira who supported me and accompanied me closer
during these difficult months.

I would also like to express my gratitude to all my friends, who heard my complaints
when things did not go as planned and provided advice whenever they could.

Finally, I wish to thank my parents for their invaluable support, encouragement and faith
during my studies.

ii

A B S T R A C T

In traffic environments, road signs have a key role to control, warn, and command or pro-
hibit the driver of certain actions. Traffic sign maintenance is essential to prevent negative
events. In order for these traffic signs to play the role they were designed for, periodic on-
site inspections are essential and followed out to determine if signs are in good condition
and visible, both during the day and night. However, periodic inspections are time and cost
consuming.

Another issue is related to the drivers’ awareness to the traffic signs on the road. Many
factors, both internal and external to the driver, may potentially contribute to him missing a
sign. Given the purpose of this dissertation, we will focus primarily on the external factors
such as the sign being damaged or occluded, or distractions caused by the many gadgets
inside the vehicle. Due to all these extraneous influences, a traffic sign recognition system
may help the driver to respect these signs and increase significantly their safety, as well as
the others around them.

Some high-end vehicles already have such a warning system, at least for danger signs.
However, drivers with these vehicles represent a small fraction of the total driving force.
This dissertation aims at bringing such a system to a much broader audience.

Smartphones are one of the most used devices by society today, mostly due to the many
functionalities they provide in day to day life and their relative accessible monetary value.
The increased computational power and cameras’ quality improvement of these devices
over the years make them good candidates to support the access to this kind of technology
to all. In other words, smartphones of this day and age have the necessary resources to be
used as instruments for sign recognition.

Hence, we propose a dual purpose community based approach. On the one hand, each
driver can use his mobile device to detect, recognize and geolocate traffic signs, contributing
to the traffic sign central repository. Detection is performed using Cascade Classifiers,
while a Convolutional Neural Network supports the recognition phase. The repository,
based on the information received from the clients, can be used to provide sign status
reports and to enable more direct and timely inspection instead of relying on prescheduled
global inspections. On the other hand, drivers would have access to the database of traffic
signs, therefore being able to receive real-time notifications regarding traffic signs such as
speed limit signs, school proximity, or road construction signs. Hence, allowing the system
to perform its function even if the recognition phase is not active when used in a low
computational power device.

iii

R E S U M O

Em ambientes rodoviários, os sinais de trânsito têm um papel fulcral para controlar, avisar
e ordenar ou proibir o condutor de realizar certas ações. É essencial a manutenção dos
sinais de trânsito para prevenir acontecimentos negativos. Para que os sinais de trânsit
desempenhem a sua função, as inspeções rodoviárias periódicas são essenciais para deter-
minar se os sinais estão em bom estado e visíveis, quer de dia, quer de noite. No entanto,
as inspeções são bastante dispendiosas.

Outro problema está associado à consciência dos condutores em relação aos sinais de
trânsito nas estradas. Muitos fatores, quer sejam eles internos ou externos, podem con-
tribuir para um condutor não reparar num sinal, tal como a obstrução ou danificação do
mesmo ou mesmo distração causado pelos gadgets dentro do veículo. Devido a todas estes
influências, um sistema de reconhecimento de sinais de trânsito pode ajudar o condutor a
respeitar estes sinais e aumentar significativamente a sua segurança e dos restantes em seu
redor.

Alguns veículos de alta gama já possuem este tipo de sistemas de alerta, pelo menos para
sinais de trânsito. Porém, esses veículos representam uma pequena fração da força motriz
total. Esta dissertação visa levar esse sistema a um público muito mais amplo.

Os smartphones são um dos dispositivos mais usados pela sociedade nos dias de hoje,
muito devido às funcionalidades que disponibilizam no dia-a-dia e seu valor monetário
relativamente acessível. O aumento do poder computacional e melhoramento da qualidade
da câmara destes dispositivos ao longo dos anos, fazem destes bons candidatos para su-
portar o acesso deste tipo de tecnologia a todos. Por outras palavras, os smartphones deste
de hoje possuem os recursos necessários para serem usados como instrumentos para o
reconhecimento de sinais.

Portanto, propomos uma abordagem baseada na comunidade com um duplo propósito.
Por um lado, cada condutor pode usar o seu dispositivo móvel para detetar, reconhecer e
georeferenciar sinais de trânsito, contribuindo para um repositório centralizado. A deteção
é realizada através de Cascade Classifiers, enquanto que uma Rede Neuronal Convolucional
trata da fase de reconhecimento. O repositório, baseado na informação recebida por parte
dos clientes pode ser usada para fornecer relatórios acerca do estado dos sinais, de modo a
possibilitar inspeções mais diretas e atempadas em vez de inspeções globais pré-agendadas.
Por outro lado, os condutores teriam acesso a uma base de dados de sinais de trânsito e
portanto, permitindo criar notificações em tempo real sobre sinais de trânsito tais como
sinais de limite de velocidade, proximidade de escolas ou sinais de construção de estradas.

iv

C O N T E N T S

1 introduction 1

1.1 Objectives 2

1.2 Dissertation Structure 3

2 state of the art and related technologies 4

2.1 Computer Vision 4

2.1.1 Colour-based Detection 4

2.1.2 Shape-based Detection 5

2.1.3 Feature-based Detection 6

2.2 Artificial Neural Networks 9

2.2.1 Artificial Neurons 9

2.2.2 Layers 11

2.2.3 Network Architecture 11

2.2.4 Convolutional Neural Networks 12

2.3 Client-Server Communication Technologies 15

2.3.1 Representational State Transfer (REST) 15

2.4 Web Mapping Systems 17

2.4.1 Google Maps 18

2.4.2 OpenStreetMap 18

3 global framework architecture 19

3.1 Proposed Approach - solution 19

3.2 Client Side 21

3.2.1 Detection Module 22

3.2.2 Classification Module 24

3.2.3 Georeferencing Module 25

3.2.4 Client-Server Communication Module 27

3.2.5 Interface Module 27

3.3 Server Side 30

3.3.1 Handling Reports from Clients 32

4 development and experiments 34

4.1 Implementation 34

4.1.1 Detection 34

4.1.2 Classification 38

4.1.3 Georeferencing 41

4.1.4 Client-Server Communication 42

v

Contents vi

4.1.5 Repository 45

4.1.6 Notifications 47

4.2 Tests and Results 48

4.2.1 Topologies Testing 48

4.2.2 CIFAR-10 network testing 49

4.2.3 Client Testing 50

5 conclusion 54

5.1 Prospect for Future Work 54

a scientific paper 61

L I S T O F F I G U R E S

Figure 1 Haar Features 6

Figure 2 Basic LBP Operator 8

Figure 3 MB-LBP Operator 8

Figure 4 Artificial Neuron Representation 9

Figure 5 Sigmoid (Left) and Hyperbolic Tangent (Right) functions 10

Figure 6 Receptive Field. Source: Li and Karpathy (2015) 13

Figure 7 Max-polling with a 2x2 filter 15

Figure 8 System Architecture Scheme 20

Figure 9 Client side architecture 22

Figure 10 German Traffic Sign Recognition Benchmark dataset. Source: (Hijazi
et al., 2015) 23

Figure 11 Network architecture 25

Figure 12 Application Main Menu 28

Figure 13 Stopped car 28

Figure 14 Driving example 29

Figure 15 Detection example 29

Figure 16 Overspeeding example 30

Figure 17 Repository database logical model 31

Figure 18 Repository process 33

Figure 19 Sign category examples 34

Figure 20 Neural network training progress 40

Figure 21 Distance differences between Haversine formula and Spherical Law
of Cosines 46

Figure 22 GTSRB incorrect recognition examples 49

Figure 23 BTSD incorrect recognition examples 49

Figure 24 Benchmark of CISC vs RISC processors 50

Figure 25 Informative and danger sign comparison 51

Figure 26 Speed limit templates comparison 52

Figure 27 German 80 speed limit sign 52

Figure 28 Left: Sign computed locations (pink), mean value (blue) and sign
real location (green); Right: Vehicle GPS location 53

vii

L I S T O F TA B L E S

Table 1 HTTP methods in a typical RESTful API 17

Table 2 Portuguese sign dimensions 26

Table 3 DetectMultiScale method parameters 37

Table 4 build_hdf5_image_dataset method parameters 38

Table 5 Neural network accuracies 48

Table 6 GTSRB and BTSD recognition testing results 49

Table 7 Detection results 51

Table 8 Recognition results 51

viii

L I S T O F L I S T I N G S

4.1 Resize and cropping images . 35

4.2 Create files containing the list of positives and negatives images 35

4.3 Produce dataset of positive samples in a format supported by opencv_traincascade

command . 35

4.4 Train Cascade Classifier using LBP features . 36

4.5 Generate rectangle for the ROI . 37

4.6 Build HDF5 image dataset . 38

4.7 Load dataset . 39

4.8 Network layers . 39

4.9 Network training . 39

4.10 Save the network model . 40

4.11 Retrofit HTTP API as a Java Interface . 42

4.12 ServiceGenerator class . 43

4.13 SignsData Java object . 44

4.14 SignData Java object . 44

4.15 CreateRequests class . 44

4.16 Update sign query . 47

4.17 Bulk Insert query example . 47

ix

1

I N T R O D U C T I O N

Road traffic is an interaction between drivers, vehicles and pedestrians. One of the most
important elements in road infrastructures are traffic signs. They control the traffic flow, in-
form about the directions and distances, warn about the road condition, prohibit/mandate
the driver of doing certain actions and guide the right of way. Thus, it is really important
to maintain them in good conditions, to improve the prevention of negative events.

One of the most efficient instruments to detect issues on road infrastructures is road
inspection (Mccarthy et al., 2010). This assessment consists of periodical on-site evaluation
carried out by trained safety expert teams and result in a formal report which is delivered
to the relevant road authority. The most important part of the inspection relies on traffic
control elements maintenance like traffic signs and road surface markings (Cardoso et al.,
2007). It implies the comparison between the current road conditions against the stored
reference state. Unfortunately, road safety inspections are very expensive both regarding
the time and expertise required.

Several approaches for automating (at least partly) the inspection procedure have been
developed ((S. R. Madeira and Santos, 2005) and (S. Maldonado-Bascon and Acevedo-
Rodriguez, 2008)). The process is based on synchronizing the GPS coordinates with the
image acquired by a camera used solely for this purpose. However, these automated proce-
dures require to have a vehicle equipped with at least one of these cameras to capture the
road images and a GPS receiver to georeference the road elements, like traffic signs, and
inertial sensors or odometers to increase the system accuracy. To achieve a full inspection
under these circumstances, it requires a large amount of time because it is performed by
one car only.

Furthermore, depending on the interval at which the road inspections are carried out,
a sign may find itself in poor visible conditions for a long period of time. Signs which
are not clearly visible may be easily missed by the driver, potentially being a safety issue.
Additionally, with all the gadgets in recent cars it is not hard to miss important signs. To
improve safety it is important to increase the awareness of the driver.

Due to that purpose, many traffic signs detectors and classifiers systems have been de-
veloped in the last ten years (A. Broggi and Porta, 2007). Most traffic sign recogition (TSR)
systems have a detection phase and a classification phase. There are several techniques that

1

1.1. Objectives 2

can be applied for traffic sign recognition: based on colour, shape, among others (Nguwi
and Kouzani, 2006). The TSR systems have become a crucial part of advanced driver as-
sistant systems (ADAS). Normally the main purposes are the recognition of speed limits
and no overtaking signs. In this way, these systems can warn the driver if the top speed is
being exceeded or if an overtaking is being done incorrectly due to a continuous line which
forbids the car to cross it. However, not all vehicles have the possibility or capability to
incorporate these kind of systems in their internal computational systems.

All these problems lead us to arrange a way to reconcile the peoples’ safety and reducing
the road inspection costs, making this assessment available to all.

Nowadays, mobile devices like smartphones or tablets are available to everyone since
they have become increasingly powerful and monetarily accessible over the years. They
have integrated various types of sensors such as accelerometer, gyroscope, GPS and Wi-
Fi connection. It is important to emphasize that the quality of the cameras have been
improving as well. This makes these devices very good candidates to achieve these goals.

1.1 objectives

With this dissertation it is intended to explore the following topics:

• Reliably detect, recognize and georeference traffic signs;

• Be able to resolve recognition failures due to environment lighting variations and
deformed signs;

• Use the community to contribute with georeferencing data to a central database;

• Use the data stored in the database to warn beforehand the driver of signs in his
surrounding area;

• Evaluate the viability of this type of technology in mobile devices.

Furthermore we also could extend the framework to:

• Use the data stored in the database to elaborate reports for road traffic sign mainte-
nance;

• Use the data stored to create a map of traffic signs using web mapping services (e.g.
Google Maps).

The main goal is to create a community based framework to deal with both these prob-
lems which consists of a server side repository and a client mobile application.

1.2. Dissertation Structure 3

On the one hand, we have a client mobile application that can recognize traffic signs
and display warnings to the driver. Signs recognised by the clients’ application are sent
to a server, maintaining a central repository, which in turn delivers a partial copy of the
repository signs to the clients.

The server, based on the reports received by the clients, can infer the signs’ condition,
i.e., when a sign is in good condition, or damaged and/or occluded. Therefore, it has the
potential to avoid global traffic sign inspections and timely direct inspection teams to signs
which are potentially damaged or occluded.

On the other hand, since clients receive the data of previously recognised signs from the
repository, they do not rely only on the effective recognition of signs to be able to display
warnings to the user. This makes this framework suitable to a wide range of devices. High-
end devices, computationally capable of performing the recognition tasks, will be able to
contribute to the central repository, while less performing devices can still benefit from the
traffic sign repository for issuing alerts to the driver.

1.2 dissertation structure

This document will be divided in 5 chapters:

• Chapter 1 describes the motivation behind the choice of this theme and the objectives
of this work;

• In Chapter 2 some reviews will be presented from previous studies related to de-
tection and classification methods, artificial neural networks, server communication
technologies and web mapping services;

• Chapter 3 provides an overview of the proposed client-server architecture;

• The implementation details of the proposed framework and tests describing the real
usage of the client application, results from the sign recognition and detection phase,
and georeferencing accuracy are reported in Chapter 4;

• Conclusions and what it is proposed to do as future work are shown in Chapter 5.

2

S TAT E O F T H E A RT A N D R E L AT E D T E C H N O L O G I E S

This chapter covers some of the technologies and methods that will be explored and imple-
mented in Chapters 3 and 4.

2.1 computer vision

Computer vision aims to build systems capable of performing some human visual system
tasks or surpass them in same cases (Huang, 1996). Many vision tasks are related to the
extration of 3D environment information from 2D devices, like video cameras, and then
processing the information in order to detect or recognize a specific entity.

In the next sections some computer vision techniques will be presented that can be used
to detect traffic signs.

2.1.1 Colour-based Detection

Colour-based detection is a technique widely used due to the fact that the colours of traffic
signs are normally easy to distinguish from the surrounding environment ((Tran, 2013) and
(Laguía, 2016)). Hence, the number of colours in use and their usage significantly influence
the implementation and performance of the algorithm.

However, in captured images of real world scenes, it is not always possible to obtain
required coloured regions by applying threshold directly to RGB colour space, due to ex-
ternal factors, like illumination conditions. To overcome the problem of colours presented
in different modes, this factor should be separated from colour information. Hereupon,
the best strategy is to work on different colour spaces. In De la Escalera et al. (2003), HSI
(Hue, Saturation and Intensity) space was chosen for colour analysis. Hue is the angle,
specified such that red is at zero, green at 120 degrees, and blue at 240 degrees. Hue thus
represents what humans implicitly understand as colour. It is the particular wavelength
frequency (HSI). On the other hand, saturation refers to the dominance of hue in the colour.
In other words, saturation is the purity of the colour. Intensity is the brightness of light

4

2.1. Computer Vision 5

present. When light is at its fullest intensity, colours will become bright. To avoid lighting
conditions problems, only Hue and Saturation components are used.

Other studies conducted a more exhaustive colour study. For example, Y. Aoyagi (1996)
noted that colour sign segmentation cannot be done, because the Hue component changes
with the deteorioration of the signs caused by conditions like distance, weather, and sign
age. Concluding, the segmentation stage is not absolutely reliable in perfectly detecting the
sign pixels.

There are other problems from colour-filtering such as noise that leads to many false
positive pixels. These pixels could be further filtered out using a simple noise filter, but
usually a more sophisticated technique involving shape detection is used to separate real
signs from large chunks of false positive objects (Tran, 2013).

2.1.2 Shape-based Detection

Just like signs have specific colours, they also have very well defined shapes that can be
searched for. The most common signs have the following shapes:

• circular for prohibitive or mandatory signs.

• triangular if the sign indicates danger; if the triangle is inverted is a yield sign.

• retangular are used for recommendation or information signs.

• the octagonal shape is only used for the stop sign.

Shape based methods ignore the colour in favor of the characteristic shape of signs. Shape
detector developers argue that colour-detection methods are outdated since all colour de-
tectors also use shape information for further filtering, and are unreliable due to changes
in lighting and sign wear (Mogelmose et al., 2012).

Several approaches for shape-based detection of traffic signs have been developed, being
the approximation of the Hough transform approach the most common (Brkic, 2010). Other
approaches like Gavrila (1999) performs simple template matching from a database in a
image. The Loy and Barnes (2004) method is similar to the Hough transform. It uses the
symmetric nature of the shapes, together with the pattern of edge orientations exhibited by
equiangular polygons with a known number of sides, to establish possible shape centroid
locations in the image.

Although they appear to be a more robust way of detection, they suffer from object occlu-
sion, rotation or distortion. Hence, the sign shape can look different and not all detectors
can handle that.

2.1. Computer Vision 6

2.1.3 Feature-based Detection

Colour and shape-based detection using heuristic algorithm are relatively cheap operations.
However, if traffic signs are damaged, occluded by trees or bushes or poorly lit, detection
may become an issue. To overcome this problem, a more generic sign detection based on
features could be used. The feature concept is very general and the choice of feature in
a particular computer vision system may be highly dependent on the specific problem at
hand.

2.1.3.1 Haar Features

There are many methods for extracting the most significant features from images to perform
traffic sign recognition. One of the earliest feature based detection methods was proposed
by Paul Viola and Michael Jones (Viola and Jones, 2001) where they used Haar wavelets
features. These features are similar to convolution kernels which are used to detect the
presence of a specific feature in the input image such as edges, corners, line ends, or spots.
Each feature consists of two or more rectangular regions enclosed in a template. A simple
rectangular feature can be defined as the difference of the sum of pixels of areas inside
the rectangle, which can be at any position and scale within the original image (Wikipedia,
2016a). The feature value f of a Haar feature which has k rectangles is obtained by Equation
1:

f =
k

∑
i=1

w(i).µ(i) (1)

where µ(i) is the mean intensity of the pixels in a image enclosed by the ith rectangle
(Pavani et al., 2010). Henceforth, we will refer to the quantity µ as the rectangle mean. In
equation 1, w(i) is the weight assigned to the ith rectangle. The sum of all weights must be
equal to zero. So the values assigned to the rectangles in Figure 1(a) must be -1 and 1. The
main problem is the number of all possible parameters.

a b c

-1 1

1

1

-1

-1

-1 1

-2
1

Figure 1.: Haar Features

2.1. Computer Vision 7

There are only 2 two-rectangle features, 2 three-rectangle features (Figure 1(b)) and 1

four-rectangle feature (Figure 1(c)). The two-rectangle features can be define as a 1x2 pixel
block or 2x1 if it is 90 degrees rotated. The same for the three-rectangle feature, but with a
pixel block of 1x3 or 3x1. The four-rectangle feature has a pixel block of 2x2 so the result
is the same even if rotated. So accounting to all positions, scales and types of features, we
end up calculating over 162000 features for a 24x24 window. Although each feature can
be computed quite efficiently, calculating the complete set is extremely expensive. Besides,
most of the features are irrelevant to detect a certain object in the image. The best strategy
is selecting the best features and this can be made with AdaBoost (Schapire, 2013).

For each feature, it finds the best threshold that will separate the positive or negative
examples. Naturally there will be errors. So, the features that can detect more than half the
cases are selected.

As simple as this can seem, it is not. Each image is given an equal weight in the be-
ginning. After each classification, weights of misclassified images are increased. Then the
process continues recursively until the required accuracy is achieved or required number
of features are found (Open Source Computer Vision). The individual features are called
weak classifiers. The linear combination of all of these classifiers constructs a strong clas-
sifier. According to the paper, the final setup had around 6000 features which is a huge
reduction from the initial over 162000. However, applying 6000 features is still inefficient.

For this purpose, the Cascade of Classifiers was introduced in order to distribute all
features in groups for different stages of classifiers (early stages have less features and are
faster than subsequent ones). A window is discarded if it fails in any stage. It is considered
an object region only if it passes in all stages.

2.1.3.2 Local Binary Patterns Features

Another type of feature is called Local Binary Patterns (LBP) (Huang et al., 2011) . Is a non-
parametric operator which summarizes the local special structure of an image. To create
LBP features first it is necessary to split the examined window into multiple cells(e.g 16x16

pixels for each cell). For each cell, binary comparisons of pixel intensities between the center
pixel and its neighbors are used, from the top-left pixel in clockwise manner (Figure 2).

If a neighbor has a lower intensity than the center pixel it is converted to zero, otherwise
to one. The output will be an eight-digit binary number that corresponds to a 256 decimal
value. Then, a histogram is computed, over the cell, of the frequency of each value. His-
tograms may or may not be normalized. Finally, the histograms of all cells are concatenated
and can be used as a feature vector for the entire image.

Also LBP features are integers in contrast to Haar features that are floats (OpenCV User
Guide). Therefore, training and detection are several times faster in contrast to Haar fea-

2.1. Computer Vision 8

Threshold

5 9 1

4 4 6

7 2 3

1 1 0

1 1

1 0 0

Binary: 11010011

Decimal: 211

Figure 2.: Basic LBP Operator

tures. In terms of detection accuracy, it depends on training. It is possible to train a
LBP-based classifier that will provide almost the same quality as Haar-based one.

One limitation of the basic LBP operator is that its small 3x3 neighborhood cannot capture
dominant features with large scale structures. To overcome this limitation the LBP operator
was later generalized to use neighborhoods of different sizes. The Multi-scale Block Local
Binary Patterns (MB-LBP) (Liao et al., 2007) is a solution that uses sub-region average gray-
values for comparison instead of individual pixels. The whole filter is composed by 9 blocks,
where the size of the operator is a parameter. Figure 3 represents an operator of size 9x9.
It has several advantages compared to LBP: it is more robust, provides a more complete
image representation, by capturing the micro and macro information from a sub-region and
it can be computed very efficiently using Integral Images (Viola and Jones, 2001).

1 2 3

8 0 4

7 6 5

Figure 3.: MB-LBP Operator

Another extension to the original LBP uses so called uniform patterns. An LBP pattern is
called uniform if it contains at most two bitwise transitions from 0 to 1 or vice versa when
the corresponding bit string is considered circular. For example, 00000000 has no transition
and 00011100 has two transitions. Ojala et al. (2002) noticed that in their experiments with
texture images, uniform patterns account for around than 90% of all patterns when using
a 3x3 neighborhood. Using uniform patterns, the length of the feature vector for a single
cell reduces from 256 to 59, if we are working with the same neighborhood. This improves

2.2. Artificial Neural Networks 9

the overall performance. However, the basic definition of uniform LBP patterns cannot be
used for MB-LBP. This is due to the fact that same properties of circular continuities in 3x3

patterns are not valid when the size of LBP block becomes larger. This leads to redundant
information and must be eliminated in order to produce efficient classifiers. Once more
the solution is using the AdaBoost algorithm to select the best features. Experiments show
that MB-LBP significantly outperforms other LBP based method in terms of accuracy (Liao
et al., 2007), being a more robust method, although it brings a little computational overhead
over the original LBP operator.

2.2 artificial neural networks

Artificial neural networks are processing devices (algorithms or actual hardware) modeled
after the neuronal structure of the mammalian cerebral cortex, but on a much smaller scale.
Many types of artificial neural networks exists today. They are configured for a specific
intent, such as pattern recognition or data classification. So they are an alternative as well
as a complement for image classification. Before discussing the basis of a neural network
in detail, it is essential to understand some basic concepts that define and describe them.

2.2.1 Artificial Neurons

An artificial neuron works similary to a biological neuron. The neuron receives inputs from
the other neurons (in case of the input neurons, the data comes from the environment).

ARTIFICIAL NEURON

Weighted

Sum of

Inputs

Total

Input

Activation

Function

Activation

Value

Transfer

Function

Figure 4.: Artificial Neuron Representation

Once in the neuron, the inputs are weighted and combined into a single value in the
box labeled weighted sum of inputs (Figure 4). Normally the inputs are simply weighted

2.2. Artificial Neural Networks 10

and added together. The result is the total input, which is transformed by another function
called the activation function.

The activation function dictates what the neuron is supposed to do with the signals after
the weights have had their effect. Depending on the complexity of the models, the activa-
tion function may or not take into account the previous state in conjunction of the weighted
sum of the neurons’ input. In most artificial neural networks the activation function is de-
terministic, but may be stochastic in more complex networks (Russell, 1993). The activation
value is then passed through the transfer function.

The transfer function defines how the activation value leaves the neuron and is dis-
tributed to the others (or to the outside environment for output neurons). In some cases,
the transfer function works like a threshold value. If the activation value is greater than a
given threshold, then the neuron will output a one. Otherwise, the resultant value will be
zero.

Most artificial neural networks use the transfer function as a saturation function where
a certain value reaches a maximum level has no further effect on the output of the neuron.
The most used saturation functions are the sigmoid function and the hyperbolic tangent
function. Both functions are continuous, and their values asymptotically approach a high
and low value, with a smooth transition in between. The sigmoid transfer functions’ output
ranges from zero to one (Figure 5). The main difference between the sigmoid and the
hyperbolic tangent function is that the second ranges from negative one to positive one. In
fact, the sigmoid and hyperbolic tangent functions are linked by Equation 2:

tanh(x) = 2.sigmoid(2x)− 1 (2)

The sigmoid tranfer function is normally used in networks which purpose is classification,
while the hyperbolic tangent function is used for prediction.

−1.0 −0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

x

y

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

x

y

Figure 5.: Sigmoid (Left) and Hyperbolic Tangent (Right) functions

2.2. Artificial Neural Networks 11

2.2.2 Layers

A neural network consists of groups of neurons arranged in defined structural units known
as layers. A layer of neurons is a group of neurons that share a functional feature. There
are three possible types of layers in a network, each one with a particular purpose. The
first layer is called input layer. The neurons in this layer have the job of receiving data from
the environment, like data files or any other transmitting devices. On the opposite side of
the network the neurons send back the data transformed to the user in a form predefined
by the setup of the network. This layer is the output layer. In between these two layers lies
one or more hidden layers, depending on the architecture and complexity of the network
as well as the computing power of the device. These layers are called hidden because the
user can not see their inputs and outputs because they connect only to other neurons. The
neural network can be fully connected, which means each hidden layer and each output
layer is connected to every unit in the layers either side.

2.2.3 Network Architecture

There are different types of neural networks but they are generally classified in two types
of architectures: feed-forward or feedback.

In feed-forward networks, the neurons do not communicate between them if they reside
on the same layer. This is an advantage because the networks can be computed much faster
because there are no delays due to the interaction between the neurons until they achieve a
steady state (Beale and Jackson, 1990). Also, the information flows only in one direction.

Feedback networks on the contrary can have signals travelling in both directions using
loops. The neurons are allowed to communicate with any other neuron, including them-
selves. The input data is continuously computed until the neurons settle into a state of
equilibrium. Feedback networks are good at reconstructing facts from incomplete and er-
ror filled inputs (Russell, 1993).

2.2.3.1 Backpropagation

The term backpropagation refers to a type of learning algorithm for adjusting the weights
in a multiple layer feed-forward network (Russell, 1993). Is a training method for artificial
neural networks proposed by Rumelhart and Hinton (1986) to solve the credit-assignment
problem.

Once the input has been propagated across the entire network to the output layer, the
output is then compared to the desired output, using a loss function which quantifies the
inaccuracy of predictions, and an error value is calculated for each of the neurons in the
output layer by subtracting the output value for the targeted one.

2.2. Artificial Neural Networks 12

The error values are then propagated backwards, starting from the output, until each
neuron has an associated error value which represents its contribution to the original output
(Wikipedia, 2016d). These errors are then used to update the weights in order to minimize
the loss function.

The importance of this process is that, as the network is trained, the neurons in the inter-
mediate layers organize themselves in such a way that different neurons learn to recognize
different characteristics of the total input space. After training, when an input pattern is
incomplete, neurons in hidden layers of the network will determine if the input contains a
pattern that is similar to a feature that each neuron have learned to recognize during the
training.

2.2.4 Convolutional Neural Networks

While classical artificial neural networks perform well for simple classification problems,
they have several drawbacks when it comes to real-world image based applications (Bouchain,
2006). This is due to the full connectivity between the neurons. For example, for a 32x32x3

(32 for width, 32 for height and 3 for the RGB colour channels) image, it generates 3072

connections per single neuron in a first hidden layer of the network. This does not scale
well with higher resolution images. In this kind of network architecture, the topology of
the input data is not taken in account treating all the pixels on the exactly same way. There-
fore, full connectivity of neurons is not a good option for image recognition, as the huge
number of parameters quickly leads to overfitting. Overfitting occurs when a model is
excessively complex, such as having too many parameters relative to the number of obser-
vations. A model that has been overfit has poor predictive performance, as it overreacts to
minor fluctuations in the training data (Wikipedia, 2016b).

A Convolutional Neural Network is a type of feed-forward neural network in which
the connection between the neurons is inspired by the organization of the animal visual
cortex, particularly from cats (Hubel and Wiesel, 1959). The animal visual cortex is the
most powerful visual processing system in existence, so it is natural trying to recreate
its behavior (LeNet). This model solves the problem of the classical neural networks by
exploiting the strong spatially local correlation present in natural images (Wikipedia, 2016c).
These networks take advantage of the fact that input consists of images. So, unlike ordinary
neural networks, the neurons are arranged in three dimensions: height, width and depth
(the depth refers to the third dimension of the activation volume, not the depth of a full
neural network, which indicates the number of layers in a network) (Li and Karpathy,
2015). There are many models that can be found in the literature, namely the Neocognitron
(Fukushima, 1980), HMAX (Serre et al., 2007) and LeNet-5 (LeCun et al., 1998).

2.2. Artificial Neural Networks 13

The architecture of a Convolutional Neural Network are commonly formed by three layer
types: convolutional layer, pooling layer and fully-connected layer (Li and Karpathy, 2015).

2.2.4.1 Convolutional Layer

The convolutional layer is the core of a Convolutional Neural Network that does most of
the computational work.

The layers’ parameters consist of a set of learnable filters (similar to kernels) which have
a small spatiality called receptive field (Figure 6), but extend through the full depth of the
input volume. The receptive field of the neuron can be seen as the filter size. For example,
a simple filter may have a size of 5x5x3, which represents the height, width and depth,
respectively. If the input volume size is 32x32x3 then each neuron in the convolutional
layer will have 5*5*3 = 75 weights. So, we can confirm that the connectivity is local in space
(5x5), but full along the input depth(3).

Figure 6.: Receptive Field. Source: Li and Karpathy (2015)

During the forward pass, each filter is convolved across the width and height of the
input volume, computing the dot product between the entries of the filter and the input,
producing a 2-dimensional activation map that gives the responses of that filter at every
spatial position. As a result, the network will learn filters that activate when they detect
some type of visual feature such an edge. The set of activation maps is stacked along the
depth dimension and produce the output volume.

The output volume size is controlled by three parameters: the depth, stride and zero-
padding.

1. The depth corresponds to the number of filters we would like to use, each one looking
for different features in the input. The set of neurons that are searching in the same
region is referred as depth column.

2.2. Artificial Neural Networks 14

2. The stride controls how the depth columns around the spatial dimensions(width and
height) are allocated. If the stride is one then every pixel will have a depth column.
This leads to overlapping receptive fields and large output volumes. Hence, the larger
the stride, the smaller the output volume will be and the receptive fields will overlap
less.

3. The last parameter zero-padding controls the output volume spatial size by padding
the borders of the input volume with zeros. In some cases is preferred to preserve
the spatial size of the input volume so the input and output width and height are the
same.

Another property in convolutional layers is the parameter sharing scheme that controls
the number of parameters. It relies on a reasonable assumption: if one feature is useful
to compute at some spatial position, then it should be useful to compute at a different
position. In other words, denoting a single 2-dimensional slice of depth as a depth slice, we
constrain the neurons in each depth slice to use the same weights. In the case of a volume
of size 32x32x96 it has 96 depth slices, each one of size 32x32. With a convolutional layer of
5x5x3 we have a total of 96*5*5*3 = 7200 weights instead of calculating 32*32*96*5*5*3 that
generates more than 7 million weights. Therefore, as all neurons in a single depth slice are
using the same weight vector, then the forward pass can be computed as a convolution of
the neurons’ weights with the input volume. This is why it is common to refer to the sets
of weights as a filter(or a kernel), that is convolved with the input (Li and Karpathy, 2015).

2.2.4.2 Pooling Layer

Another important concept is pooling which performs a form of non-linear down-sampling.
There are two ways to do pooling: max pooling and average pooling (Hijazi et al., 2015),
max pooling being the most common. This layer is normally inserted in-between successive
convolutional layers. It divides each depth slice into a set of rectangles and for each sub-
region discovers the maximum value. The most usual form is a pooling layer with filters
of size 2x2 and a stride of 2 applied to each slice, thus discarding 75% of the activations.
(Figure 7). Hence, reducing the spatial size of the input, the computational work is also
reduced, controlling the overfitting as well. Although these changes, the depth dimension
remains unaffected.

However, more recent studies disagree about the use of pooling layers. Instead they use
repeated convolutional layers only (Springenberg et al., 2014). To reduce the size of the
representation they suggest using larger stride in the convolutional layer.

2.3. Client-Server Communication Technologies 15

5

1

6

1

7

2

8

4

5

1

6

1

3

1

4

0

max pool with 2x2 filters
and stride 2

3

6

4

8

y

x

Single depth slice

Figure 7.: Max-polling with a 2x2 filter

2.2.4.3 Fully-connected Layer

The fully-connected layer, after several convolutional and max-pooling layers, is responsible
for the high-level reasoning in the neural network. It is often used as the last layer in a
Convolutional Neural Network. The neurons in the this layer have full connection to all
activations in the previous layer, like in regular neural networks.

2.3 client-server communication technologies

In the client-server computing paradigm, one or more clients and one or more servers,
along with the underlying operating system and communication systems, form a composite
system allowing distributed computation, analysis, and presentation (Sinha, 1992).

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems (Leach et al., 1999). The HTTP protocol is a
request/response protocol based on the client/server where entities act like HTTP clients,
and the Web server acts as a server.

The HTTP client sends a request to the server in the form of a request method and The
HTTP server responds with a status line, including a success or error code and possible
some body content.

There are abstraction architectures of this protocol in order to facilitate its use.

2.3.1 Representational State Transfer (REST)

Representational State Transfer (REST) is a software architectural style for designing state-
less network applications which usually runs over standardized HTTP protocol. REST is a
lightweight alternative of Remote Procedure Calls (RPC) and Web Services such as Simple
Object Access Protocol (SOAP) and Web Services Description Language (WSDL) standards.

2.3. Client-Server Communication Technologies 16

REST was originally introduced and defined in Roy Fielding PhD thesis in 2000 at UC
Irvine (Fielding, 2000).

Most of the modern web-services provide REST API for HTTP-based communication. An-
other alternative would be to use SOAP technology for receiving data from the smartphone
application or vice-versa.

SOAP supports additional security protocols that REST does not. This is required for
banking transactions or any similar operation where security failures could be catastrophic
(RVS). However, in most cases this kind of security is not the main concern.

Developers prefer to use more efficient and easier communication protocols to their ap-
plications. And this is where REST wins over SOAP. The REST APIs and the documentation
are also much simpler to understand. Another disadvantage of SOAP is that only permits
XML as data format while REST handles multiple formats, being JavaScript Object Notation
(JSON) usually the best since its parsing is much faster than XML. Additionally, researches
claim that REST-based implementation is proved to be more efficient in network bandwidth
and latency than SOAP-based services (Mulligan et al., 2009). This is due to the fact that
REST reads can be cached, while SOAP reads are not. This provides a better performance
and scalability.

The following are the key principles of the REST architecture (BIR):

• Every resource is identified by an URI (Uniform Resource Identifier). URIs are a
unified concept for IDs.

• Link things together. The links are used to refer to identifiable resources wherever
possible. A client should be able to move the application from one state to the next
by following a link.

• Use standard methods. For clients to be able to interact with your resources, they
should implement default application protocol (HTTP) correctly, by making use of
the standard methods GET, PUT, POST, DELETE.

• Resources with multiple representations. The representation of the resource can be
transferred between the server and the client in multiple formats. For example, the
client could retrieve data in text format XML, JSON or any other format that both
parties agree upon.

• REST has a stateless communication. Since the server state is only resource-related, it
should not have to store any sort of communication state for any of the clients. This
improves the scalability because the server can quickly free the resources.

The CRUD operations (Create, Read, Update, Delete) are supported for the resources
and are equivalent to standard HTTP methods described in Table 1. Most operations are

2.4. Web Mapping Systems 17

HTTP method CRUD Safe Idempotent

GET read yes yes

POST create no no

PUT update/create no yes

DELETE delete no yes

Table 1.: HTTP methods in a typical RESTful API

idempotent which means that if the same operation is executed several times, it results in
the same state. The POST method however in not idempotent. It is usually used for creat-
ing new identities on a certain resource. The DELETE method is classified as idempotent
according to the HTTP specification but when the service actually deletes the resource, the
next call will not find the resource to delete it and return a 404 (Not Found).

Concluding, the goal of the REST architecture is to provide a more scalable system in
order to support a great number of components and simultaneous interactions with clients.
REST also provides general interface, therefore, it supports interoperability. In addition to
these, the architecture supports independent deployment of components as well as inter-
mediary components to reduce latency, enforce security and encapsulate legacy systems
(Peter Somogyi and Szalay-Beko, 2014).

2.4 web mapping systems

Web Mapping is the process of using maps obtained by spatial and geographical data from
a geographical information system (GIS) database. Web mapping is much more than just a
web cartography, it is seen as both service and consumer activity.

According to Kraak (2001), web maps can function as an interface or index to additional
information in a way that facilitates an up-to-date, dynamic, and interactive presentation of
geodata to many more users at a minimal cost.

Many Web mapping systems (WMS) have been developed and continually upgraded and
have become standard ways of sharing geographic information on the Web. Most WMS
provide APIs to display maps in which users have the ability to zoom and pan interactively.
These APIs also provide functionality to add layers of geographic information to maps. Two
of these systems will be described in the following sections.

2.4. Web Mapping Systems 18

2.4.1 Google Maps

Google maps is a web mapping service developed by Google. It offers satellite imagery,
street maps, real-time traffic conditions and route planning for travelling by foot, car or
bicycle (Wikipedia, 2016e). Google Maps provides a top-down view where the images are
taken from satellites or from aircrafts to obtain high-resolution imagery if the cities. Google
Street View provides panoramic views of stitched images from positions along many streets
in the world.

Google Maps has an API, which is a free service, to allow developers to integrate Google
Maps into their websites. According to Built With, there are over four million websites
using the Google Maps API, making it the most used web based application development
API.

2.4.1.1 Google Map Marker

Google Map Marker is a map editing service with the purpose of making possible the con-
tribution of any user by fixing incorrect driving directions, adding biking trails, or adding
a missing building or road, in order to increase the quality of the maps in regions where it
is difficult to extract the geographic information. Unfortunately, in Portugal and Spain the
service in unavailable. In November 2016, it was announced that Google Map Maker will
be retired in March 2017 and merged with Google Maps itself (Google Map Maker).

2.4.2 OpenStreetMap

Similarly to Google Map Maker, another free collaborative tool to edit maps is called Open-
StreetMap. When contributing to OpenStreetMap, the server renders map tiles on-the-fly,
allowing to see the changes within minutes. This technical property is not available when
contributing to Google Maps.

Google Maps also restricts the access of raw map data, in order to maintain a commercial
advantage to expose downstream products and services generated from the raw map data
(OpenStreetMap), while OpenStreetMap releases maps in their most raw form for free. This
is hugely powerful since it offers to the developers a wide range of services and experiments
which would simply not be possible without access to raw map data.

One important and useful feature is filtering map parts to extract specific information.
This can be done with the Overpass API that receives a user query and gives back the
dataset to the correspondent query. It is highly optimized for retrieving large quantities of
data in a few minutes. This is an interesting tool to analyse only a portion of a map, done
in a way that Google never will.

3

G L O B A L F R A M E W O R K A R C H I T E C T U R E

In the last years many solutions to increase road safety have been developed. High-end
car brands have already integrated traffic sign recognition systems in their advanced driver
assistant system with that purpose. However, they are too basic, being restricted normally
to detect and recognize speed limit signs only, and most of the population does not have
the possibility to afford these kind of vehicles. Another issue in these systems is the wrong
sign classification resulting in an incorrect alert.

On the other hand we have the road inspection procedure, which consists on periodical
on-site evaluation carried out by trained safety expert teams, resulting in a formal report
which is delivered to the relevant road authority to detect issues on road infrastructures.
The most important part of the inspection relies on traffic control elements maintenance
like traffic signs and road surface markings. Unfortunately, the road safety inspection is
very expensive and requires much time in terms of expertise. Furthermore, as mentioned
before, road inspection schedule may create situations where a damaged sign is not fixed
for a long period of time.

Thus, all these problems leads us to find a solution affordable to all, reconciling the
people safety, by increasing the reliability of the algorithm, reducing the road inspection
costs, and allow for more timely and targeted inspections.

3.1 proposed approach - solution

To achieve the above goals in an efficient and rapid manner this dissertation tries to answer
two complementary problems:

• building and maintaining a traffic sign repository through community based contri-
butions;

• improve the driver safety by notifying the presence of some relevant signs.

The proposed approach to the first problem is to build a smartphone application that
uses the device camera to capture frames of the street road ahead, and then processes these

19

3.1. Proposed Approach - solution 20

frames to detect if and which traffic signs are present in the image. Based on the GPS
location of the car, the orientation of the camera, and the dimensions of the traffic sign on
the image, the sign location can be computed. Once a traffic sign is recognised, it is sent
to a repository together with its georeference. This way, it is possible to build a repository
over time. Later, this information can be used to elaborate reports for road traffic sign
maintenance and generate a global map of all georeferenced signs. The whole process is
illustrated in Figure 8.

Figure 8.: System Architecture Scheme

The community based approach, if adopted by a significant number of drivers, has sev-
eral advantages when compared to an approach where there is a single unit collecting data,
or at least there is only a single unit assigned to an area.

For instance, temporary signs will enter the repository when the client application starts
reporting them. Once a period of time has passed without any report they will be removed
from the repository. Damaged signs will likely have lower recognition rates when compared
to well maintained signs, hence the recognition rate can be a hint that a sign requires
maintenance. This information can be used by road inspection teams to provided timely
and direct intervention.

Last but not least, computer vision techniques are not 100% accurate, and if a single unit
is doing a single passage over a street there is a possibility that some signs will not be
recognised. While the same is true for our approach, even if a number of client applications
fail to recognize a sign, due to lighting conditions for example or excessive speed for the
system to work properly, other drivers will pass through the same signs sooner or later and
eventually the sign will be added to the repository.

3.2. Client Side 21

The second problem, improve the driver safety by notifying the presence of some relevant
signs, uses both the data collected on real time and the data from the repository. The real
time data will be useful for areas where there is no data yet on the repository and for
recent temporary signs. On the other hand the real time data will be confronted against the
repository data. This has several benefits:

1. if a sign is recognised and it is not in the repository then it is added to the repository;

2. if a sign is in the repository and its confidence level is lower than a defined threshold
value then the sign is probably requiring maintenance;

3. if a sign is in the repository and it is not recognised anymore by any client application,
then the sign has either been removed, or it has completely occluded (for instance due
to tree foliage appearing in the Spring), or it is requiring urgent maintenance;

4. provides a constant flow of data regarding the detection/recognition algorithms accu-
racy which can be used to improve them.

Having traffic sign information available will allow to alert the driver, for instance in the
case of speed limits violation (using the phones sensors).

Potentially, this system could be extended to detect road pavement issues, and report the
need to repaint the lane guides. It can also incorporate other information such as fixed
speed radar locations, and other information provided by the traffic police itself.

3.2 client side

The client is responsible for the collection of traffic sign information which is then displayed
and for setting off warning alerts when certain conditions are met. The main advantage of
using this framework, from a user point of view, is the ability to have an application that
can warn the driver of specific situations and help him anticipate adverse events.

When the application starts, it verifies if the car is in motion or not. If it is moving, it is
constantly performing two tasks: identifying traffic signs revealed in the frames captured by
the devices’ camera and checking the local repository to see if it contains signs that match
the vehicle motion direction and location. Otherwise, when not in motion, the system stays
idle, saving resources.

The client application architecture has five main modules (Figure 9): the detection mod-
ule, the classification module, the georeferencing module, the client-server communication
module and the interface module. These modules will all be explained and described in
detail in the following sections of this chapter.

3.2. Client Side 22

Figure 9.: Client side architecture

3.2.1 Detection Module

In Section 2.1, it was referred that colour and shape detection methods were not very reli-
able since discolouration, occlusion or vandalism could adversely affect the detection phase
by creating many false positives or negatives.

Therefore, in this work, detection is performed based on features. The application utilises
a feature of OpenCV library called OpenCV Training Cascade. The version of OpenCV
used was 2.4.9 and provides AdaBoost training using Haar, LBP or HOG (Histograms of

3.2. Client Side 23

Oriented Gradients) features. Due to the low computational power of the mobile devices,
LBP was selected because it only uses binary comparisons between neighbouring pixels.
Both training and detection with LBP are several times faster than to the other two meth-
ods. According to OpenCV User Guide, OpenCV uses the Multi-scale Block Local Binary
Patterns (MB-LBP).

If a Cascade Classifier detects any object that resembles a sign in the full frame, it will
create a polygon (normally a rectangle) around the region of interest (ROI). The colour of
the detected region may vary a lot due to different illumination conditions. So before send-
ing the ROI to the classification module, if the region is too dark or too bright, based on a
threshold value, a preprocessing is performed: the ROI undergoes an histogram equalisa-
tion , adjusting the intensity of the image pixels. If the average pixel intensity of the ROI is
in between the given thresholds, the raw image is sent directly to the classification module,
without any preprocessing.

3.2.1.1 Training

To train a Cascade Classifier with AdaBoost, it is needed to provide one set of positive and
one set of negative samples. The positive samples contains only objects to be detect, in this
case traffic signs. Negatives samples, in the other hand, should not contain any instances
of the object. They are used as background images.

Figure 10.: German Traffic Sign Recognition Benchmark dataset. Source: (Hijazi et al., 2015)

3.2. Client Side 24

The German Traffic Sign Recognition Benchmark (GTSRB) (Hijazi et al., 2015) dataset
(Figure 10) provides 39,209 training images for 43 distinct classes of signs. Image resolution
in pixels ranges from 15x15 to 222x193. Each class contains a considerable number of traffic
sign images with different levels of brightness, with random objects occluding the sign,
different perspective angles, blur and noise. Therefore, it is a good source to create the
positive samples, improving the detection in uncontrolled environments.

The OpenCV funtion to train the Cascade Classifier is opencv_traincascade. This func-
tion uses only grayscale images as input while training. If the positive or negative samples
are in RGB, OpenCV converts them automatically to grayscale. So, the colour of each sign
template can not be used to classify it specifically. So, the features are used to distinguish
signs from non-signs through shape and their particular properties. Therefore, the classi-
fier can be seen as a robust sign-shape detector. This may lead to problems like detecting
objects that have the same shape and are not signs.

3.2.2 Classification Module

Due to fact that Cascade Classifiers only accept grayscale images, the colour properties
necessary for specific identification of the sign are lost and we only can determinate the
type of sign in question (i.e triangular, circular, or octagonal). That leads us to search for a
solution to the problem.

As refered in Section 2.2, neural networks, in particular Convolutional Neural Networks,
are quite good when it comes to image recognition, due to its architecture. Therefore, a
modular deep learning library, called TFLearn was used. It is built on top of TensorFlow,
an open-source software library for building and training neural networks to detect and
decipher patterns and correlations. It provides a higher-level API to facilitate and speed-up
the experiments. Thus, besides the higher abstraction level, the main reason for choosing
this library is the possibility of taking advantages of all TensorFlows’ available features due
to its full compatibility with it.

Similarly to Cascade Classifiers, the neural network requires training before being usable.
The GTSRB dataset was the same used for training the network, coinciding with the number
of different classes trained corresponds to the number of the possible signs. There is also
a test dataset with 12630 images, to verify the neural network’ accuracy. The ROI detected
in the detection module is scaled to a 32x32 pixel resolution before entering as input to the
CNN in the classification phase, which handles the sign recognition. The result should be
one of the 43 different output possibilities.

3.2. Client Side 25

3.2.2.1 Network Arquitecture

Initially the network construction followed a rather simple topology, with only one convo-
lutional layer with 32 3x3 filters, followed by a pooling layer and finally a fully connected
layer.

Input image

Convolution
layer

Pooling
layer

Convolution
layer

Convolution
layer

Pooling
layer

Fully connected
layer

Fully connected
layer / Output layer

Figure 11.: Network architecture

Later, the network layers were increased having three convolutional layers, one with 32

3x3 filters and two stacked with 64 3x3 filters. In between them there are two max-pooling
layers before reaching the last fully connected layer (Figure 11). Another topology created
is similar to the previous one described, being the main difference the extra max-pooling
layer between the last two convolutional layers (instead of being stacked). Regarding this
topology, two different filter sizes were used (a 3x3 and a 5x5 filter, respectively) to verify
the impact of this parameter on the accuracy.

These three networks where tested to verify if there is a large discrepancy in the results
and choose the best network in terms of accuracy with the lowest complexity possible. The
selected neural network was the second described. The set of tests and results to support
this selection can be consulted in Section 4.2.1.

3.2.3 Georeferencing Module

Since the smartphone is inside the vehicle, when the sign is detected and recognised, his
GPS position will be the vehicles’ position. To provide the highest accurate location Fused
Location Provider API was used. It analyses GPS, mobile and Wi-Fi network location data.
Also, this provider uses different device sensors to define if a user is walking, riding a
bicycle, driving a car or just standing in order to adjust the frequency of location updates.
So it does not try to update your location as frequently if the accelerometer indicates that
you are not moving, which has the side benefit of saving battery.

3.2. Client Side 26

As stated in Krsák and Toth (2011), to determine and to calculate the approximate posi-
tion of the recognised sign we can apply the Equations 3 and 4:

sx = x + p.cx. cos β − cy. sin β (3)

sy = y + p.cx. sin β + cy. cos β (4)

where sx and sy represents the calculated longitude and latitude of the recognised traffic
sign. The values of variables x, y are obtained from a GPS device and represent the current
longitude, latitude, respectively. p symbolizes the position of the sign in the full frame
captured by the smartphones’ camera. If the sign is located on the left half of the image,
then the p value is +1, else is -1.

The cx and cy values are used to compute the shift of position in longitude and latitude.
The cx refers to the distance from the car to the side of the road and has been set at 0.00005

in decimal degrees based on experimental results. The cy is obtained based on the sign size
in pixels, calculating the distance of the camera to the plane, perpendicular to the device
view direction, where the sign can be found.

To determine the distance cy from the camera to the sign, required for Equations 3 and 4,
we can use the distance Equation 5,

cy = (W ∗ F)/P (5)

where P is the ROI width in pixels sent from the detection module, W is the real width
of the sign and F is the focal length. The focal length calculation is shown in Section 4.1.3.
This is an approximation of the distance from the device to the plane, perpendicular to the
view direction, where the sign can be found.

Dimensions(cm) Small Normal Large

Width 60.0 70.0 90.0 115.0

Table 2.: Portuguese sign dimensions

The IMT reports the size of the Portuguese traffic signs as presented in Table 2. The
specific size used depends on the classification of the road, with 70 centimeters being used
for urban roads. At this stage we are focused only on urban areas so we’ll assume all signs
have this dimension.

After the distance is determined, we need to convert to decimal degrees to use in Equa-
tions 3 and 4. Hence, we have to convert this distance in meters to both a shift in latitude
and longitude. In the equator both latitude and longitude represent approximately the

3.2. Client Side 27

same shift, so we convert our distances to degrees considering this referential, i.e., we di-
vide both cx and cy by 111319.44, the distance corresponding to one degree at the equator.

Then we apply a longitude correction factor to Equation 3 using the inverse cosine of the
latitude, as in Equation 6.

sx = x +
p.cx. sin β − cy. cos β

cos(y)
(6)

The β value represents the azimuth which indicates the angle in radians between the
devices’ current compass direction and magnetic north. His value can thus range from 0

radians, if the top edge of the device faces magnetic north, and if the top edge faces south,
the azimuth is π radians. Similarly, if the top edge faces east, the azimuth is π/2 radians
and if the top edge faces west, the azimuth is 3π/2 radians.

3.2.4 Client-Server Communication Module

All the data collected by the previous modules need to be sent to the repository. In Section
2.3, are presented some protocols to send or receiving data via HTTP-based communication,
namely the REST API.

Retrofit is a type-safe REST client for Android (or just Java) developed by Square. It
provides a powerful framework for authenticating and interacting with APIs and sending
network requests with OkHttp. The library fetches JSON or XML data from the RESTful
web service and once the response is received, it will be parsed as a Plain Old Java Object
(POJO), which should be specified for the object in the response. Custom JSON parsers and
the Gson utility library are supported for deserialization and parsing. Retrofit works with
REST API using the Java interface implementation.

In addition of sending information, this module can receive data from the server too, in
order to be able to warn the driver beforehand of signs in the surrounding area.

3.2.5 Interface Module

To enable and facilitate the use of the framework by the client, a graphical user interface was
built. It was designed to display all the important information in the main screen, increasing
the drivers’ awareness. The application was called CADAS (Community Advanced Driver
Assistance System) and it has one button in the main menu (Figure 12).

Before starting the application, the smartphone must be placed in a landscape position,
with the camera facing the road and the device screen to the driver. When clicked, it
will initialise all four the modules described before, downloading also a partial copy of
the repository and stored all information in the device for further usage and verify if the

3.2. Client Side 28

vehicle is in motion, displaying the current car speed in the top part of the screen (Figure
13). If the car is stopped, then the application stays in a dormant state, without processing
any of the frames.

Figure 12.: Application Main Menu

Figure 13.: Stopped car

As soon as the car starts moving, the speedometer starts to show the car’ speed and the
frames captured are filtered in order to detect the presence of traffic signs in the road ahead.
Figure 14 shows that the vehicle is at a speed of 47 kilometers per hour.

3.2. Client Side 29

Figure 14.: Driving example

When a sign appears in the road and it is captured by the device camera, is subsequently
processed and displayed on the smartphone screen alerting the driver. Figure 15 represents
the detection of a 50 speed limit sign.

Figure 15.: Detection example

Since the vehicle speed does not exceeds the speed limit, the speedometer stays with a
green color. Otherwise, if the car exceeds the limit, the speedometer changes the color to
red, warning the driver (Figure 16).

3.3. Server Side 30

Figure 16.: Overspeeding example

For instance, if the driver is approaching a location where the local copy of the repository
has a speed limit sign and the driver is exceeding that limit, which can be detected based
on GPS data, the application should notify the driver.

If the sign is in the local repository then the warning can be displayed in advance, other-
wise it will be displayed as soon as the sign is recognised.

The same reasoning can be applied to school proximity signs, or signs indicating road
maintenance.

3.3 server side

The server side of the framework is responsible for the maintenance of the repository, the
elaboration of reports of potentially damaged or obstructed signs, as well as providing
clients with the stored traffic signs data so that they can have their own local copy of the
repository.

Since we are building a community based platform, it is necessary to respond efficiently
to requests of a large volume of clients. For that purpose, Node.js was chosen for the server
side. Node.js uses an asynchronous event-driven and non-blocking model with one only
thread that listens for events and then triggers a callback function when one of those events
is detected. The requests can be executed in parallel, unlike blocking languages that only
execute a new request after the previous request has been completed. This improves the
application performance and scalability. To create a robust HTTP API easily and quickly
the Express framework was used too.

3.3. Server Side 31

After the request is handled by the server, the data is stored in a MySQL database. The
schema has two tables: one for the signs that were first recognised and another table for
signs that were recognised subsequently in the same coordinates, but with different labels
(Figure 17).

Figure 17.: Repository database logical model

This table has a foreign key that is associated with the ID of the original sign in the
primary table. The need to use two tables is to not replace immediately the current sign by
the new sign if it is not the same. Storing different sign occurrences in a secondary table
may help to realise if it was a recognition failure or if the sign is truly damaged.

If we have two signs in the same coordinates, although they are two different signs, one
will be inserted in the main table and the other in the secondary one, because it assumes
that it was a different occurrence of a traffic sign already existing in that location. The
solution is to differentiate by the sign type. Thus, if the sign has different types, even if
they have the same GPS coordinates, both will be inserted in the main table.

The repository contains the following information for each sign:

• sign ID

• sign name

• GPS location

3.3. Server Side 32

• orientation vector

• confidence level

• report count

• date of insertion

• date of last report

• status

• sign type

The sign name and GPS location are self explanatory. The orientation vector allows to
associate a sign with a particular street or road direction. The confidence level is used
mainly to elaborate reports and determine the status of the signs. The date of insertion
refers to the first entry of the sign, while the data of last report inform when it was last
detected. The status tells us if the sign is still active, allowing the repository to include not
only the present signs but also an history of sign placement.

The confidence level allows us to determine if a sign should be inspected or even mark
it as inactive. When reports arrive from clients the confidence level is updated as a conse-
quence, triggering alarms that can be used for sign inspection. Only signs with a confidence
level above a defined threshold are delivered to the clients.

3.3.1 Handling Reports from Clients

When the server receives a report from a client with the positive identification of a new
traffic sign, it verifies if the sign is already in the database by comparing the sign coordinates
of the new entry with all already stored. If the coordinates do not match any previous
record then the sign is stored with a predefined initial confidence level. Otherwise, it
will compare if the sign recognised is the same as before. If the sign is equal, it will
increase the confidence level of the respective sign and updates the date of last report as
well. Furthermore, it will average the coordinate values, thus reducing the error. If not, the
confidence level is decreased and the sign is stored in the secondary table. If the confidence
level decreases below a threshold level, the sign status will change, notifying that the sign
may need to be repaired. Figure 18 shows this process.

The reports that arrive to the server may be false positives. But will in principle never
get above the required confidence level to get distributed to clients and in a given period of
time, if there are no more records of that sign, the repository will automatically delete that
data.

3.3. Server Side 33

Figure 18.: Repository process

4

D E V E L O P M E N T A N D E X P E R I M E N T S

In this chapter it will be presented the implementation of the whole architecture and how
each module was built as described in chapter 3. Tests and results will be shown too.

4.1 implementation

The application was based on Lê Quangs’ traffic sign recognition system that can be found
in https://github.com/quangpropk/TrafficSignsDetection. It provides a real-time traf-
fic sign detection algorithm able to find the signs even in adverse environment conditions.
The images are acquired directly from the device camera using OpenCV native camera
module. This corresponds to the first stage of the complete process (sign detection). All the
remaining modules were built from scratch which will be detailed in the following sections.

4.1.1 Detection

The application has already two different Cascade Classifier files: one for prohibitory signs
and other for danger signs. Further Cascades were created using the templates from the
GTSRB dataset for the remaining sign types: stop, end of prohibition, mandatory and yield
signs (Figure 19).

Figure 19.: Sign category examples

4.1.1.1 Training

OpenCV requires the positive training images to be of the same aspect ratio. So it is neces-
sary to resize the images before sending them as input to train the Cascade Classifier. An

34

https://github.com/quangpropk/TrafficSignsDetection

4.1. Implementation 35

easy way to achieve that is using two ImageMagick commands to resize, crop and center
them into the appropriate size (Listing 4.1).

mogrify -resize 24x24 *.ppm
mogrify -gravity center -crop 24x24 +0+0 *.ppm

Listing 4.1: Resize and cropping images

Thereupon, a file should be produced with the list of all the positive images in the format
[filename] 1 0 0 [image width] [image height] because the images contain only one
object. A file for the list of negative images should also be created. To create both files we
could use the Unix command lines in Listing 4.2.

find . -name ’*.ppm’ -exec echo \{\} 1 0 0 24 24 \; > positives.dat
find . -name ’*.ppm’ > negatives .dat

Listing 4.2: Create files containing the list of positives and negatives images

The positive samples file should be packed into a .vec file with the opencv_createsamples
command (Listing 4.3).

opencv_createsamples -info positives.dat -vec positives.vec -w 24 -h 24 -num
700

Listing 4.3: Produce dataset of positive samples in a format supported by
opencv_traincascade command

The -w and -h parameters must be exactly the same used in the mogrify commands
executed earlier.

Finally, the training can be done with the opencv_traincascade command (Listing 4.4)
and uses the follow parameters:

• -data <cascade_dir_name> defines the folder where the cascade will be stored as
well each stage checkpoint until the training ends.

• -vec <vec_file_name> indicates the vector with the positive samples.

• -bg <background_file_name> indicates the file with the path of all negative samples.

• -numPos <number_of_positive_samples> defines the number of traffic sign templates.

• -numNeg <number_of_negative_samples> indicates the number of negative samples.

• -numStages <number_of_stages> defines the number of cascade stages to be trained.

• -featureType <{HAAR(default), LBP, HOG}> indicates the type of feature in use for
feature extraction. For this application it will be used the LBP.

4.1. Implementation 36

• -w <sampleWidth> indicates the uniform width of positive samples.

• -h <sampleHeight> indicates the uniform height of positive samples.

opencv_traincascade -data newCascade -vec positives.vec -bg negatives.dat -
numPos 700 -numNeg 1000 -numStages 20 -featureType LBP -w 24 -h 24

Listing 4.4: Train Cascade Classifier using LBP features

While training is in process, the opencv_traincascade command will save each stage
independently and assembles them in a XML file in the end. If the training is interrupted,
the last checkpoint is loaded and the training process restarts from that point and not from
the beginning all over again. When the training is completed, the cascade file is created as
XML file as well and is ready to be used for detection.

4.1.1.2 Optimizations

The original application was running at a resolution of 1440x1080. Due to the large amount
of pixels to process, the average frames per seconds was 5. Androids’ cameras have a wide
range of resolutions available from 320x240 to 1920x1080. At a resolution of 640x480 was
found an equilibrium between quality and processing time of each frame, running at 10

frames per second.
Since every frame is processed, there is often unnecessary use of computational resources

of the mobile device when the car is stationary, as it may not detect or detect a sign several
times. One way to control this is to use smartphone sensors to verify if the car is moving.
The device GPS receiver is used to verify if the car is in motion or not with the method
getSpeed(), from the Location data class, which returns the vehicle speed. If the speed is
zero then the frame processing is paused until the vehicle starts moving again.

The application has six distinct Cascade Classifiers, one for each category, according to
sign markings and shape. This brings a performance issue since most smartphones will
not be able to sustain an appropriate frame rate if running all six Cascades every frame.
Our goal is to maintain a frame rate at least 8 frames per second. This corresponds to a
frame every 2.08 meters considering a speed of 60 kilometers per hour, or 3.125 meters at
90 kilometers per hour, which is more than suitable for urban environments taking into
consideration that a sign can be detected at a much larger distance. To attain this, each
Cascade is executed on an independent thread. However, running six threads at once is
quite demanding for the mobile CPU, not achieving the desired frame rate. Therefore, it
was decided to divide the work between alternate frames: we will run three of the six
Cascades in the first frame and in the next frame the remaining ones are executed.

4.1. Implementation 37

One last change was loading into the device memory all Cascade Classifiers at once
instead of reading from the XML files in every iteration. Thanks to these changes, the
application runs in a more fluid way.

4.1.1.3 Usage

First, the Cascade XML files created as previously specified must be loaded into the mobile
device memory. Next, to detect a sign from a grayscaled image, OpenCV provides the
detectMultiScale method for the CascadeClassifier class. The routine has the parame-
ters described in Table 3.

Parameter Meaning Value
const Mat image The input image in grayscale
vector<Rect> objects Vector containing the boundaries of detected sign candi-

dates
double scaleFactor Specify how much the image size is reduced at each im-

age scale
1.2

int minNeighbors The number of neighbours each candidate rectangle
should have

3

int flags Not used 0

Size minSize Minimum possible object size 32x32

Size maxSize Maximum possible object size

Table 3.: DetectMultiScale method parameters

The minimum object resolution was set to 32x32 pixels because it matches with the input
images size of the neural network that will be described in Section 4.1.2. The rectangle
around the ROI is defined with the OpenCV drawing function rectangle (Listing 4.5). It
receives the full frame acquired by the device camera in RGB, the top-left and the bottom-
right points of the ROI, the rectangle color (in this is case is green) and the rectangle lines
thickness.

Core.rectangle(mRgba ,facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR ,
2);

Listing 4.5: Generate rectangle for the ROI

As refered in Section 3.2.1, if the ROI is exposed to large variations in illumination, it
suffers an histogram equalisation. First we need to convert the ROI from RGB to YCrCb
color space. Then we need to split all the three channels, i.e Y, Cr and Cb and we equalise
the Y channel. After the equalisation is complete, we merge again the three channels and
convert once more to the RGB channel. The final result is the color image equalised.

4.1. Implementation 38

4.1.2 Classification

The convolutional network topologies described in Section 3.2.2 were tested using the
TFLearn API. Before training the network, it was necessary to choose which activation func-
tion best suited to penalize the deviation between the predicted and true labels. Normally
is used in the last layer of the network (fully-connected).

In Section 2.2.1 two functions were presented : the sigmoid and the hyperbolic tangent
functions. Although the hyperbolic tangent can be more accurate, it is very expensive in
terms of computational work.

TFLearn possess enumerous activation functions, particularly those already mentioned.
The softmax function is a function similar to sigmoid, but for multi-classes. Basically, calcu-
lates the sum of all probabilities of each class, which means that the sum of all outputs is
one. The sigmoid function only outputs a single value, independent of all other values.

The ReLU function is also used afterwards the convolutional layers because increases the
nonlinear properties of the decision function, since computing linear operations have been
made during the process, without affecting the receptive fields (Wikipedia, 2016c). It is also
much faster than other functions named before.

4.1.2.1 Training

For the network training, the full german traffic signs dataset was used. The first step was
building a HDF5 dataset. HDF5 is a unique technology that makes possible the manage-
ment of extremely large and complex data collections (HDF5). TFLearn API provides a
method called build_hdf5_image_dataset() to create the required dataset, its parameters
being presented in Table 4.

Parameter Meaning Value
str target_path Defines the path of root folder
tuple image_shape Resize the input images (32,32)
str output_path Defines the output path for the hdf5 dataset
str mode Defines the data source mode ’folder’
bool categorical_labels If True, labels are converted to binary vectors True
bool normalize If True, normalize all pictures, dividing the pixels by

255

True

Table 4.: build_hdf5_image_dataset method parameters

Executing the method (Listing 4.6), it takes several minutes to create the dataset.

build_hdf5_image_dataset("Images/", image_shape =(32, 32), mode=’folder ’,
output_path=’dataset.h5’, categorical_labels=True , normalize=True)

Listing 4.6: Build HDF5 image dataset

4.1. Implementation 39

Once completed, it is not necessary to execut it again to train with other network topolo-
gies, unless the size parameter changes. Next, the dataset is loaded, storing the size of
the input images and the number of different traffic sign classes in the X and Y variables,
respectively (Listing 4.7).

import h5py
h5f = h5py.File(’dataset.h5’, ’r’)
X = h5f[’X’]
Y = h5f[’Y’]

Listing 4.7: Load dataset

The network topologies described in Section 3.2.2.1 were used to initialise network train-
ing. TFLearn provides "layers" that represent an abstract set of operations to make building
neural networks more convenient (Listing 4.8).

network = conv_2d(network , 32, 3, activation=’relu’)
network = max_pool_2d(network , 2)
network = conv_2d(network , 64, 3, activation=’relu’)
network = conv_2d(network , 64, 3, activation=’relu’)
network = max_pool_2d(network , 2)
network = fully_connected(network , 512, activation=’relu’)
network = fully_connected(network , CLASSES , activation=’softmax ’, name="out")
network = regression(network , optimizer=’adam’,

loss=’categorical_crossentropy ’,
learning_rate =0.001)

Listing 4.8: Network layers

Once the network model has been built, the training can be initialized using the DNN

model class.
Besides the X and Y variables used to feed the training model, it was defined the number

of epochs (or cycles), the batch_size that defines the number of training examples in one
forward pass, the snapshot_shot_step which will create a training checkpoint every N
steps, the snapshot_epoch that saves a model checkpoint at each epoch if True, the run_id

provides a name for the run. Finally, the validation_set uses a percentage of the input
data for validation, in order to minimise the overfitting (Listing 4.9).

model = DNN(network , checkpoint_path=’model_signs.ckpt’, max_checkpoints =1)

model.fit(X, Y, n_epoch =150, shuffle=True ,
show_metric=True , batch_size =64, snapshot_step=False ,
snapshot_epoch=False , run_id=’network_id ’, validation_set =0.1)

Listing 4.9: Network training

4.1. Implementation 40

Finally, the network model is saved in a file with any extension (Listing 4.10).

model.save(’signs_neural_network.tflearn ’)

Listing 4.10: Save the network model

During the training, we analyzed the accuracy according to the number of epochs. The
three network topologies were trained with 150 epochs each. The CIFAR-10 network was
the most accurate (Figure 20).

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

CIFAR-10

Net3
Simple

Figure 20.: Neural network training progress

4.1.2.2 Freezing Neural Network

On TensorFlow, weights usually are not stored inside the file format during training. In-
stead, they are held in separate checkpoint files, and there are variable operations in the
neural network that load the latest values when they are initialized. Since we need to use
the neural network on a smartphone device, it is not very convenient to have separate files.
For that purpose we can use the freeze_graph.py script that takes a graph definition and
a set of checkpoints and freezes them together into a single file.

What this does is loading the neural network model, pull in the values for all the variables
from the latest checkpoint file, and then replace each variable operation, i.e "Add", "Mat-
Mul", or "Conv2D", with a constant operation that has the numerical data for the weights
stored in its attributes. It then strips away all the extraneous nodes that are not used for
forward inference, and saves out the resulting model into an output file.

4.1. Implementation 41

4.1.2.3 Usage

To run the neural network in the smartphone we have to use the Java Native Interface (JNI)
to call the functions because the core of the TensorFlow is written in C++.

To initialize our classifier, we must use the function initializeTensorFlow(). It receives
as parameter the freezed model of the CNN, the number of classes, the input image size,
the image mean and a label file. The label file contains the name of all 43 distinct traffic
signs and it was created with the means of matching the neural network result output with
the correspondent traffic sign label.

Next, the classifyImageBmp() receives the ROI as input to classify it. The result of the
operation is a list of all probabilities for each class. Later, we select the result with the
higher probability.

4.1.3 Georeferencing

The first thing we need is to know is the GPS location of the device. As described in Section
3.2.3 the Fused Location Provider API was used. We must declare a LocationRequest that
is a data object to request a quality of service for location updates.

As we want the highest accuracy location possible, we must create a location request
with setPriority() set to PRIORITY_HIGH_ACCURACY, setInterval() to 500 milliseconds
and setSmallestDisplacement() to one meter. This would be appropriate for mapping
applications that are showing the location in real-time.

To compute the shift from the device camera to the sign, we need the focal length of the
camera, which can be obtained with the Android API. The result obtained was 515 pixels
for a Huawei P9 Lite. To double check this value we also performed a test with the help
of VIZARIO.Cam application and a chessboard pattern. Initially a calibration matrix is
computed. The calibration matrix has five parameters: (fx, fy) are the focal lengths and
(u0, v0) which are the optical centers expressed in pixels coordinates. γ represents the skew
coefficient between the x and the y axis, and is often 0 (Equation 7).

K =

 fx γ u0

0 fy v0

0 0 1

 (7)

After 50 photos of a chessboard pattern taken from different angles, the calibration matrix
in Equation 8 was acquired providing a focal length of approximately 521 pixels. Hence,

4.1. Implementation 42

the results provided by the API seem accurate enough for our purpose, at least for this
device.

K =

520.9933 0 319.9882
0 521.2108 243.8441
0 0 1

 (8)

Finally, to calculate the device orientation we must use the hardware sensors. One al-
ternative was using the accelerometer and magnetic field sensors. Basically, we need to
register the sensors TYPE_ACCELEROMETER and TYPE_MAGNETIC_FIELD and get the measured
data. Unfortunately, if the device suffers any linear acceleration or if there are is magnetic
interference the measured values are getting noisy. The usage of the gyroscope jointly with
the accelerometer and magnetic field can dramatically improve the measurement since it
has a very good response time.

The sensor TYPE_ROTATION_VECTOR is the combination of all sensors for measuring the
devices’ orientation device. It uses the accelerometer, gyroscope and magnetometer if they
are available. It needs to initially orient itself and then eliminate the drift that comes with
the gyroscope over time.

To increase the orientation accuracy, we considered an average of the last five orientation
values.

4.1.4 Client-Server Communication

To make the HTTP requests using the Retrofit REST client, we need to describe the API
endpoints URL that we want to interact with Listing 4.11.

public interface API {
@GET("signs/list")
Call <ArrayList <Sign >> getSigns(@Query("latitude") String latitude ,

@Query("longitude") String longitude);

@POST("signs/add")
Call <ResponseBody > uploadSigns(@Body SignsData data);

}

Listing 4.11: Retrofit HTTP API as a Java Interface

It defines the API and the methods getSigns() and uploadSigns() to request the list of
signs in a certain radius and upload a list of collected signs, respectively. The @GET annota-
tion declares that this request uses the HTTP GET method, while the @POST annotation uses
the HTTP POST method. The code snippet also illustrates the usage of Retrofit’s @Query pa-
rameter functionality. In the getSigns() method, the {latitude} and {longitude} queries

4.1. Implementation 43

will be attached to the URL endpoint, e.g. ?latitude=40.56&longitude=-8.39, when call-
ing the method. In the uploadSigns() method, the @Body parameter is replaced by the Java
object containing all the collected signs by the user.

The ServiceGenerator class (Listing 4.12) uses Retrofit builder to create a new REST
client with the given API base url (BASE_URL). For example, the traffic signs repository base
url is located at https://traffic-signs-repository.herokuapp.com.

Retrofit can be configured to use a specific converter. This converter handles the data
(de)serialization. There are several converters already available for various serialization
formats. The converter used was Gson that will map the defined object to JSON format and
it will finally send as the request’s body to your defined server.

public class ServiceGenerator {
private static String BASE_URL =

"https :// traffic -signs -repository.herokuapp.com";

@NonNull
static Retrofit getRetrofit () {

return new Retrofit.Builder ()
.baseUrl(AppConfig.BASE_URL)
.addConverterFactory(GsonConverterFactory.create ())
.build();

}
}

Listing 4.12: ServiceGenerator class

Besides performance, other aspects such as mobile data should be taken into account
given possible Wi-Fi network access restrictions. Everytime a sign is detected and recog-
nised, the information regarding the sign is sent to the server. Therefore, the devices’ own
internet data will be necessary to perform this operation. Although only a few bytes of
mobile data are required for one operation, several traffic signs tend to appear in a short
period of time, which leads to an exaggerated consumption of data and may even over-
load the server. In addition, when the system receives a partial copy of the existing data
stored in the repository to alert the driver of possible signs ahead on the road, large data
consumptions may occur.

To avoid overloading requests to the server and save mobile data, it was decided to
periodically send the set of captured signs. In order to accomplish this, an AsyncTask was
used to upload the signs every ten minutes. The signs were converted to a Java object
SignsData (Listing 4.13) that is an ArrayList of SignData object (Listing 4.14), which has the
necessary attributes for each sign.

4.1. Implementation 44

public class SignsData {
private ArrayList <SignData > signsdata;

}

Listing 4.13: SignsData Java object

public class SignData {
@SerializedName("name")
private String signName;
@SerializedName("latitude")
private String latitude;
@SerializedName("longitude")
private String longitude;
@SerializedName("orientation")
private String orientation;
@SerializedName("type")
private String type;
...

}

Listing 4.14: SignData Java object

The CreateRequests class (Listing 4.15) is responsible for the operations execution.

public class CreateRequests {
public void uploadSignsSet(SignsData coords) {

API getResponse = ServiceGenerator.getRetrofit ().create(API.class);
Call <ResponseBody > call = getResponse.uploadSigns(coords);
call.enqueue(new Callback <ArrayList <Sign >>() {

@Override
public void onResponse(Call <ArrayList <Sign >> call ,

Response <ArrayList <Sign >> response) {
if (response.isSuccessful ()) {

...
} else {

...
}

}
@Override
public void onFailure(Call <ArrayList <Sign >> call , Throwable t) {

...
}

});
}

}

Listing 4.15: CreateRequests class

4.1. Implementation 45

It contains two methods: the getSigns() that will fetch all the stored signs in the reposi-
tory within a radius of 100 kilometers and the uploadSignsSet() that will upload a set of
collected signs. Taking the example of the latter method, first we create a usable client from
the annotated interface for API requests (Listing 4.11).

The resulting client will be able to execute the network requests. After that we make
an asynchronous request, which implies to implement a callback with its two callback
methods: onResponse and onFailure. When calling the asynchronous uploadSignsSet()

method, with a SignsData object that contains all the signs to be sent to the server as a
parameter, we have to implement a new callback and define what should be done once the
request finishes.

4.1.5 Repository

When the server receives the clients’ data, which contains a set of recognised signs along
with its georeference, it will also execute a SQL query to select all signs in a defined radius,
being the coordinates of the first detected sign the central point of the circle. It is quite hard
to be accurate because of the Earth’s irregular shape. If we model the Earth as a sphere the
shortest path between two coordinates is on a large circle and we can compute the distance
using the Haversine formula or the Spherical Law of Cosines.

We have tested the difference between the distance accuracies and the computational
performance of both equations. In terms of execution time, the Haversine formula is slightly
slower than the Spherical Law of Cosines by 18%. In the case of the distance differences, we
can see in Figure 21 that for distances less than about 0.5 meters, the two formulas diverge.
Above 0.5 meters they tend to agree. Since the radius is in the order of the kilometers, the
difference is not significant.

Although the Spherical Law of Cosines seems to be a good alternative, this operation
must be performed quite often, so it is not very appropriate because it is slow to compute.
Assuming that the world is pretty flat over distances of a few kilometers, we could estimate
the great circle with a straight line in the latitude-longitude space will produce minimal
error, hence a lot faster to calculate.

This way we could use the Euclidean distance. A minor complication is the fact that the
length of a degree of longitude depends on the latitude. As we said before, a degree of
longitude spans 111319.44 meters on the Equator. Adjusting for this is easy: multiply the
longitude by the cosine of the latitude. Then we can take the Euclidean distance between
the two points, and multiply by the length of a degree (equation 9):

distance = 111319.44 ∗
√
(lat2 − lat1)2 + (cos(lat1) ∗ (lng2 − lng1))2 (9)

4.1. Implementation 46

0.1 0.14 0.19 0.24 0.29 0.34 0.38 0.43 0.48 0.53 0.58 0.62 0.67 0.72

0

1

2

3

4

5

6

·10−8

Distance (m)

Er
ro

r
(m

)

Figure 21.: Distance differences between Haversine formula and Spherical Law of Cosines

After some small tests, the Euclidean distance proved to be over seven times faster than
the Spherical Law of Cosines and for distances up to 50 kilometers is of 56 meters at the
most, which is not very significant. Hence, the formula used was the Euclidean distance.

The objective is to compare the current data with a partial copy of the full database.
The first phase is to compare the coordinates of each current sign with all the coordinates
of the partial copy. If the signs’ coordinates are identical, this means that the sign has
already been detected by another client. As we know, the computed signs’ coordinates
from various clients are not always the same even if the sign is the same. There is always
a small variance of a few meters. To overcome this problem, we can verify if the current
coordinates are inside of a small radius around the previous location. Since the Euclidean
distance error is five centimetres for distances up to ten meters, we can use in a similar way
as for the selection of the partial copy of the repository.

So, if the sign coordinate is at a distance of up to ten meters and the sign name is the
same, it will average the coordinates, thus decreasing the location error. Besides that, it
will also increase the confidence level, report count and updates the date of last report. If
the sign is different in the same coordinates, then a new sign will be created and it will be
inserted in the secondary table of the database. The only parameter that will be modified
in the main table in this case is the confidence level that will decrease. If it will decrease
below a defined threshold value, the sign status parameter will change from "OK", that is
its default value, to "DAMAGED" (Listing 4.16).

4.1. Implementation 47

UPDATE signsTable set confidenceLevel = IF(confidenceLevel > 0,
confidenceLevel - 0.01, confidenceLevel), status = IF(confidenceLevel <
0.25, ’DAMAGED ’, status) WHERE signID = ? "

Listing 4.16: Update sign query

If there is no occurrence of this sign, it means that it is not in the repository. So, a new
sign is inserted into the main table with default parameters.

4.1.5.1 Optimizations

Initially, each processed sign was sent individually into the database. This does not scale
very well, because we will have to make a request to the database for each sign. If a client
sends a hundred signals at once, it can become problematic and may lead to the system
failure due to lack of resources. The ideal would be to send all processed data at once.
INSERT statements that use VALUES syntax can insert multiple rows (Listing 4.17). To do

this, we must create nested array of objects in which each of these contains the sign data.
The question mark is the placeholder for the processed data to be stored.

INSERT INTO signsTable (latitude , longitude , signName , orientation ,
confidenceLevel , reportCount , insertionDate , lastReportDate , status , type)
VALUES ?

Listing 4.17: Bulk Insert query example

However, we can only execute a bulk update if the rows are updated with the same
values. As we need to update multiple rows with distinct values it is not possible.

Another optimization made was regarding the search of the traffic signs sent to the repos-
itory, as well as the comparison with the ones already pre-existent. In other words, as an
attempt to reduce the number of comparisons and unnecessary computational work, when
a sign is found during the search in the partial copy of the repository, the search stops once
there is an occurrence of the same traffic sign data in the existing database.

4.1.6 Notifications

After the client device receives a partial copy of the repository signs, they will be stored in a
SQLite local database. This database, in turn, is accessed periodically through an AsyncTask
to verify if a sign is near by from the driver’s location. For this, it is necessary to know the
GPS position of the vehicle and its orientation. Since the orientation is in radians, it can
vary from 0 to 6.28 approximately. So, regarding the vehicle orientation, we can select from
the database the traffic signs in a range of radians, e.g signs between 2 and 2.99 radians.

4.2. Tests and Results 48

To verify the distance of the current vehicle location and the signs in the database we
can use a strategy similar to that used in the repository to check for traffic signs in a given
radius, i.e use the Euclidean distance. Since SQLite does not suport trigonometric functions,
we can not use the cosine of the latitude correction in the equation. So the results are not
so accurate. For a distance of 500 meters the error is in the order of 165 meters.

4.2 tests and results

In here we report on the tests performed on the client mobile application to evaluate the
feasibility of our proposal regarding the smartphone performance. We also test the some
CNN topologies variants, some options we made during training, as well as the georefer-
ence accuracy.

4.2.1 Topologies Testing

Different topologies with different filter sizes were tested using the GTSRB test dataset.
The dataset contains 12630 images, approximately one third of the training dataset size.
The results can be consulted in Table 5.

Topology Filter size Epochs Accuracy

Simple 3 150 88.12%

CIFAR-10 3 150 94.24%

Net3 3 150 92.34%

Net3 5 150 90.98%

Table 5.: Neural network accuracies

As we can see, the most accurate topology is the CIFAR-10. This is due to its two stacked
convolutional layers that can develop more complex features of the input volume before the
destructive pooling operation. The least accurate was the simple topology, as expected. A
single Convolutional Neural Network is not capable of extracting all the important features
from the input images while training. Hence, the classification is not as accurate.

Comparing both Net3 topologies with different filter sizes we see an accuracy decrease if
using a 5x5 rather than a 3x3 filter.

Intuitively, stacking convolutional layers with tiny filters as opposed to having one con-
volutional layer with big filters allows us to express more powerful features of the input,
and with fewer parameters.

4.2. Tests and Results 49

4.2.2 CIFAR-10 network testing

Since the CIFAR-10 network topology obtained the highest accuracy rate compared to the
others topologies, it was chosen to proceed with the remaining tests. Before testing the
application on a vehicle, the CNN was tested on a desktop to determine its accuracy. In
addition to the already tested german database, where it achieve success recognition rate
of 94.24%, another database was used.

The Belgian Traffic Sign Dataset (BTSD) (Timofte et al., 2009) has 1850 similar traffic signs
that were tested in our CNN achieving an overall success rate of 92.32%.

The neural networks suffered from similar problems, during the course of the tests, in
both databases. Some of the cases in which the CNN was not able to classify the signs from
the german database were due to very low resolution images, large illumination variations,
vegetation occlusion or vandalism (Figure 22).

Figure 22.: GTSRB incorrect recognition examples

In the case of the belgium database, Figure 23 shows some examples of rotated and dis-
colored signs that are difficult to identify, even for the human eye. There are also examples
where the signs are only partly visible in the image.

Figure 23.: BTSD incorrect recognition examples

The results for both database test sets are presented in Table 6 showing the number of cor-
rect recognitions and the recognition rate. The small discrepancy between both recognition
rates is due to the slight difference between the German and Belgian signs.

Database Total signs Correctly Classified Recognition Rate

GTSRB 12630 11902 94.24%

BTSD 1850 1708 92.32%

Table 6.: GTSRB and BTSD recognition testing results

4.2. Tests and Results 50

4.2.3 Client Testing

The device used for testing was a Huawei P9 Lite which has a octa-core processor ARM-
Cortex 53, 4 cores with 1709 MHz and another 4 with 2016 MHz of clock speed. Although
being a powerful mobile device, it runs on a RISC architecture, where benchmarks have
proven that is much slower than an Intel Core i5 or i7 in terms of CPU performance. Using
the Geekbench 4 benchmark, it was possible to determine that the mobile device CPU was
3 to 5 times slower than x64 desktop processors (Figure 24).

Intel Core i7-4750HQ (2.0 GHz) Intel Core i5-2300 (2.8 GHz) ARM Cortex-A53 (1.7 GHz)
0

2,000

4,000

6,000

8,000

10,000

12,000

3,507
2,913

766

11,181

8,159

3,374Pe
rf

or
m

an
ce

Single-Core
Multi-Core

Figure 24.: Benchmark of CISC vs RISC processors

Nevertheless, the application achieved an acceptable frame rate of approximately 10

frames per second at a camera resolution set at 640x480.
We performed some live tests driving a car and recording the number of signs detected

and identified, as well as their GPS locations. The average speed for this drive was 60

km/h. As mentioned in Section 3.2, the classification of traffic signs is a two phase process.
First we detect regions of interest (ROI) in the full frame captured by the devices’ camera
where potentially we can have a traffic sign, and then we use a CNN applied to the ROI to
recognize the sign. The system behaved well when driving in day time, even with lighting
variations.

Table 7 reports on the detection phase, detailing the number of hits, misses and false
positives for each Cascade Classifier. Were detected 138 signs from a total of 145 that was
trained for. The detection rate is over 95%.

One probable cause for the misses occurred was the possible motion blur of the acquired
image and hence missing important information.

The case of false positives was due to the existence of objects with shapes similar to traffic
signs, but not only. In the sign presented in Figure 25a, the system identified it as a danger

4.2. Tests and Results 51

Cascade Type Hits Misses False positives

Prohibition 52 2 3

Danger 57 2 2

Stop 5 - 1

End of prohibition 4 - -

Mandatory 15 2 3

Yield 5 1 -

Table 7.: Detection results

sign. The most similar danger sign is shown in the Figure 25b. This is due to the inner
triangle of the informative sign and since the Cascade Classifier works in a similar way as
a shape detector, it is natural to have this kind of mistakes. The CNN was able to recognise
these signs successfully.

(a) Pedestrian crossing
informative sign

(b) Pedestrian crossing dan-
ger sign

Figure 25.: Informative and danger sign comparison

Regarding the second phase, sign recognition, the CNN was able to recognize success-
fully 121 of the 138 traffic signs successfully detected on the first phase (Table 8). Combining
both reports we get a successful identification of 121 out of 145 signs, i.e. a 83.44% success
rate.

Total signs Detection Rate Recognition Rate Global Rate

145 95.51% 87.68% 83.44%

Table 8.: Recognition results

Some of recognition problems registered were due to sign similarities. Figure 26a repre-
sents the portuguese 60 speed limit and Figure 26b represents the german 60 speed limit,

4.2. Tests and Results 52

which was used for the CNN training. The two templates differ in the way the number 6 is
represented. When the CNN is trying to classify the sign, the closest result it gets is the 80

speed limit sign (Figure 27), since the number 8 and 6 are similar in terms of shape.

(a) Portuguese 60 speed
limit sign

(b) German 60 speed
limit sign

Figure 26.: Speed limit templates comparison

Figure 27.: German 80 speed limit sign

A short georeferencing accuracy test was performed doing 10 passes with a vehicle in a
short circuit capturing the same traffic sign. On the right side of Figure 28, the red markers
represent the recorded positions of the vehicle on each lap. On the left side of the image
are the calculated sign locations relative to when they were detected and recognised by the
device. The computed sign location differs from 0.68 to 5.4 meters to the real sign position
(green marker on the right side of Figure 28). Performing an average of all ten coordinates
we achieved a distance of 2.18 meters (blue marker).

The main cause of the lack of accuracy is the devices’ GPS. The system can provide the
location and altitude, but it has inherent error sources that have to be taken into account
when a device receives the GPS signals from the satellites in orbit. The main GPS error
source is due to inaccurate time-keeping by the devices’ clock. These little time discrepan-
cies can create problems in terms of the exact location of a given object. Trees and buildings
also have a great influence in GPS accuracy. Hence, the car position varies a lot. Another
factor may be magnetic interference from the vehicle or other devices which causes drift in
smartphone orientation.

4.2. Tests and Results 53

Figure 28.: Left: Sign computed locations (pink), mean value (blue) and sign real location
(green); Right: Vehicle GPS location

5

C O N C L U S I O N

As proposed in the beginning of this dissertation, our purpose was to create a client-server
framework for a community based traffic sign repository. In order to do so, several steps
were taken.

Regarding the client side, a mobile application was developed with the goal of detecting,
recognising and georeferencing traffic signs. There are many approaches for traffic sign
detection using computer vision techniques, After a careful study of the strong and weak
points for each of these approaches, we opted for a feature based detection.

In terms of traffic sign recognition, convolutional neural networks were found to be
highly efficient and accurate.

For the last phase of this process, the georeferencing phase, two equations based on the
Krsák and Toth (2011) paper were used and produced positive results in terms of location
accuracy.

We have shown that a current medium range smartphone can perform as a client for this
framework which means that in the near future every smartphone will have the necessary
computing power to be used as a traffic sign report contributor client in this framework.

Regarding the server side, this is where the central repository is located. The main advan-
tage of a community based approach is the constant update of the traffic signs’ state, which
is possible with the contribution of each client. In other words, a vast number of people us-
ing it will promote a faster update of the traffic signs’ state and more signs will be covered.
This creates the possibility to alert entities responsible for road maintenance of potentially
damaged or occluded traffic signs, granting a more timely and directed inspection.

5.1 prospect for future work

As future work we would like to use the framework itself to build an always increasing
database of images that can be used for further training of the detection and recognition
system increasing its accuracy.

54

5.1. Prospect for Future Work 55

We also would like to take advantage of the Open-StreetMaps API to be able to determine
the size of the traffic signs based on the road classification, provide street names and speed
limits, amongst other possibilities.

Another useful extension would be to detect road marks. Road marks are an impor-
tant safety feature that also requires periodic inspection. Extending this framework would
enable to assert the status of these marks avoiding on site inspection.

Performance wise, we could use the mobile GPU to process the detection and recognition
of traffic signs to verify if there are any significant advantages in comparison to the current
CPU approach.

The neural network is only able to recognize 43 different traffic signs for now. There are
other databases, for exemple the Belgium Traffic Sign database that can extend the number
of classes, expanding the capabilities of the actual neural network.

B I B L I O G R A P H Y

A brief introduction to rest. URL: https://www.infoq.com/articles/rest-introduction.
Accessed: 2016-11-20.

The hsi color space. URL: https://pt.scribd.com/doc/16617255/HSI-Color-Space. Ac-
cessed: 2016-11-04.

Rest vs soap, the difference between soap and rest. URL: http://spf13.com/post/

soap-vs-rest. Accessed: 2016-11-20.

P. Medici A. Broggi, P. Cerri and P. P. Porta. Real time road signs recognition. Proceedings of
the IEEE Intelligent Vehicles Symposium, pages 981–986, 2007.

Russell Beale and Tom Jackson. Neural Computing-an introduction. CRC Press, 1990.

David Bouchain. Character recognition using convolutional neural networks. Institute for
Neural Information Processing, 2007, 2006.

Karla Brkic. An overview of traffic sign detection methods. Department of Electronics, Micro-
electronics, Computer and Intelligent Systems Faculty of Electrical Engineering and Computing
Unska, 3:10000, 2010.

Built With. Websites using google maps. URL: https://trends.builtwith.com/

websitelist/Google-Maps. Accessed: 2017-01-12.

Joao L Cardoso, Christian Stefan, Rune Elvik, and Michael Srensen. Road safety inspection-
best practice guidelines and implementation steps. Technical report, Technical report,
deliverable D5 of the EU FP6 project RIPCORD, ISEREST, 2007.

Arturo De la Escalera, J Ma Armingol, and Mario Mata. Traffic sign recognition and analysis
for intelligent vehicles. Image and vision computing, 21(3):247–258, 2003.

Express. Express: Node.js web application framework. URL: https://expressjs.com/.
Accessed: 2017-08-18.

Roy Thomas Fielding. Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine, 2000.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):
193–202, 1980.

56

https://www.infoq.com/articles/rest-introduction
https://pt.scribd.com/doc/16617255/HSI-Color-Space
http://spf13.com/post/soap-vs-rest
http://spf13.com/post/soap-vs-rest
https://trends.builtwith.com/websitelist/Google-Maps
https://trends.builtwith.com/websitelist/Google-Maps
https://expressjs.com/

Bibliography 57

Dariu M Gavrila. Traffic sign recognition revisited. In Mustererkennung 1999, pages 86–93.
Springer, 1999.

Geekbench 4. Processor benchmarks. URL: https://browser.primatelabs.com/

processor-benchmarks. Accessed: 2017-01-08.

Google Map Maker. Google map maker graduates to google maps. URL: https://

productforums.google.com/forum/#!topic/map-maker/UEN0wxhj6Rs. Accessed: 2017-
01-12.

HDF5. What is hdf5? URL: https://support.hdfgroup.org/HDF5/whatishdf5.html. Ac-
cessed: 2017-01-09.

Samer Hijazi, Rishi Kumar, and Chris Rowen. Using convolutional neural networks for
image recognition. 2015.

Di Huang, Caifeng Shan, Mohsen Ardabilian, Yunhong Wang, and Liming Chen. Local
Binary Patterns and Its Application to Facial Image Analysis: A Survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(4):1–17, March 2011.
doi: 10.1109/TSMCC.2011.2118750. URL http://liris.cnrs.fr/publis/?id=5004.

TS Huang. Computer vision: Evolution and promise. Imaging science and technology, Evolu-
tion and promise, pages 13–20, 1996.

David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148(3):574–591, 1959.

IMT. Sinalização vertical - características. URL: http://www.imtt.pt/sites/IMTT/

Portugues/InfraestruturasRodoviarias/InovacaoNormalizacao/Divulgao%20Tcnica/

SinalizacaoVerticalCaracteristicas.pdf. Accessed: 2016-12-26.

Menno-Jan Kraak. Settings and needs for web cartography. Web cartography: Developments
and prospects, pages 1–7, 2001.

Emil Krsák and Stefan Toth. Traffic sign recognition and localization for databases of traffic
signs. Acta Electrotechnica et Informatica, 11(4):31, 2011.

Carlos Javier Fernández Laguía. A study of wireless digital posts and traffic signs using smart-
phones. 2016.

Paul J Leach, Tim Berners-Lee, Jeffrey C Mogul, Larry Masinter, Roy T Fielding, and James
Gettys. Hypertext transfer protocol–http/1.1. 1999.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

https://browser.primatelabs.com/processor-benchmarks
https://browser.primatelabs.com/processor-benchmarks
https://productforums.google.com/forum/#!topic/map-maker/UEN0wxhj6Rs
https://productforums.google.com/forum/#!topic/map-maker/UEN0wxhj6Rs
https://support.hdfgroup.org/HDF5/whatishdf5.html
http://liris.cnrs.fr/publis/?id=5004
http://www.imtt.pt/sites/IMTT/Portugues/InfraestruturasRodoviarias/InovacaoNormalizacao/Divulgao%20Tcnica/SinalizacaoVerticalCaracteristicas.pdf
http://www.imtt.pt/sites/IMTT/Portugues/InfraestruturasRodoviarias/InovacaoNormalizacao/Divulgao%20Tcnica/SinalizacaoVerticalCaracteristicas.pdf
http://www.imtt.pt/sites/IMTT/Portugues/InfraestruturasRodoviarias/InovacaoNormalizacao/Divulgao%20Tcnica/SinalizacaoVerticalCaracteristicas.pdf

Bibliography 58

LeNet. Convolutional neural networks (lenet). URL: http://deeplearning.net/tutorial/
lenet.html. Accessed: 2016-12-13.

Fei-Fei Li and Andrej Karpathy. Convolutional neural networks for visual recognition, 2015.

Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, and Stan Z. Li. Learning Multi-scale
Block Local Binary Patterns for Face Recognition, pages 828–837. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007. ISBN 978-3-540-74549-5. doi: 10.1007/978-3-540-74549-5_87.
URL http://dx.doi.org/10.1007/978-3-540-74549-5_87.

Gareth Loy and Nick Barnes. Fast shape-based road sign detection for a driver assistance
system. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 1, pages 70–75. IEEE, 2004.

T Mccarthy, N Maynooth, C Mcelhinney, C Cahalane, and P Kumar. Initial results from
european road safety inspection (eursi) mobile mapping project. Proceedings of ISPRS
CRIMT, Newcastle, 2010.

Andreas Mogelmose, Mohan M Trivedi, and Thomas B Moeslund. Traffic sign detection and
analysis: Recent studies and emerging trends. In 2012 15th International IEEE Conference
on Intelligent Transportation Systems, 2012.

Gavin Mulligan, Denis Gra, et al. A comparison of soap and rest implementations of a
service based interaction independence middleware framework. In Proceedings of the 2009
Winter Simulation Conference (WSC), pages 1423–1432. IEEE, 2009.

Y. Nguwi and A. Kouzani. A study on automatic recognition of road signs. Procs. IEEE
Conference on Cybernetics and Intelligent Systems, pages 1–6, 2006.

Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach.
Intell., 24(7):971–987, July 2002. ISSN 0162-8828. doi: 10.1109/TPAMI.2002.1017623. URL
http://dx.doi.org/10.1109/TPAMI.2002.1017623.

OkHttp. Okhttp: An http http/2 client for android and java applications. URL: http:
//square.github.io/okhttp/. Accessed: 2017-09-18.

Open Source Computer Vision. Face detection using haar cascades. URL: http://docs.
opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html. Accessed: 2016-11-13.

OpenCV User Guide. Cascade classifier training. URL: http://docs.opencv.org/2.4/doc/
user_guide/ug_traincascade.html. Accessed: 2016-11-14.

OpenStreetMap. Comparision google services. URL: http://wiki.openstreetmap.org/
wiki/Comparision_Google_services_-_OSM. Accessed: 2017-01-12.

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html
http://dx.doi.org/10.1007/978-3-540-74549-5_87
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
http://wiki.openstreetmap.org/wiki/Comparision_Google_services_-_OSM
http://wiki.openstreetmap.org/wiki/Comparision_Google_services_-_OSM

Bibliography 59

Overpass API. Overpass api. URL: http://wiki.openstreetmap.org/wiki/Overpass_API.
Accessed: 2017-01-12.

Sri-Kaushik Pavani, David Delgado, and Alejandro F Frangi. Haar-like features with opti-
mally weighted rectangles for rapid object detection. Pattern Recognition, 43(1):160–172,
2010.

Tamás Kozsik Peter Somogyi, Jukka Nurminen and Máté Szalay-Beko. Analysis of Server-
Smartphone Application Communication Patterns. 2014.

Retrofit. Retrofit: A type-safe http client for android and java. URL: http://square.github.
io/retrofit/. Accessed: 2017-09-18.

Ronald J Rumelhart, David E Williams and Geoffrey E Hinton. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

Bradley Steven Russell. A comparison of neural network and regression models for Navy retention
modeling. PhD thesis, Monterey, California. Naval Postgraduate School, 1993.

P. Siegmann H. GomezMoreno S. Maldonado-Bascon, S. Lafuente-Arroyo and F. Acevedo-
Rodriguez. Traffic sign recognition system for inventory purposes. Proc. of IV, Eindhoven,
page 590–595, 2008.

A. M. Sousa J. F. Sobral S. R. Madeira, L. C. Bastos and L. P. Santos. Automatic traffic signs
inventory using a mobile mapping system for gis applications. International Conference
and Exhibition on Geographic Information, 2005.

Robert E. Schapire. Explaining AdaBoost, pages 37–52. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013. ISBN 978-3-642-41136-6. doi: 10.1007/978-3-642-41136-6_5. URL http:

//dx.doi.org/10.1007/978-3-642-41136-6_5.

Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio.
Robust object recognition with cortex-like mechanisms. IEEE transactions on pattern anal-
ysis and machine intelligence, 29(3):411–426, 2007.

Alok Sinha. Client-server computing. Communications of the ACM, 35(7):77–98, 1992.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striv-
ing for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Square. Square open source. URL: https://square.github.io/. Accessed: 2017-09-18.

TensorFlow. Tensorflow. URL: https://www.tensorflow.org/. Accessed: 2016-12-28.

TFLearn. Tflearn: Deep learning library featuring a higher-level api for tensorflow. URL:
http://tflearn.org/. Accessed: 2016-12-28.

http://wiki.openstreetmap.org/wiki/Overpass_API
http://square.github.io/retrofit/
http://square.github.io/retrofit/
http://dx.doi.org/10.1007/978-3-642-41136-6_5
http://dx.doi.org/10.1007/978-3-642-41136-6_5
https://square.github.io/
https://www.tensorflow.org/
http://tflearn.org/

Bibliography 60

Radu Timofte, Karel Zimmermann, and Luc Van Gool. Multi-view traffic sign detection,
recognition, and 3d localisation. In Applications of Computer Vision (WACV), 2009 Workshop
on, pages 1–8. IEEE, 2009.

Hai S. Tran. Traffic Sign Recognition system on Android devices. Massey University, 2013.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on, volume 1, pages 511–518. IEEE, 2001.

VIZARIO.Cam. Vizario.cam. URL: https://www.vizar.io/vizariocam/. Accessed: 2017-
06-18.

Wikipedia. Haar-like features. https://en.wikipedia.org/wiki/Haar-like_features,
2016a. Accessed: 2016-12-23.

Wikipedia. Overfitting. URL: https://en.wikipedia.org/wiki/Overfitting, 2016b. Ac-
cessed: 2016-12-13.

Wikipedia. Convolutional neural network. URL: https://en.wikipedia.org/wiki/

Convolutional_neural_network, 2016c. Accessed: 2016-12-13.

Wikipedia. Backpropagation. URL: https://en.wikipedia.org/wiki/Backpropagation,
2016d. Accessed: 2017-01-02.

Wikipedia. Google maps. URL: https://en.wikipedia.org/wiki/Google_Maps, 2016e. Ac-
cessed: 2017-01-03.

T. Asakura Y. Aoyagi. A study on traffic sign recognition in scene image using genetic algorithms
and neural networks. 22nd International Conference on Industrial Electronics, Control, and
Instrumentation, 1996. IEEE.

https://www.vizar.io/vizariocam/
https://en.wikipedia.org/wiki/Haar-like_features
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Google_Maps

A
S C I E N T I F I C PA P E R

The award for best paper at the 24th Portuguese Meeting of Computer Graphics and In-
teraction that toke place between 12 and 13 October 2017 at the Azurém Campus of the
University of Minho, in Guimarães was awarded to the researchers Hélder Novais and An-
tónio Ramires Fernandes that authored the paper entitled "Community Based Repository
for Georeferenced Traffic Signs".

61

Community Based Repository for Georeferenced
Traffic Signs

Helder Novais
Departamento de Informática

Universidade do Minho, Portugal
a64378@alunos.uminho.pt

António Ramires Fernandes
Centro Algoritmi

Universidade do Minho, Portugal
arf@di.uminho.pt

Abstract—Traffic sign maintenance requires periodic on-site
inspection to determine if signs are in good conditions and visible,
both day and night. However, periodic inspections are time and
cost consuming. Another issue is related to the drivers awareness
to the traffic signs on the road. Many factors may potentially
contribute to a driver missing a sign, such as the sign being
damaged or occluded, or distraction caused by the many gadgets
inside the vehicle.

We propose a dual purpose community based approach. On
the one hand, each driver can use his mobile device to detect,
recognize and geolocate traffic signs, contributing to the traffic
sign central repository. Detection is performed using cascade
classifiers, while a convolutional neural network support the
recognition phase. The repository, based on the information
received from the clients, can be used to provide reports about
sign status, preventing the need for global inspections and
providing the information required for more direct and timely
inspections. On the other hand, the drivers would have access
to the database of traffic signs therefore being able to receive
real-time notifications regarding traffic signs such as speed limit
signs, school proximity, or road construction signs.

Keywords—community-based approach, computer vision, deep
learning, traffic sign maintenance, trafic sign recognition

I. INTRODUCTION

Road traffic is an interaction between vehicles and pedes-
trians. One of the most important elements in road infras-
tructures are traffic signs. They control traffic flow, inform
about directions and distances, warn about road condition,
prohibit/mandate the driver to do certain actions and guide
the right of way.

One of the most efficient instruments to detect issues on
road infrastructures is road inspection [1]. The inspection
procedure implies the assessment of the current road con-
ditions against the stored reference state. These consist of
periodical on-site evaluation carried out by trained safety
expert teams and results in a formal report which is delivered
to the relevant road authority. The most important part of the
inspection relies on traffic control elements maintenance like
traffic signs and road surface markings [2]. Unfortunately, road
safety inspection is very expensive both regarding the time and
expertise required. Furthermore, depending on the interval at
which they are carried out, a sign may find itself in poor visible
conditions for a long period of time.

Signs which are not clearly visible may be easily missed
by the driver, potentially being a safety issue. Furthermore,
with all the gadgets in recent cars it is not hard to miss
important signs. To improve safety it is important to increase
the awareness of the driver.

We propose a community based approach to deal with both
these problems which consists of a server side repository and
a client mobile application.

On the one hand, we have a client mobile application that
can recognize traffic signs and display warnings to the driver.
Signs recognized by the client application are sent to a server
maintaining a central repository, which in turn feeds the clients
with the sign repository. Nowadays, capable smartphones are
widely available as they have become increasingly powerful
and monetarily accessible over the years. They integrate var-
ious types of sensors such as accelerometer, magnetometer,
gyroscope, GPS and Wi-Fi connection, as well as a significant
increase in camera quality. This makes these devices very good
candidates to achieve this goal.

The server, based on the reports received by the clients,
can infer the sign’s condition, i.e., when a sign is in good
condition, or damaged and/or occluded. Therefore, it has the
potential to avoid global traffic sign inspections and timely
direct inspection teams to signs which are potentially damaged
or occluded.

On the other hand, since clients are fed with a database
of previously recognized signs, they do not rely only on the
effective recognition of signs to be able to display warnings to
the user. This makes this framework suitable to a wide range
of smartphones. High end devices, computationally capable of
performing the recognition tasks, will be able to contribute to
the central repository, while less performing devices can still
benefit from the traffic sign repository for issuing alerts to the
driver.

The remainder of this document is structured as follows:
section II describes previous work on traffic sign recogni-
tion and geoinformation repositories; section III provides an
overview of the proposed client-server architecture; section
IV describes the mobile client application in detail, including
the traffic sign identification, and its communication with the
server, whereas section V describes the server side, including
the repository structure, its update policies and report elabora-978-1-5386-2080-9/17/$31.00 c©2017 IEEE

tion. Tests describing the real usage of the client application,
results from the sign recognition and detection phase, and
georeferencing accuracy are reported on section VI. The paper
concludes in section VII.

II. RELATED WORK

This section reports on previous work both on traffic sign
recognition, as well as georeferenced inventories (section
II-C).

Most traffic sign recognition (TRS) systems have a detection
phase (section II-A) and a recognition phase (section II-B).
First the image is acquired by a camera where it starts to
search for regions of interest (ROI), i.e., areas that resemble
traffic signs. Once a ROI is detected, it goes to the recognition
phase where it will be classified.

A. Traffic Sign Detection

There are several techniques that can be applied for traffic
sign recognition. One of the most common technique is based
on colour, since traffic signs colours are normally easy to
distinguish from the surrounding environment [3]. Due to
external factors, like lighting conditions is not always possible
to apply a threshold directly to RGB. Escalera and Mata [4]
chose HSI space for colour analysis.

Other studies conducted a more exhaustive colour study.
For example, Aoyagy and Asakura [5] noted that colour
sign segmentation is not a good solution because the Hue
component changes with the deterioration of the signs caused
by conditions like weather, and sign age. Concluding, the
colour based segmentation stage is likely to cause issues when
detecting more weather exposed and older signs.

Just like signs have specific colours, they also have well
defined shapes that can be searched for. Several approaches
for shape-based detection of traffic signs have been developed
as well, being the approximation of the Hough transform
approach the most common [6] [7]. Other approaches per-
forms simple template matching from a database in a image
[8]. However, they suffer from object occlusion, rotation or
distortion. Hence, the sign shape can look different and not
all detectors can handle that.

To overcome these problems, a more generic sign detection
based on features could be used. One of the earliest feature
based detection methods was proposed by Paul Viola and
Michael Jones [9] where they used Haar wavelets features.
These features are similar to convolution kernels which are
used to detect the presence of a specific feature in the input
image, such as edges, corners, line ends, or spots. Timofte et
al. [10] use the Viola-Jones detector to detect six different sign
classes.

Another type of feature detector is called Local Binary
Patterns (LBP) [11]. Training and detection is several times
faster in contrast to Haar features because it performs all
calculations using integers instead of floats [12]. In terms
of detection accuracy, it is possible to train a LBP-based
classifier that will provide almost the same quality as a Haar-
based one. Nevertheless, the basic LBP operator has some

limitations such as the inability of capturing dominant features
with large scale structures due to its small neighborhood. The
Multi-scale Block Local Binary Patterns (MB-LBP) [13] is a
more generic solution since it allows to use neighborhoods of
different sizes. Experiments show that MB-LBP significantly
outperforms other LBP based method in terms of accuracy
[13], being a more robust method, although it brings a little
computational overhead over the original LBP operator.

B. Traffic Sign Recognition

Similarly to the detection methods, the recognition phase
consists in training a classifier to learn certain features in order
to predict the correct sign class.

Maldonado-Bascon et al. [14] use a Support Vector Machine
(SVM) to an SVM is trained to classify the shape of a detected
traffic sign. Timofte el al. [10] system uses six SVM classifiers,
each one for a different traffic sign subclasses (triangle-up,
triangle-down, circle-blue, circle-red, rectangle and diamond)
for the different candidate traffic signs. They work on the RGB
colour channels normalized by the intensity variance.

Another type of classifier frequently encountered in traffic
signs recognition literature is an artificial neural network.
In particular, multilayer perceptron (MLP) and convolutional
neural network (CNN). The main difference between these
two is that a CNN has convolutional and pooling layers. The
convolutional layer is used for feature extraction to detect
local patterns, like edges. The pooling layer is used to reduce
the spatial size of the representation, controlling the network
overfitting. Credi et al. [15] trained a CNN for traffic sign
recognition using a combination of greyscale and the original
RGB raw images reaching an classification accuracy of 96.9%
on the German Traffic Sign Recognition Benchmark (GTSRB)
[16]. Sermanet and LeCun [17] achieved 98.97% with a
multi-scale convolutional network architecture. Ciresan et al.
[18] introduced a multi-column CNN and achieved a correct
recognition rate of 99.46%. These last two methods surpassed
the human recognition rate stated at 98.84% [19].

C. Geoinformation inventories

Normally these detection and recognition methods are used
for visual data acquisition with help of a specialized equipped
vehicle. Besides the requirement of at least one camera to
capture the road images it is common to use of a differential
GPS receiver to be able to georeference the sign. In addition,
to increase the system accuracy, inertial sensors, odometer or
infrared cameras may also be used [20] [21].

Arnoul et al. [21] describes an early inventory system called
AUTOCAT, which enables automatic detection and georef-
erence of traffic signs. The road is simultaneously observed
with two cameras: a normal camera and an infrared camera.
A sign is detected by combining infrared readings and color
information. When a sign is detected, it is photographed using
a high resolution digital camera. As GPS technology was not
publicly available at the time, the 3D location of the sign is
reconstructed using camera motion information provided by

an inertial odometer and Kalman filtering. The photo and the
3D location are then stored in the inventory.

Several approaches for automating, at least partly, the in-
spection procedure were developed later [20] [22] [23]. How-
ever they require to have a vehicle equipped with particular
hardware to travel on all roads to achieve a full inspection,
which requires a large amount of time and respective man
power.

The system described in Madeira et al. [20] relies on video
data acquired by two cameras on a van, a GPS and an inertial
navigation device to obtain the instantaneous position and
orientation of the vehicle. Absolute geographic coordinates
of the detected signs are then obtained using triangulation.
Chigorin and Konushin [24] also use triangulation to obtain
the signs’ position in world coordinates.

Kršák and Toth [25] use two analytical expressions to
calculate the approximate coordinates of the traffic sign. The
vehicles position obtained from the GPS receiver is shifted by
a constant value in latitude and longitude because signs are
usually located on the left or right side of the road.

III. GLOBAL FRAMEWORK ARCHITECTURE

The framework has two components: a client mobile appli-
cation (section IV), and a server side traffic sign repository
(section V). On the server side, the repository will contain all
the traffic sign information gathered by the mobile clients. Mo-
bile clients perform image acquisition, traffic sign detection,
recognition and georeferencing (section IV-A). When traffic a
sign is detected it is matched against the information on the
mobile local copy of the repository. Based on the result of this
match the client will send information to the repository to:

• report on a new sign not present in the local copy of the
repository;

• confirm a sign location if present in the local copy of the
repository;

• report a failure to recognize a sign which is present in
the local copy of the repository.

Fig. 1: System architecture

The server side repository in turn feeds new signs to the
clients. These communications can be performed immediately
for clients who allow the usage of mobile data, or deferred
to when Wi-Fi is available. The overall process is depicted in
Figure 1.

Besides acting as a traffic sign information collector, the
client side is also in charge of notifying the driver to the pres-
ence of some relevant signs in some circumstances (section
IV-B).

On the server side the information gathered by the clients is
processed (section V-B) and stored in the repository (section
V-A). This information can later be used to elaborate reports
for road traffic sign maintenance and generate a global map
of all georeferenced signs (section V-C).

IV. CLIENT SIDE

The client side is responsible for both collecting traffic sign
information and displaying warnings to the driver when certain
conditions are met. For low end devices only the later will
be performed. The main advantage of using this framework
under these circumstances is the ability to have an application
that can warn the driver of specific situations as described in
section IV-B.

When the car is in motion the client is constantly performing
two tasks: identifying traffic signs of images acquired by the
camera, and checking the local repository to see if it contains
signs that match the car motion direction and location.

When the application identifies a sign which is already in
the local repository it reports a confirmation to the server.

If a sign present in the local repository is not detected or
recognized, and the appropriate cascade is being used (see
section IV-A), the client also reports to the server. These
situations can mean that the sign recognition requires further
training to become more accurate, or that the sign may be
damaged or partially occluded by vegetation for instance.

Both situations are relevant for this framework, therefore, it
is essential to report this situation to the server. The reported
information should contain the ROI of the detected sign, the
classification result from the CNN, the GPS location and the
motion direction of the car. The motion direction is relevant to
establish in which side of the road the sign is located. When
no sign is detected the ROI is void, hence, it should send the
full image. This would allow to later determine on the server
side if it is a detection issue or a damaged/occluded sign.

If the application identifies a sign which is not on the
local repository this may be due to a false positive sign
identification, or to a new sign which needs to be added to the
repository. In both cases the associated information gets posted
to the repository. False positives may imply that the detection
or recognition phases require further training. Nevertheless,
the server is able to cope with false positives without having
"ghost" signs sent to the clients, see section V-B.

A. Traffic sign detection, recognition and georeferencing

For sign detection MB-LBP features were used, as imple-
mented in the OpenCV Training Cascade library [12], since
it is several times faster in terms of performance than Haar
or HOG features, and performance is a relevant issue in
smartphones.

The application has six distinct cascade classifiers, one
for each category, according to sign markings and shape.

The categories we are currently considering are: prohibition,
danger, stop, end of prohibition, mandatory and yield signs.
Figure 2 presents an example of each category in the order
defined.

Fig. 2: Sign category example

This brings a performance issue since most smartphones
will not be able to sustain an appropriate frame rate if running
all six cascades every frame. Our goal is to maintain a frame
rate at least 8 frames per second. This corresponds to a frame
every 2.08 meters considering a speed of 60 km/h, or 3.125
meters at 90 km/h, which is more than suitable for urban
environments taking into consideration that a sign can be
detected at a much larger distance. To attain this, each cascade
is executed on an independent thread.

However, running six threads at once is quite demanding
for the mobile CPU, not achieving the desired frame rate.
Therefore, it was decided to divide the work between alternate
frames: we will run three of the six cascades in the first frame
and in the next frame the remaining ones are executed.

The recognition stage is handled by a CNN using a modular
deep learning library called TFlearn built on top of Tensor-
Flow. The proposed network receives as input an 32x32 image,
corresponding to the ROI, and has 3 convolutional layers, one
with 32 3x3 filters and two stacked with 64 3x3 filters. In
between there are two max-pooling layers before reaching the
last fully connected layer (Figure 3).

Fig. 3: CNN structure

Regarding the recognition phase, first the ROI is scaled
to 32x32 (in accordance with the input of the recognition
phase). Signs detected on the full frame may vary a lot due to
different illumination conditions, which may cause difficulties
in this stage. So if the image is too dark or too bright, based
on a threshold value, a preprocessing is performed: the ROI
undergoes an histogram equalization in YCrCb color space,
adjusting the intensity of the image pixels. An example of the
effect of this equalization is shown in Figure 4. If the average
pixel intensity of the ROI is in between the given thresholds,
the raw image is sent directly to the recognition stage, without
any preprocessing.

Fig. 4: Left: Original image from the GTSRB; Right: His-
togram equalized image

The cascade classifiers and the CNN require training before
being usable. The GTSRB dataset was used for this purpose.
It provides 39,209 training images for 43 distinct classes of
signs. Each class contains a considerable number of traffic
sign images with different levels of brightness, with random
objects partially occluding the sign, different perspective an-
gles, blur and noise, being suitable for sign classification even
in uncontrolled environments such as outdoor environments.

Figure 5 illustrate the detection and recognition procedure.

Fig. 5: Sign detection example

The next step is sign geolocation. In [25], equations 1
and 2 are used to determine the approximate position of the
recognized sign.

sx = x+ p.cx. sinβ − cy. cosβ (1)

sy = y + p.cx. cosβ + cy. sinβ (2)

where sx and sy represents the calculated longitude and
latitude of the recognized traffic sign. The values of variables
x, y are obtained from a GPS device and represent the current
vehicle longitude and latitude, respectively. To provide the
highest accurate location Google’s Fused Location Provider
API was used. It analyses GPS, cellular and Wi-Fi network
location data. Also, this provider uses different device sensors
to define if a user is walking, riding a bicycle, driving a car
or just standing in order to adjust the frequency of location
updates. So it does not try to update your location as frequently
if the accelerometer indicates that you are not moving, which
has the side benefit of saving battery.

Variable p symbolizes the position of the sign in the frame
captured by the smartphone’s camera. If the sign is located on
the left half of the image, then p is +1, else is -1.

Value β represents the azimuth which indicates the angle
in radians between the device’s current compass direction and
magnetic north. To calculate the orientation data the hardware
sensors were used.

Values cx and cy are used to compute the shift of position
in longitude and latitude. The cx refers to the distance from
the car to the side of the road and has been set at 0.00005
in decimal degrees by based on experimental results. The cy
is obtained based on the sign size in pixels, calculating the
distance of the camera to the plane, perpendicular to the device
view direction, where the sign can be found.

To perform this latter computation we need the focal length
of the camera, which can be obtained with the Android API.
The result obtained was 515 pixels for a Huawei P9 Lite.

To determine the distance cy from the camera to the sign,
required for equations 1 and 2, we can use the distance
equation 3.

cy = (W ∗ F)/P (3)

Where P is the sign width in pixels, W is the real width of
the sign and F is the focal length that was acquired before (in
pixels). This results in an approximation of the distance from
the device to the plane, perpendicular to the view direction,
where the sign can be found.

The IMT [26] reports the size of the Portuguese traffic signs
as presented in Table I.

Dimensions
(cm)

Small Normal Large

Width 60.0 70.0 - 90.0 115.0

TABLE I: Portuguese sign dimensions

The specific size used depends on the classification of the
road, with 70 centimeters being used for urban roads. At this
stage we are focused only on urban areas so we will assume
all signs have this dimension.

After the distance is determined, we need to convert to
decimal degrees to use in equations 1 and 2. Hence, we have
to convert this distance in meters to both a shift in latitude and
longitude. In the equator both latitude and longitude represent
approximately the same shift, so we convert our distances to
degrees considering this referential, i.e., we divide both cx and
cy by 111319.44, the distance corresponding to one degree at
the equator.

Then we apply a longitude correction factor to equation 1
using the inverse cosine of the latitude, as in equation 4.

sx = x+
p.cx. sinβ − cy. cosβ

cos(y)
(4)

Taking the example of Figure 5, we will present an example
of the sign georeferencing and the actual location obtained.

Fig. 6: Sign georeferencing illustration

The size of the detected ROI was 36x36 pixels, and using
equation 3 provides a distance of 10.13 meters. Based on
both legs we can compute the hypotenuse which represents
the distance from the device to the sign. Knowing both the
hypotenuse and one of the legs we get the angle α = 29
degrees, corresponding to a distance of 11.54 meters as shown
in Figure 6. With help of Google Street View we can see that
the marking is at a distance of 2.22 meters (Figure 7).

Fig. 7: Sign location

B. Driver Notification
Signs can be configured for driver notification when some

conditions are met. For instance, if the driver is approaching
a location where the local copy of the repository has a speed
limit sign and the driver is exceeding that limit, which can be
detected based on GPS data, the application should notify the
driver.

If the sign is in the local repository then the warning can be
displayed in advance, otherwise it will be displayed as soon
as the sign is recognized.

The same reasoning can be applied to school proximity
signs, or signs indicating road maintenance, in which case the
warning can be displayed always regardless of the speed of
the vehicle.

The client can be configured for this purpose via a configu-
ration file that associates a sign category to a condition, where
the condition can be a speed threshold, or empty (in which
case it is always true). The main advantage of having a local
repository is the ability to notify the driver in advance. This
can be achieved by also storing a time value, which can then
be translated to a distance since the current speed is known.

V. SERVER SIDE

A. Repository database

The server side of the framework is responsible for the
maintenance of the repository, the elaboration of reports of
potentially damaged or obstructed signs, as well as feeding
clients so that they can have their own local copy of the
repository.

The repository contains the following information for each
sign:

• sign id
• gps location
• motion vector
• confidence level
• report count
• date of insertion
• status
The first two items are self explanatory. The motion vector

allows to associate a sign with a particular street or road
direction. The confidence level is used mainly to elaborate
reports and determine the status of the signs. The status tells us
if the sign is still active, allowing the repository to include not
only the present signs but also an history of sign placement.

The GPS location is also an issue that has to be tackled
since the smartphone hardware does not have the accuracy of
the GPS sensors used in other approaches such as [20] [23].
Our approach is to store a running average of the reported
locations, thereby potentially decreasing over time the location
error, see section VI for a short test regarding this issue.

The confidence level allows us to determine if a sign
should be inspected or even mark it as inactive. When reports
arrive from the clients the confidence level is updated as
a consequence, triggering alarms that can be used for sign
inspection. Only signs with a the confidence level above a
defined threshold are fed to the clients.

B. Handling reports from clients

When the server receives a report from a client with the
positive identification of a new traffic sign, the sign is added
to the repository with a predefined initial confidence level.
As each report of the same nature for the same sign arrives
its confidence level is increased. When the confidence level
reaches a set level then a new sign alarm is triggered and the
sign starts to be fed to the clients.

If a report arrives notifying the server that the client was
unable to recognize a particular sign then its confidence level
is decreased.

For signs that are truly damaged of significantly occluded
it is expected that these reports keep arriving eventually

triggering an alarm for low confidence level. Also reports from
false positives will in principle never get above the required
level of confidence to get distributed to clients.

For temporary signs, such as road construction signs, the
confidence level can be updated more aggressively to ensure
that on the one hand the sign is provided to the clients in useful
time, and on the other hand that the sign does not remain
available to clients long after it is removed from site.

C. Report elaboration and mapping the signs

The ability to determine which signs are potentially dam-
aged of severely occluded based on the confidence level is
one of the most relevant features of this framework. Based on
these reports the traffic sign inspections can be more directed
and performed timely.

Furthermore, global traffic sign periodic inspections will no
longer be necessary. If a significant user base is achieved then
the framework will be able to determine with a large degree
of confidence when and where inspections are required.

Another feature of interest is the ability to populate a map,
such as Google maps or Open Street maps with traffic signs
based on the stored GPS coordinates. Based on this mapping
the reports can indicate street names and road identification, or
even contain the map itself, in addition to the GPS coordinates
making it more easily readable by road inspectors.

VI. TESTS AND RESULTS

In here we report on the tests performed on the client
to evaluate the feasibility of our proposal regarding the
smartphone performance. We also test the CNN regarding
some options we made regarding training, as well as the
georeference accuracy.

A. CNN testing

Before testing the application on a vehicle, the CNN was
tested on a desktop to determine its accuracy. Two distinct
databases were used: The first was the GTSRB testing database
with 12630 images where over 94% success recognition rate
was achieved.

Some of the cases in which the CNN was not able to classify
the signs were due to very low resolution images, large illu-
mination variations, vegetation occlusion or vandalism (Figure
8).

Fig. 8: GTSRB incorrect recognition examples

The Belgian Traffic Sign Dataset [10] (BTSD) has also been
used for further testing. 1850 similar traffic signs templates
were tested in our CNN achieving an overall success rate
of 92.32%. When we got an incorrect recognition the CNN
classification was of similar traffic signs. Furthermore, the
misclassified signs had identical problems as the GTSRB
database.

Fig. 9: BTSD incorrect recognition examples

Figure 9 shows some examples of rotate and discolored
signs that are difficult to identify, even for the human eye.

The results for both database test sets are presented in
Table II showing the number of correct recognitions and the
recognition rate.

Database Total traffic
signs

Signs
correctly
classified

Recognition
rate

GTSRB 12630 11902 94.24%

BTSD 1850 1708 92.32%

TABLE II: GTSRB and BTSD recognition testing results

B. Client testing

The device used for testing was a Huawei P9 Lite which
has an octa-core processor ARM-Cortex 53, 4 cores with
1709MHz and another 4 with 2016MHz of clock speed. The
camera resolution was set at 640x480 and we we’re able to
achieve approximately 10 frames per second.

We performed some live tests driving a car and recording
the number of signs detected and identified, as well as their
GPS locations. The average speed for this drive was 60 km/h.

As mentioned in section IV-A, the identification of traffic
signs is a two phase process. First we detect regions of interest
(ROI) where potentially we can have a traffic sign, and then
we use a CNN applied to the ROI to recognize the sign.

Cascade type Hits Misses False positives

Prohibition 52 2 3

Danger 57 2 2

Stop 5 - 1

End of
prohibition

4 - -

Mandatory 15 2 3

Yield 5 1 -

TABLE III: Detection results

Table III reports on the detection phase, detailing the
number of hits, misses and false positives for each cascade
classifier. The detection rate is over 95%. Most of the misses

occurred when having multiple signs on a single image (see
Figure 10).

Fig. 10: Example of the detection phase missing a sign when
multiple signs are present

Regarding the second phase, sign recognition, the CNN was
able to recognize successfully 121 of the 138 traffic signs
successfully detected on the first phase (Table IV).

Detection Rate Recognition rate

95.51% 87.68%

TABLE IV: Recognition results

Combining both reports we get a successful identification
of 121 out of 145 signs, i.e. a 83.44% success rate.

A short georeferencing accuracy test was performed doing
10 passes with a vehicle capturing the same traffic sign. In
the left image from Figure 11 every red marker represents the
recorded position of the vehicle on each lap.

Fig. 11: Left: Sign computed locations (pink), mean value
(blue) and sign real location (green); Right: Vehicle GPS
location

Due to the low accuracy of the smartphone’s GPS the
car position varies a lot. Another factor may be magnetic
interference from the vehicle or other devices which causes

drift in smartphone’s orientation. All this makes it difficult to
calculate the sign’s exact position. The computed sign location
differs from 0.68 to 5.4 meters to the real sign position (green
marker on the right image from Figure 11). Doing the average
of all ten coordinates we achieved a distance of 2.18 meters
(blue marker).

VII. CONCLUSION

We proposed a client-server framework for a community
based traffic sign repository creation. The main advantage of
a community based approach is that the server side, where the
central repository is kept, is able to keep track of potential
damaged or occluded signs reporting these situations allowing
for more directed inspections and eliminating the need for
general periodic inspections.

The community based approach also allows the prompt and
automatic insertion of new signs and in particular the mainte-
nance of temporary signs such as those for road maintenance.

We have shown that a current medium range smartphone
can perform as a client for this framework which means that
in the near future every smartphone will have the necessary
computing power to be used as a traffic sign report contributor
client in this framework.

As future work we would like to use the framework itself to
build an always increasing database of images that can be used
for further training of the detection and recognition system
increasing its accuracy.

We also would like to take advantage of the Open-
StreetMaps API to be able to determine the size of the traffic
signs based on the road classification, provide street names
and speed limits, amongst other possibilities.

Another useful extension would be to detect road marks.
Road marks are an important safety feature that also requires
periodic inspection. Extending this framework would enable
to assert the status of these marks avoiding on site inspection.

ACKNOWLEDGMENTS

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT – Fundação para a Ciência e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] T. Mccarthy, N. Maynooth, C. Mcelhinney, C. Cahalane, and P. Kumar,
“Initial results from european road safety inspection (eursi) mobile
mapping project,” Proceedings of ISPRS CRIMT, Newcastle, 2010.

[2] J. L. Cardoso, C. Stefan, R. Elvik, and M. Srensen, “Road safety
inspection-best practice guidelines and implementation steps,” Technical
report, deliverable D5 of the EU FP6 project RIPCORD, ISEREST,
Tech. Rep., 2007.

[3] P. M. A. Broggi, P. Cerri and P. P. Porta, “Real time road signs
recognition,” Proceedings of the IEEE Intelligent Vehicles Symposium,
pp. 981–986, 2007.

[4] J. A. A. de la Escalera and M. Mata, Traffic sign recognition and analysis
for intelligent vehicles. Image and Vision Computing, 2003.

[5] T. A. Y. Aoyagi, A study on traffic sign recognition in scene image using
genetic algorithms and neural networks. 22nd International Conference
on Industrial Electronics, Control, and Instrumentation, 1996, iEEE.

[6] K. Brkic, “An overview of traffic sign detection methods,” Department of
Electronics, Microelectronics, Computer and Intelligent Systems Faculty
of Electrical Engineering and Computing Unska, vol. 3, p. 10000, 2010.

[7] G. Loy and N. Barnes, “Fast shape-based road sign detection for a driver
assistance system,” in Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 1. IEEE,
2004, pp. 70–75.

[8] D. M. Gavrila, “Traffic sign recognition revisited,” in Mustererkennung
1999. Springer, 1999, pp. 86–93.

[9] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1. IEEE, 2001.

[10] R. Timofte, K. Zimmermann, and L. Van Gool, “Multi-view traffic sign
detection, recognition, and 3d localisation,” in Applications of Computer
Vision (WACV), 2009 Workshop on. IEEE, 2009, pp. 1–8.

[11] D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen, “Local
binary patterns and its application to facial image analysis: A
survey,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 41, no. 4, pp. 1–17, Mar. 2011.
[Online]. Available: http://liris.cnrs.fr/publis/?id=5004

[12] OpenCV User Guide, “Cascade classifier training,” URL: http://docs.
opencv.org/2.4/doc/user_guide/ug_traincascade.html, accessed: 2016-
11-14.

[13] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, Learning Multi-scale
Block Local Binary Patterns for Face Recognition. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 828–837. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74549-5_87

[14] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-
Moreno, and F. López-Ferreras, “Road-sign detection and recognition
based on support vector machines,” IEEE transactions on intelligent
transportation systems, vol. 8, no. 2, pp. 264–278, 2007.

[15] J. Credi, “Traffic sign classification with deep convolutional neural
networks,” Master’s thesis, Chalmers University of Technology, 2016.

[16] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: Benchmarking machine learning algorithms for traffic sign
recognition,” Neural Networks, no. 0, pp. –, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608012000457

[17] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” in Neural Networks (IJCNN), The 2011 Inter-
national Joint Conference on. IEEE, 2011, pp. 2809–2813.

[18] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep
neural network for traffic sign classification,” Neural Networks, vol. 32,
pp. 333–338, 2012.

[19] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural networks, vol. 32, pp. 323–332, 2012.

[20] A. M. S. J. F. S. S. R. Madeira, L. C. Bastos and L. P. Santos,
“Automatic traffic signs inventory using a mobile mapping system for gis
applications,” International Conference and Exhibition on Geographic
Information, 2005.

[21] P. Arnoul, M. Viala, J. Guerin, and M. Mergy, “Traffic signs localisation
for highways inventory from a video camera on board a moving
collection van,” in Intelligent Vehicles Symposium, 1996., Proceedings
of the 1996 IEEE. IEEE, 1996, pp. 141–146.

[22] P. S. H. G. S. Maldonado-Bascon, S. Lafuente-Arroyo and F. Acevedo-
Rodriguez, “Traffic sign recognition system for inventory purposes,”
Proc. of IV, Eindhoven, p. 590–595, 2008.

[23] S. Šegvic, K. Brkić, Z. Kalafatić, V. Stanisavljević, M. Ševrović,
D. Budimir, and I. Dadić, “A computer vision assisted geoinformation
inventory for traffic infrastructure,” in Intelligent Transportation Systems
(ITSC), 2010 13th International IEEE Conference on. IEEE, 2010, pp.
66–73.

[24] A. Chigorin and A. Konushin, “A system for large-scale automatic
traffic sign recognition and mapping,” CMRT13–City Models, Roads and
Traffic, vol. 2013, pp. 13–17, 2013.

[25] E. Krsák and S. Toth, “Traffic sign recognition and localization for
databases of traffic signs,” Acta Electrotechnica et Informatica, vol. 11,
no. 4, p. 31, 2011.

[26] IMT, “Sinalização vertical - características,”
URL:http://www.imt-ip.pt/sites/IMTT/Portugues/
InfraestruturasRodoviarias/InovacaoNormalizacao/Divulgao\
%20Tcnica/SinalizacaoVerticalCaracteristicas.pdf, accessed: 2017-
05-26.

	1 Introduction
	1.1 Objectives
	1.2 Dissertation Structure

	2 State of the Art and Related Technologies
	2.1 Computer Vision
	2.1.1 Colour-based Detection
	2.1.2 Shape-based Detection
	2.1.3 Feature-based Detection

	2.2 Artificial Neural Networks
	2.2.1 Artificial Neurons
	2.2.2 Layers
	2.2.3 Network Architecture
	2.2.4 Convolutional Neural Networks

	2.3 Client-Server Communication Technologies
	2.3.1 Representational State Transfer (REST)

	2.4 Web Mapping Systems
	2.4.1 Google Maps
	2.4.2 OpenStreetMap

	3 Global Framework Architecture
	3.1 Proposed Approach - solution
	3.2 Client Side
	3.2.1 Detection Module
	3.2.2 Classification Module
	3.2.3 Georeferencing Module
	3.2.4 Client-Server Communication Module
	3.2.5 Interface Module

	3.3 Server Side
	3.3.1 Handling Reports from Clients

	4 Development and Experiments
	4.1 Implementation
	4.1.1 Detection
	4.1.2 Classification
	4.1.3 Georeferencing
	4.1.4 Client-Server Communication
	4.1.5 Repository
	4.1.6 Notifications

	4.2 Tests and Results
	4.2.1 Topologies Testing
	4.2.2 CIFAR-10 network testing
	4.2.3 Client Testing

	5 Conclusion
	5.1 Prospect for Future Work

	A Scientific Paper

