

i

Acknowledgements

I would like to dedicate this work to my parents for their unconditional support and faith, without it

I would have never been able to complete it.

I also would like to express my gratitude to my supervisor, Professor António José Borba Ramires

Fernandes, for his contribution and guidance on the research and writing of this document.

ii

Abstract

Due to great technological advances in video cards over the last decade, several classical image-

rendering algorithms have recently been adapted to run on GPUs. This made it possible for several

ray tracing based global illumination techniques to perform faster and faster, achieving

performance levels which are, in some cases, suitable for real-time applications. However, despite

these advances, rasterization is still the most widely used technique in the 3D Computer Graphics

industry for real time applications due to its efficiency generating images with reasonable visual

quality. As the implementation of photorealistic techniques using ray tracing in real-time is still out

of reach of today's hardware, there have been several attempts to combine rasterization and ray

tracing, to obtain the best of both worlds.

This dissertation seeks to explore the benefits of an approach that combines rasterization and ray

tracing and to study the feasibility of this approach using as case study the creation of hard

shadows. There have been two relevant works on this particular area in the past. The first goal of

these methods was to identify problematic pixels in a shadow map, i.e. pixels which according to

the method could not be determined with certainty to be in shadow or light. One of such methods

guarantees the correctness of the remaining pixels, whereas the other is based on a heuristic

approach. The set of pixels in doubt was then sent to a ray tracer to evaluate their shadow status.

In this work we also explore an extension to one of such methods that takes into account

information regarding the triangle’s adjacency, thereby being able to guarantee the shadow status

of more pixels based only on the data provided by the shadow map. To assert the usefulness of

such approach we evaluate all three methods against a ray tracing solution, analysing the graphics

pipeline, the overhead in terms of computational effort on the rasterization front, the number of

pixels sent to the ray tracer, and also the visual impact of the pixels that are incorrectly assumed

to be accurately classified by the shadow map.

iii

Resumo

Devido aos grandes avanços tecnológicos em placas de vídeo durante a última década, vários

algoritmos de renderização de imagem clássicos foram recentemente adaptado para rodar em

GPUs. Isto tornou possível para vários métodos de ray tracing com base técnicas de iluminação

global executarem mais rapidamente, atingindo níveis de desempenho que são, em alguns casos,

adequado para aplicações em tempo real. No entanto, apesar desses avanços, a rasterização ainda

é a técnica mais utilizada na indústria de computação gráfica 3D para aplicações em tempo real,

devido à sua eficiência na geração de imagens com qualidade visual razoável. Como a aplicação de

técnicas foto realistas usando ray tracing em tempo real ainda está fora do alcance de hardware

de hoje, houve várias tentativas de combinar rasterização e ray tracing, para obter o melhor dos

dois mundos.

Esta dissertação pretende explorar os benefícios de uma abordagem que combina rasterização e

ray tracing para estudar a viabilidade desta abordagem utilizando como caso de estudo a criação

de sombras sólidas. Houve duas obras relevantes nesta área em particular no passado. O primeiro

objectivo destes métodos foi identificar pixéis problemáticos num shadow map, ou seja pixéis que

de acordo com o método não pode ser determinado com certeza estar na sombra ou luz. Um

desses métodos garante a regularidade dos restantes pixéis, enquanto a outra baseia-se numa

abordagem heurística. O conjunto de pixéis em dúvida foi então enviado para um ray tracer para

avaliar o seu estado de sombra.

Neste trabalho, nós também exploramos uma extensão para um desses métodos, incluindo

informações sobre adjacência do triângulo, sendo assim capaz de garantir o estatuto de sombra

mais pixéis com base apenas nos dados fornecidos pelo shadow map. Para averiguar a utilidade de

tal abordagem, avaliamos todos os três métodos contra uma solução de ray tracing, analisando os

pipeline de gráficos, a sobrecarga em termos de esforço computacional em frente da rasterização,

o número de pixéis enviados para o ray tracer, e também o impacto visual dos pixéis que são

incorrectamente assumidos como classificados com precisão pelo shadow map.

iv

Contents

1 Introduction .. 1

1.1 Context ... 1

1.2 Motivation and Objectives .. 2

1.3 Outline .. 3

2 Techniques and Basic Algorithms ... 4

2.1 Shadow Mapping ... 5

2.1.1 Percentage Close Filtering .. 6

2.2 Conservative Rasterization ... 7

2.2.1 Implementation ...10

2.3 Ray Traced Shadows ..12

3 State of the Art.. 14

3.1 Trapezoidal Shadow Mapping ..14

3.1.1 Increasing Shadow Map Resolution ...15

3.1.2 Constructing the Trapezoid ...15

3.1.3 Side Lines ..16

3.1.4 Focus Region on Shadow Maps ...20

3.1.5 Shadow Rendering ...22

3.1.6 Conclusion ...22

v

3.2 Parallel Split Shadow Maps ..22

3.2.1 View Frustum Split ...23

3.2.2 Uniform Split Scheme ...24

3.2.3 Logarithmic Split Scheme ..25

3.2.4 Practical Split Scheme ..25

3.2.5 PSSMs and Scene Rendering ...26

3.2.6 Conclusion ...26

3.3 Other Shadow Mapping algorithms ..26

3.3.1 Variance Shadow Mapping ..27

3.3.2 Exponential Shadow Mapping..27

3.4 Hybrid Methods ..28

3.4.1 Hybrid GPU-CPU Renderer ..28

3.4.2 Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows ...30

3.4.3 Conclusion ...31

4 Conservative Rasterization Shadow Mapping with Adjacency 32

4.1 0-in-Shadow ...36

4.2 1-in-Shadow ...36

4.3 2-in-Shadow ...38

4.4 3-in-Shadow ...40

4.5 Flaws of conservative rasterization process ..41

4.6 Conclusion ...42

vi

5 Analysis and Results ... 43

5.1 Test Scenes ...43

5.2 Ray tracing Statistics ..47

5.3 Algorithm Precision Testing ...50

5.3.1 Standard Shadow Mapping errors ..50

5.3.2 Viewport Size Variance ...52

5.3.3 Shadow Map Size Variance ...54

5.4 Hybrids Methods errors ...56

5.4.1 Uncertain Pixels Detection ..56

5.4.2 Error Analysis ...59

5.5 Conclusion ...66

6 Performance Testing ... 67

6.1 OptiX Prime Ray Testing ...68

6.2 Execution Time of the Create Shadow Map Step ...69

6.3 Execution Time of the Uncertain Detection Step ...70

6.4 Execution Time of the Fill Ray Buffer Step ..71

6.5 Execution Time of the Traced Ray Step ..73

6.6 Execution Time of the Fix Pixels Step ...75

6.7 Execution Time of the Entire Pipeline ...76

6.8 Frame Rate for the Entire Pipeline ...77

6.9 Conclusion ...78

vii

7 Conclusions and Future Work ... 80

References ... 83

A Appendix ... 86

A.1 Pixel Analysis and Results ...86

A.1.1 OptiX Prime ..86

A.1.2 Standard Shadow Mapping ..94

A.1.3 Hybrid Methods .. 110

A.2 Performance Testing .. 134

A.2.1 Bench Scene ... 134

A.2.2 Flowers Scene .. 140

A.2.3 Trees Scene.. 146

viii

List of Figures

Figure 1 – A diagram showing shadow formation. ... 4

Figure 2 – Shadows provide a valuable clue for the position of the objects. 4

Figure 3 – While distant shadow have great detail, nearby shadows will not have sufficient

resolution, resulting in pixelated shadows due to undersampling; (Abrantes, 2009). 5

Figure 4 – The shadow map resolution for the shadow in the surface is too small, applying the

same pixel (red area) of the shadow map to surface seen by the observer (blue area);

(Abrantes, 2009).. 6

Figure 5 – Standard Shadow Map process (top) vs. Shadow Maps with Percentage Closer Filtering

(bottom); (Abrantes, 2009). ... 7

Figure 6 – A comparison of standard (a) and conservative rasterization (b); (Hasselgren, Akenine-

Möller, & Ohlsson, 2005). ... 8

Figure 7 – (a): overestimated conservative rasterization; (b): underestimated conservative

rasterization; (Hasselgren, Akenine-Möller, & Ohlsson, 2005). .. 9

Figure 8 – The Optimal Bounding Polygon for a given triangle; (Hasselgren, Akenine-Möller, &

Ohlsson, 2005). ... 9

Figure 9 – Transformation of the original triangle (orange) to the new triangle (blue); (Left)

Dilation; (Right) Erosion. ...10

Figure 10 – Diagram for shadow ray in ray tracing. ..12

Figure 11 – A comparison of hard shadows (left) and soft shadows (right); (NVIDIA Corporation,

2008). ..13

Figure 12 –Bounding Box Approximation (a) vs. Trapezoidal Approximation (b); (Martin & Tiow-

Seng, Anti-aliasing and Continuity with Trapezoidal Shadow Maps, 2004)14

ix

Figure 13 - Left: The eye frustum as seen from the light; Middle: example for trapezoidal (top) and

bounding box (bottom) approximations; Right: Wastage obtained in the shadow map with

approximations; (Martin & Tiow-Seng, Anti-aliasing and Continuity with Trapezoidal Shadow

Maps, 2004). ..15

Figure 14 – A 1D homogenous perspective projection problem to compute 𝑞; (Martin & Tiow-Seng,

Anti-aliasing and Continuity with Trapezoidal Shadow Maps, 2004).17

Figure 15 – TSM transformations matrixes: (a) 𝑇1; (b) 𝑅; (c) 𝑇2; (d) 𝐻; (e) 𝑆1; (f) 𝑁; (g) 𝑇3; (i)

The final matrix 𝑁𝑇; (Martin & Tiow-Seng, Trapezoidal Shadow Maps (TSM) - Recipe, 2011).

 ...20

Figure 16 - For the trapezoid in (a), its corresponding 𝑇 is shown in (b). In this case, we obtain an

over-sampling for a small region of 𝐸. (c) For a different trapezoid computed with the 80%

rule (having the same top and base lines), its trapezoidal transformation maps the focus

region (the upper part of the trapezoid) to within the first 80% in the shadow map; (Martin &

Tiow-Seng, Anti-aliasing and Continuity with Trapezoidal Shadow Maps, 2004).....................21

Figure 17 - Split the view frustum into three parts, and shadow maps with the same resolution are

generated for the split parts; (Zhang, Sun, Xu, & Lun, 2006). ..22

Figure 18 - Along the 𝑧 axis the view frustum is split into parts by using the split planes at

{𝐶_𝑖│0 ≤ 𝑖 ≤ 𝑚}; (Zhang, Sun, Xu, & Lun, 2006). ...23

Figure 19 - Different types of spilt schemes; (Zhang, Sun, Xu, & Lun, 2006).24

Figure 20 – Variance Shadow Map light leaking example; (Donnelly & Lauritzen, 2006).27

Figure 21 – Exponential Shadow Mapping artefacts; (Annen, Mertens, Seidel, Flerackers, & Kautz,

2008). ..28

Figure 22 – Shadow Demonstration. Left: Pixels that agreed to be shadowed; Middle: Green pixels

indicate the marked pixels for the ray-tracer; Right: Shadows computed for the marked pixels

by the ray-tracer; (Beister, Ernst, & Stamminger, 2005). ...29

x

Figure 23 – Soft Shadow Demonstration. Left: Soft shadows by the eight shadow maps; Middle:

Blue pixels marked for the ray-tracer; Right: Soft shadows computed by the ray-tracer;

(Beister, Ernst, & Stamminger, 2005). ..29

Figure 24 – Example of the “uncertain” areas (green) when using the Hybrid GPU Rendering

Pipeline for Alias-Free Hard Shadows; (Hertel, Hormann, & Westermann, 2009).31

Figure 25 – Geometry Transformations on a pair of triangles that form a plane: (a) Expansion of

the triangles in BGSM; (b) Shrinking of triangles in SGSM, without adjacency information; (c)

Shrinking of triangles in SGSM, with adjacency information. ..33

Figure 26 – Central triangle (orange) and the adjacent triangles (green) provided to the geometry

shader..34

Figure 27 – 0-in-shadow case: the original triangle (orange) is shrunk using normal conservative

rasterization (blue). ...36

Figure 28 - 1-in-shadow case: The new triangle (blue) is composed by {𝑏2, 𝑎1, 𝑣4′}.37

Figure 29 – Three simplified scenarios where the 1-in-Shadow occurs...38

Figure 30 – 2-in-Shadow case: The new geometry is formed by the triangle {𝑏2, 𝑎1, 𝑏1} and the

triangle {𝑏1, 𝑎0, 𝑏2}. ..39

Figure 31 – Three simplified scenarios where the 2-in-Shadow occurs...40

Figure 32 – 3-in-Shadow case: The new geometry is formed by the four triangles: 𝑏1, 𝑎0, 𝑏2,

{𝑏2, 𝑎1, 𝑏1}, 𝑏1, 𝑎1, 𝑎2 and {𝑎2, 𝑎1, 𝑏0}. ...41

Figure 33 - Errors in the conservative rasterization: (a) Normal conservative rasterization; (b)

Conservative rasterization with adjacency. ..42

Figure 34 - The side (left), with (centre) and against (right) viewpoints of the first scene; Shadows

obtained using OptiX Prime. ..44

Figure 35 – The side (left), against (centre) and with (right) viewpoints of the second scene;

Shadows obtained using OptiX Prime. ..45

xi

Figure 36 - The with (left), side (centre) and against (right) viewpoints of the third scene; Shadows

obtained using OptiX Prime. ..46

Figure 37 - Sponza Scene; Shadows obtained using OptiX Prime. ...47

Figure 38 - OptiX Prime Shadows in the With-Flowers scene using the With viewport; the green

pixels represent the PNFL pixels; Viewport Size: 1024x1024. ...48

Figure 39 - OptiX Prime Shadows in the Sponza scene; the green pixels represent the PNFL pixels;

Viewport Size: 1024x1024. ..49

Figure 40 – With-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-

Left) OptiX Prime results; (Bottom-Left) NSM results; (Right) Significant errors obtained by

NSM; Blue pixels represent the incorrect light pixels, and red pixels represent the incorrect

shadow pixels. ..51

Figure 41 – Sponza scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left)

OptiX Prime results; (Bottom-Left) NSM results; (Right) Significant errors obtained by NSM;

Blue pixels represent the incorrect light pixels, and red pixels represent the incorrect shadow

pixels ...52

Figure 42 - Viewport Variation results in the With-Flowers scene, using a fixed shadow map with

1024x1024 sizes. ..53

Figure 43 - Viewport Variation results in the Sponza scene, using a fixed shadow map with

1024x1024 sizes. ..54

Figure 44 – Shadow Map Size variation results in the With-Flowers scene using a fixed viewport of

1024x1024. ..55

Figure 45 – Shadow Map Size variation results in the Sponza scene, using a fixed viewport of

1024x1024. ..56

Figure 46 – PCF’s “uncertain” pixel detection. The purple pixels represent the “uncertain” detected.

Viewport size 1024x1024 and Shadow Map size 2048x2048. ..58

xii

Figure 47 – CRSM’s “uncertain” pixel detection. The purple pixels represent the “uncertain”

detected. Viewport size 1024x1024 and Shadow Map size 2048x2048.58

Figure 48 – CRSMA’s “uncertain” pixel detection. The purple pixels represent the “uncertain”

detected. Viewport size 1024x1024 and Shadow Map size 2048x2048.58

Figure 49 – With-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-

Left) OptiX Prime results; (Bottom-Left) PCF results; (Right) Significant errors obtained by

NSM; Blue pixels represent the incorrect light pixels, and red pixels represent the incorrect

shadow pixels. ..60

Figure 50 – With-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (a) OptiX

Prime results; (b) CRSM and CRSMA results. ..60

Figure 51 – Sponza scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left)

OptiX Prime results; (Bottom-Left) PCF results; (Right) Significant errors obtained by NSM;

Blue pixels represent the incorrect light pixels, and red pixels represent the incorrect shadow

pixels. ..62

Figure 52 – Sponza scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left)

OptiX Prime results; (Bottom-Left) CRSM and CRSMA results; (Right) Significant errors

obtained by NSM; Blue pixels represent the incorrect light pixels, and red pixels represent the

incorrect shadow pixels. ..62

Figure 53 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the With-

Flowers scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ...64

Figure 54 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Sponza

scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages..66

Figure 55 – Pipeline Box Diagram; The Orange Boxes represent pipeline passes while the Blue

boxes represent materials (buffers, textures, variables) used and produced by the pipeline

passes. ...67

xiii

Figure 56 - Graphical representation of the OptiX Prime time results to render the Sponza scene

(milliseconds/screen size). ...69

Figure 57 – Create Shadow Map step diagram. ..69

Figure 58 – Graphical representation of the execution times of the Create Shadow Map step for the

Sponza scene. ..70

Figure 59 - Detect Uncertain step diagram. ...71

Figure 60 – Fill Ray Buffer step diagram. ...72

Figure 61 - Graphical representation of the execution times of the Fill Ray Buffer step for the

Sponza scene. ..73

Figure 62 – Trace Rays Step diagram ..73

Figure 63 - Graphical representation of the execution times of the Trace Rays step for the Sponza

scene. ..75

Figure 64 – Fix Pixels step diagram ...75

Figure 65 - Graphical representation of the execution times of the Pipeline for the Sponza scene. 77

Figure 66 - Graphical representation of the frame rate (FPS), shown in Table 26. The first number

represents the shadow map size, while the second represent the viewport dimensions.78

Figure 67 - OptiX Prime Shadows in the Bench scene using the Against viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..86

Figure 68 - OptiX Prime Shadows in the Bench scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..87

Figure 69 - OptiX Prime Shadows in the Bench scene using the With viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..88

Figure 70 - OptiX Prime Shadows in the Flowers scene using the Against viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..89

xiv

Figure 71 - OptiX Prime Shadows in the Flowers scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..90

Figure 72 - OptiX Prime Shadows in the Trees scene using the Against viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..91

Figure 73 - OptiX Prime Shadows in the Trees scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..92

Figure 74 - OptiX Prime Shadows in the Bench scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024. ..93

Figure 75 - Against-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. ..94

Figure 76 - Shadow Map Size variation results in the Against-Bench scene using a fixed viewport of

1024x1024. ..95

Figure 77 - Side-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. ..96

Figure 78 - Shadow Map Size variation results in the Side-Bench scene using a fixed viewport of

1024x1024. ..97

Figure 79 - With-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. ..98

Figure 80 - Shadow Map Size variation results in the With-Bench scene using a fixed viewport of

1024x1024. ..99

Figure 81 - Against-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 100

xv

Figure 82 - Shadow Map Size variation results in the Against-Flowers scene using a fixed viewport

of 1024x1024. .. 101

Figure 83 - Side-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 102

Figure 84 - Shadow Map Size variation results in the Side-Flowers scene using a fixed viewport of

1024x1024. .. 103

Figure 85 - Against-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 104

Figure 86 - Shadow Map Size variation results in the Against-Trees scene using a fixed viewport of

1024x1024. .. 105

Figure 87 - Side-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red

pixels represent the incorrect shadow pixels. .. 106

Figure 88 - Shadow Map Size variation results in the Side-Trees scene using a fixed viewport of

1024x1024. .. 107

Figure 89 - With-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 108

Figure 90 - Shadow Map Size variation results in the With-Trees scene using a fixed viewport of

1024x1024. .. 109

Figure 91 - Against-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

PCF results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 110

xvi

Figure 92 - Side-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red

pixels represent the incorrect shadow pixels. .. 111

Figure 93 - With-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red

pixels represent the incorrect shadow pixels. .. 112

Figure 94 - Against-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

PCF results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 113

Figure 95 - Side-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

PCF results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 114

Figure 96 - Against-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

PCF results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and

red pixels represent the incorrect shadow pixels. .. 115

Figure 97 - Side-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red

pixels represent the incorrect shadow pixels. .. 116

Figure 98 - With-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red

pixels represent the incorrect shadow pixels. .. 117

Figure 99 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Against-

Bench scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ... 126

Figure 100 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Side-

Bench scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ... 127

xvii

Figure 101 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the With-

Bench scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ... 128

Figure 102 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the

Against-Flowers scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right)

Uncertain pixel percentages. .. 129

Figure 103 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Side-

Flowers scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ... 130

Figure 104 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the

Against-Trees scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right)

Uncertain pixel percentages. .. 131

Figure 105 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Side-

Trees scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ... 132

Figure 106 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the With-

Trees scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages. ... 133

Figure 107 – Graphical representation of the execution times of the Create Shadow Map step for

the With-Bench scene. .. 134

Figure 108 - Graphical representation of the execution times of the Fill Ray Buffer step for the

With-Bench scene. .. 136

Figure 109 - Graphical representation of the execution times of the Trace Rays step for the With-

Bench scene. .. 137

Figure 110 - Graphical representation of the execution times of the Pipeline for the With-Bench

scene. .. 138

xviii

Figure 111 - Graphical representation of the frame rate (FPS) obtained in the With-Bench scene.

The first number represents the shadow map size, while the second represent the viewport

dimensions. .. 139

Figure 112 – Graphical representation of the execution times of the Create Shadow Map step for

the Side-Flowers scene. ... 140

Figure 113 - Graphical representation of the execution times of the Fill Ray Buffer step for the

Side-Flowers scene. .. 142

Figure 114 - Graphical representation of the execution times of the Trace Rays step for the Side-

Flowers scene. .. 143

Figure 115 - Graphical representation of the execution times of the Pipeline for the Side-Flowers

scene. .. 144

Figure 116 - Graphical representation of the frame rate (FPS) obtained in the Side-Flowers scene.

The first number represents the shadow map size, while the second represent the viewport

dimensions. .. 145

Figure 117 – Graphical representation of the execution times of the Create Shadow Map step for

the Against-Trees scene. ... 146

Figure 118 - Graphical representation of the execution times of the Fill Ray Buffer step for the

Against-Trees scene. ... 148

Figure 119 - Graphical representation of the execution times of the Trace Rays step for the

Against-Trees scene. ... 149

Figure 120 - Graphical representation of the execution times of the Pipeline for the Against-Trees

scene. .. 150

Figure 121 - Graphical representation of the frame rate (FPS) obtained in the Against-Trees scene.

The first number represents the shadow map size, while the second represent the viewport

dimensions. .. 151

xix

List of Tables

Table 1 - Information of viewports used for the Bench Scene. ..43

Table 2 - Information of viewports used for the Flower Scene. ...44

Table 3 - Information of viewports used for the Trees Scene. ...45

Table 4 - Information of viewports used for the Sponza Scene. ..46

Table 5 - OptiX Prime results for the With-Flowers scene: PFL represents the Pixels Facing the

Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the

pixels in Light and the pixels in Shadow. ..48

Table 6 - OptiX Prime results for the Sponza scene: PFL represents the Pixels Facing the Light and

PnFL represents the Pixels not Facing the Light; The PFLs are then split into the pixels in Light

and the pixels in Shadow. ..49

Table 7 – Normal Shadow Mapping errors in the With-Flowers scene with a 1024x1024 viewport

and 1024x1024 shadow map ...50

Table 8 – Normal Shadow Mapping errors in the Sponza scene with a 1024x1024 viewport and

1024x1024 shadow map..51

Table 9 – NSM viewport results for the With-Flowers scene, using a fixed shadow map size of

1024x1024; I represents the incorrect pixels and C represent the correct pixels.52

Table 10 – NSM viewport results for the Sponza scene, using a fixed shadow map size of

1024x1024; I represents the incorrect pixels and C represent the correct pixels.53

Table 11 - NSM shadow map results in the With-Flowers scene, using a fixed viewport size of

1024x1024; I represents the incorrect pixels and C represents the correct pixels.54

Table 12 - NSM shadow map results in the Sponza using a fixed viewport size of 1024x1024; I

represents the incorrect pixels and C represent the correct pixels.55

xx

Table 13 – Certain and Uncertain pixels found in the Against-Trees scene for each method; results

obtained with a 1024x1024 viewport and a 1024x1024 shadow map.57

Table 14 – Pixels Precision results in the With-Flowers scene with a 1024x1024 viewport and a

1024x1024 shadow map..59

Table 15 – Pixels Precision results in the Sponza scene with a 1024x1024 viewport and a

1024x1024 shadow map..61

Table 16 – Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the With-Flowers scene; C - Correct and I - Incorrect.63

Table 17 – Shadow Map Variation of the pixel precision results, using a fixed viewport of

1024x1024 for the With-Flowers scene; C - Correct and I - Incorrect.64

Table 18 – Shadow Map Variation of the pixel precision results, using a fixed viewport of

1024x1024 for the Sponza scene; C - Correct and I - Incorrect. ...65

Table 19 – OptiX Prime time results (milliseconds) to render the Sponza scene, with common

screen display sizes. ..68

Table 20 - Execution times of the create shadow map step for the Sponza scene.70

Table 21 - Execution times of the Detect Uncertain step for the Sponza scene.71

Table 22 - Execution times of the fill ray buffer step for the Sponza scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step.72

Table 23 - Execution times of the trace rays step for the Sponza scene; the # Rays is equal to the

number of “uncertain” pixels found in the Detect Uncertain step. ...74

Table 24 - Execution times of the fix pixels step for the Sponza scene.76

Table 25 - Execution times of the test pipeline for the Sponza scene. ...76

Table 26 – Frame rate of the test pipeline for the Sponza scene. ..77

xxi

Table 27 - OptiX Prime results for the Bench scene with the Against viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...86

Table 28 - OptiX Prime results for the Bench scene with the Side viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...87

Table 29 - OptiX Prime results for the Bench scene with the With viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...88

Table 30 - OptiX Prime results for the Flowers scene with the Against viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...89

Table 31 - OptiX Prime results for the Flowers scene with the Side viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...90

Table 32 - OptiX Prime results for the Trees scene with the Against viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...91

Table 33 - OptiX Prime results for the Trees scene with the Side viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then

split into the pixels in Light and the pixels in Shadow. ...92

Table 34 - OptiX Prime results for the Trees scene with the With camera; PFL represents the Pixels

Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split

into the pixels in Light and the pixels in Shadow. ..93

Table 35 - Normal Shadow Mapping errors in the Bench scene with the Against viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ...94

xxii

Table 36 - NSM viewport results in the Bench scene with the Against viewport, using a fixed

shadow map size of 1024x1024; I represents the incorrect pixels and C represent the correct

pixels. ..95

Table 37 - NSM shadow map results in the Bench scene with the Against viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. ..95

Table 38 - Normal Shadow Mapping errors in the Bench scene with the Side viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ...96

Table 39 - NSM viewport results in the Bench scene with the Side viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels. .97

Table 40 - NSM shadow map results in the Bench scene with the Side viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. ..97

Table 41 - Normal Shadow Mapping errors in the Bench scene with the With viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ...98

Table 42 - NSM viewport results in the Bench scene with the With viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels. .99

Table 43 - NSM shadow map results in the Bench scene with the With viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. ..99

Table 44 - Normal Shadow Mapping errors in the Flowers scene with the Against viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ... 100

Table 45 - NSM viewport results in the Flowers scene with the Against viewport, using a fixed

shadow map size of 1024x1024; I represents the incorrect pixels and C represent the correct

pixels. .. 101

xxiii

Table 46 - NSM shadow map results in the Flowers scene with the Against Camera, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. .. 101

Table 47 - Normal Shadow Mapping errors in the Flowers scene with the Side viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ... 102

Table 48 - NSM viewport results in the Flowers scene with the Side viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

 ... 103

Table 49 - NSM shadow map results in the Flowers scene with the Side viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. .. 103

Table 50 - Normal Shadow Mapping errors in the Trees scene with the Against viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ... 104

Table 51 - NSM viewport results in the Trees scene with the Against viewport, using a fixed

shadow map size of 1024x1024; I represents the incorrect pixels and C represent the correct

pixels. .. 105

Table 52 - NSM shadow map results in the Trees scene with the Against viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. .. 105

Table 53 - Normal Shadow Mapping errors in the Trees scene with the Side viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ... 106

Table 54 - NSM viewport results in the Trees scene with the Side viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

 ... 107

Table 55 - NSM shadow map results in the Trees scene with the Side viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. .. 107

xxiv

Table 56 - Normal Shadow Mapping errors in the Bench scene with the With viewport, with a

1024x1024 viewport and 1024x1024 shadow map. ... 108

Table 57 - NSM viewport results in the Trees scene with the With viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

 ... 109

Table 58 - NSM shadow map results in the Trees scene with the With viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct

pixels. .. 109

Table 59 - Pixels Precision results in the Bench scene with the Against viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 110

Table 60 - Pixels Precision results in the Bench scene with the Side viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 111

Table 61 - Pixels Precision results in the Bench scene with the With viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 112

Table 62 - Pixels Precision results in the Flowers scene with the Against viewport, with a

1024x1024 viewport and a 1024x1024 shadow map. .. 113

Table 63 - Pixels Precision results in the Flowers scene with the Side viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 114

Table 64 - Pixels Precision results in the Trees scene with the Against viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 115

Table 65 - Pixels Precision results in the Trees scene with the Side viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 116

Table 66 - Pixels Precision results in the Trees scene with the With viewport, with a 1024x1024

viewport and a 1024x1024 shadow map. .. 117

Table 67 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Against-Bench scene; C - Correct and I - Incorrect. 118

xxv

Table 68 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Side-Bench scene; C - Correct and I - Incorrect. 119

Table 69 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the With-Bench scene; C - Correct and I - Incorrect. 120

Table 70 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Against-Flowers scene; C - Correct and I - Incorrect. 121

Table 71 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Side-Flowers scene; C - Correct and I - Incorrect. 122

Table 72 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Against -Trees scene; C - Correct and I - Incorrect. 123

Table 73 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Side-Trees scene; C - Correct and I - Incorrect. 124

Table 74 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the With-Trees scene; C - Correct and I - Incorrect. 125

Table 75 - Shadow Map Variation of the pixel precision results, using a fixed viewport of

1024x1024 for the Against-Bench scene; C - Correct and I - Incorrect. 126

Table 76 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024

for the Side-Bench scene; C - Correct and I - Incorrect. .. 127

Table 77 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024

for the With-Bench scene; C - Correct and I - Incorrect. .. 128

Table 78 - Shadow Map Variation of the pixel precision results, using a fixed viewport of

1024x1024 for the Against-Flowers scene; C - Correct and I - Incorrect. 129

Table 79 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024

for the Side-Flowers scene; C - Correct and I - Incorrect. .. 130

Table 80 - Shadow Map Variation of the pixel precision results, using a fixed viewport of

1024x1024 for the Against-Trees scene; C - Correct and I - Incorrect. 131

xxvi

Table 81 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024

for the Side-Trees scene; C - Correct and I - Incorrect. ... 132

Table 82 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024

for the With-Trees scene; C - Correct and I - Incorrect.. 133

Table 83 - Execution times of the create shadow map step for the With-Bench scene. 134

Table 84 - Execution times of the Detect Uncertain step for the With-Bench scene. 135

Table 85 - Execution times of the fill ray buffer step for the With-Bench scene; the # Rays is equal

to the number of “uncertain” pixels found in the Detect Uncertain step. 135

Table 86 - Execution times of the trace rays step for the With-Bench scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step. 136

Table 87 - Execution times of the fix pixels step for the With-Bench scene. 137

Table 88 - Execution times of the test pipeline for the With-Bench scene. 138

Table 89 – Frame rate of the test pipeline for the With-Bench scene... 139

Table 90 - Execution times of the create shadow map step for the Side-Flowers scene. 140

Table 91 - Execution times of the Detect Uncertain step for the Side-Flowers scene. 141

Table 92 - Execution times of the fill ray buffer step for the Side-Flowers scene; the # Rays is

equal to the number of “uncertain” pixels found in the Detect Uncertain step. 141

Table 93 - Execution times of the trace rays step for the Side-Flowers scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step. 142

Table 94 - Execution times of the fix pixels step for the Side-Flowers scene. 143

Table 95 - Execution times of the test pipeline for the Side-Flowers scene. 144

Table 96 – Frame rate of the test pipeline for the Side-Flowers scene. 145

Table 97 - Execution times of the create shadow map step for the Against-Trees scene. 146

xxvii

Table 98 - Execution times of the Detect Uncertain step for the Against-Trees scene. 147

Table 99 - Execution times of the fill ray buffer step for the Against-Trees scene; the # Rays is

equal to the number of “uncertain” pixels found in the Detect Uncertain step. 147

Table 100 - Execution times of the trace rays step for the Against-Trees scene; the # Rays is equal

to the number of “uncertain” pixels found in the Detect Uncertain step. 148

Table 101 - Execution times of the fix pixels step for the Against-Trees scene. 149

Table 102 - Execution times of the test pipeline for the Against-Trees scene. 150

Table 103 – Frame rate of the test pipeline for the Against-Trees scene. 151

xxviii

List of Acronyms

AABB Axis-Aligned Bounding Box

PCF Percentage Closer Filtering

FOV Field Of View

BGSM Big Geometry Shadow Map

SGSM Small Geometry Shadow Map

NSM Normal Shadow Mapping

CRSM Conservative Rasterization Shadow Mapping

CRSMA Conservative Rasterization Shadow Mapping with

Adjacency

VSM Variance Shadow Mapping

ESM Exponential Shadow Mapping

PFL Pixels Facing the Light

PnFL Pixels not Facing the Light

Introduction

1

1 Introduction

1.1 Context

Currently, image generation in Computer Graphics is divided into several types of rendering

techniques, of which the most prevalent are based on rasterization and ray tracing. These

techniques have different guiding principles when it comes to image generation.

The rasterization process produces images of reasonable quality with great efficiency, even

considering scenarios with a large number of triangles. However, the quality of the images

produced by rasterization is not comparable to the quality obtained through algorithms based on

ray tracing.

Hybrid rendering, including other techniques besides rasterization and ray tracing, has been

around for a long time. A famous engine that uses hybrid rendering is RenderMan by Pixar, an

engine that uses an implementation of the REYES architecture (Cook, Carpenter, & Catmull, 1987),

used for the creation of special effects in the film industry, most known for its role in “Toy Story”

and “Finding Nemo”.

For the production of the animation film “Cars” (Christensen, Fong, Laur, & Batali, 2006),

RenderMan was extended to use ray tracing, because the characters in the film required high

quality reflections, which was not possible in the rasterization system they had. After this change,

Pixar was able to include other effects to film like ambient occlusion e precise shadows.

With advances in graphics hardware, ray tracing algorithms have been ported to work on the GPU

to speed up image synthesis. Ray tracing engines have been created recently, such as NVIDIA’s

OptiX™ (NVIDIA Corporation, 2008), AMD’s FireRays™ (Trudeau, 2015) , and Intel’s Embree™

(Wald, Woop, Benthin, Johnson, & Ernst, 2014).

However, despite these advances the possibility of real-time full ray tracing is still far from current

graphical capabilities. In this context, proposals that combine rasterization with ray tracing

emerged (Beister, Ernst, & Stamminger, 2005) (Hertel, Hormann, & Westermann, 2009)

(Cabeleira, 2010), and some in depth studies have been performed (Moderno, 2011). The main

idea behind these works is to combine the best of both worlds, the performance of rasterization,

and the details that ray tracing is able to provide. Most of the work developed in this field has been

Introduction

2

mostly about only one aspect like shadows, while some tried to implement all possible ray tracing

effects into rasterization using CPU and GPU parallel processing (Cabeleira, 2010).

When combining ray tracing and rasterization a common approach is the use of deferred

rendering, where the rasterization process gathers the information of the scene and ray tracing

uses that information to create visual effects. The rasterization process can have three purposes:

to produce an initial image; collect information regarding the scenario (positions, normals, and

other attributes) and identify possible areas of intervention for the subsequent steps with ray

tracing.

An example of such approach is the work in (Hertel, Hormann, & Westermann, 2009), where ray

tracing is used to compute the transition between light and shadow in the use of shadow maps.

This rendering technique produces high quality hard shadows when compared to rasterization.

1.2 Motivation and Objectives

Both methods of producing rendered images, rasterization and ray tracing, have their benefits and

flaws: rasterization is designed to produce high quality objects, using the proprieties of the object

and local approximations of the light, but is incapable of processing visual effects that involve the

entire environment, not having easy access to the scenes proprieties, like geometry and placing of

the objects, resulting in more complex algorithms to apply little details, that add a new level a

detail; ray tracing is designed to produce images with high quality illumination. Due to its

implementation based on the studied behaviour of the light in the real world, obtaining visual

complex effects like global illumination, reflections and refractions result in more elegant

implementations. However, this comes with a heavy performance impact and high rendering times,

since the light effects must take into account the entire scene, and this is not commonly supported

directly in hardware graphical pipelines.

The objective of this dissertation is to study the feasibility of hybrid rendering algorithm in the

context of hard shadows, combining the rasterization with ray tracing. The solutions will be

analysed from a qualitative and quantitative perspective, comparing with both pure rasterization

and ray tracing solutions.

Furthermore, this thesis presents an extension to the work in (Hertel, Hormann, & Westermann,

2009) using geometric adjacency information, and evaluate its usefulness considering the

performance impact.

Introduction

3

Since the implementation of this dissertation will use the ray tracing engine OptiX™ by NVIDIA, in

conjunction with the University of Minho’s 3D rendering engine Nau3D, another objective of this

dissertation is to test and improve Nau’s support with OptiX™ engine and enhancing the project’s

capability of rendering high quality 3D environments in real-time.

1.3 Outline

Besides this chapter, this document will explain the principal concepts used in the shadow mapping

and ray tracing, as well as the ideas of conservative rasterization, relevant for the hybrid method

that we’ll present.

The second chapter covers the basic shadow mapping technique and highlight some of its issued,

and will describe some of the techniques which are used in the methods relevant for this study.

The third chapter provides a state of the art focusing on hard shadows. Improvements to standard

shadow mapping are presented as well as the hybrid methods that are the basis for this work.

Chapter 4 describes the extension using geometric adjacency information, comparing it with the

original algorithm (Hertel, Hormann, & Westermann, 2009). The pipeline and its implementation

are also discussed in here.

The analysis and results are presented in chapter 5, where a comparison is performed between the

basic shadow mapping approach, the existing hybrid methods and the new proposed extension,

considering the ray traced shadows as ground truth. The analysis covers the required pipelines, as

well as the ability to determine (correctly) which pixels require the ray tracing pass.

The sixth chapter presents performance results, where a comparison of the hybrid methods is done

within a specific test pipeline, where the time required by these methods to produce the necessary

materials in those steps is analysed. Also, at the end of the chapter, the full execution times of the

pipeline and the frame rate are compared to the pure ray tracing methods, to determine if the

hybrid methods provide significant impacts in these statistics.

The final chapter will present the conclusions of this study regarding hybrid methods for the

production of hard shadows and report on the feasibility of the proposed extension. Time is always

an issue, and in the end we still feel that some avenues could be explored. These ideas will be

presented in a section dedicated to the future work.

Algorithm Descriptions

4

2 Techniques and Basic Algorithms

Shadow is the named called to an area not exposed directly to a light source, due to an obstruction

of the light by an object, creating a dark silhouette of the obscuring object in the area. The area

around the shadow where the light’s obstruction is partial is called the penumbra. Figure 1,

demonstrates this, where the umbra (Latin for shadow) is the inner region of the shadow, where

the light source is completely blocked, and the penumbra is the transition region of the shadow,

where the light source is partially obstructed, creating a gradient.

Figure 1 – A diagram showing shadow formation.

The recreation of this natural phenomenon in rendered images is extremely important, because it

establishes a sense of depth, facilitating the determination of spatial relation between objects. As

seen in Figure 2.

Figure 2 – Shadows provide a valuable clue for the position of the objects.

Regarding the production of shadows, there are methods that compute only the umbra. These are

called hard shadow methods. All the hybrid methods on this study fall into this category (Beister,

Ernst, & Stamminger, 2005; Hertel, Hormann, & Westermann, 2009). Some methods simulate the

penumbra by a filtering process (Donnelly & Lauritzen, 2006; Annen, Mertens, Seidel, Flerackers, &

Kautz, 2008). This results in a blurred shadow that, although not physically correct, can provide a

more visually appealing shadow representation. The filtering process can introduce some artefacts

in some situations as will be shown later. Ray traced shadows can provide a good approximation of

Algorithm Descriptions

5

the penumbra, through extensive sampling of area lights. However, this comes with a performance

penalty when compared to previous methods.

2.1 Shadow Mapping

The most popular methods in rasterization to generate projected shadow are based on shadow

maps (Williams, 1978). This is a 2-pass algorithm, where the first pass will render the depth values

of all the objects from the light’s point of view into a 2D texture (shadow map). In the second pass

of the algorithm, the scene is rendered from the camera location, and each pixel is transformed to

light-space to retrieve the depth value stored in the shadow map, and compare it to the actual

distance from the corresponding point to the light. If the depth value stored in the shadow map is

less than the actual distance to the light, this means that there’s another object occluding the

point; therefore this pixel is in shadow. Otherwise the pixel is lit.

Since shadows can be determined directly by using the light’s point-of-view, there is no need for

auxiliary structures or information about the scene but this technique possesses severe aliasing

problems, where shadows lose quality due to sampling issues (Nealen, 2002). The most common

problems of this technique are Perspective Aliasing and Projection Aliasing (other problems emerge

when dealing with large scale environments) (Abrantes, 2009).

Figure 3 – While distant shadow have great detail, nearby shadows will not have sufficient resolution,

resulting in pixelated shadows due to undersampling; (Abrantes, 2009).

Perspective Aliasing refers to the discrepancies between the perspectives of the eye and the light.

In the eye’s perspective, the objects closer to the eye are larger than distant objects, creating

inconsistency in the sampling, causing the closest shadows to be less detailed and the distant

Algorithm Descriptions

6

shadows get more detail than required. Figure 3 shows a diagram where the green area represents

oversampling of the shadow and the red area represents undersampling of the shadow.

Projection Aliasing refers to the problem that appears when the surface of an object is almost

parallel to the light’s direction, making the normal of that surface perpendicular to the light

direction. This causes the same depth value of the shadow map to become associated to a large

number of the pixels on the surface, as shown in Figure 4, resulting in discontinuous shadows

along the surface. This becomes more apparent when there’s camera movement, since the

shadows will flicker with each movement.

Figure 4 – The shadow map resolution for the shadow in the surface is too small, applying the same pixel (red

area) of the shadow map to surface seen by the observer (blue area); (Abrantes, 2009).

2.1.1 Percentage Close Filtering

A method to reduce the aliasing problems is to take multiple samples, making multiple shadow

map comparisons per pixel and averaging them together. This technique is called Percentage

Closer Filtering (PCF) (Reeves, Salesin, & Cook, 1987), because it computes the percentage of the

surface that is closer to the light, and therefore not in shadow. As opposed to the basic algorithm,

which is only capable of binary shadow results, PCF produces blurred shadows. The most simple

and efficient implementation of the PCF is to create a filter kernel with the compared depth values.

When the pixel is processed, the intensity of the shadow will result in the percentage of shadowed

Algorithm Descriptions

7

elements inside the kernel. This results in a smooth transition between light and shadow, known as

soft shadows. Figure 5 show how the PCF works in relation to the standard shadow map.

Figure 5 – Standard Shadow Map process (top) vs. Shadow Maps with Percentage Closer Filtering (bottom);

(Abrantes, 2009).

Although the main usage of this technique is to fix sampling issues, it can also be used to correct

pixels based on the information of the surrounding pixels, creating more precise hard shadow in

lower shadow map resolutions, as described in section 3.4.1.

2.2 Conservative Rasterization

When programmable graphics hardware came to the market, research and engineering work was

focused to ”port” specific algorithms, so they could run on GPUs. The argument for this was that

the GPU’s performance grew faster than that of CPU’s, so in the long run GPUs would have

superior performance in future. However several algorithms, like collision detection (Myszkowski,

Okunev, & Kunii, 1995) , occlusion culling (Koltun, Cohen-Or, & Chrysanthou, 2001) and visibility

testing for shadow acceleration (Lloyd, Wendt, Govindaraju, & Manocha, 2004), that discretize

their continuous problem domain don’t achieve the same results with the use of GPU’s standard

Algorithm Descriptions

8

rasterization. Figure 6-(a) shows an example of this problem, standard rasterization can’t detect

that the two triangles overlap geometrically, while in Figure 6-(b) conservative rasterization can

detect the overlap and produce the correct result.

Figure 6 – A comparison of standard (a) and conservative rasterization (b); (Hasselgren, Akenine-Möller, &

Ohlsson, 2005).

Although the conservative rasterization algorithm was already detailed in (Akenine-Moller & Aila,

2005), this algorithm was designed as hardware implementation, whereas the methods presented

in (Hasselgren, Akenine-Möller, & Ohlsson, 2005) can be easily implemented in shaders. The

solution presented in (Hasselgren, Akenine-Möller, & Ohlsson, 2005) consists in modifying the

polygons before the rasterization process, where a pixel cell (the rectangular region around a pixel

in the pixel grid) moves along the border, applying one of the following transformations,

depending on the approach taken to the rasterization process:

 An overestimated conservative rasterization (Figure 7-a), all the pixels caught in the pixel

cell are added, dilating the edge;

 An underestimated conservative rasterization (Figure 7-b), all the pixels caught in the pixel

cell are erased, eroding the edge.

Algorithm Descriptions

9

Figure 7 – (a): overestimated conservative rasterization; (b): underestimated conservative rasterization;

(Hasselgren, Akenine-Möller, & Ohlsson, 2005).

Although (Hasselgren, Akenine-Möller, & Ohlsson, 2005) presents two implementations of the

algorithm; this work will focus on the second implementation, since the first implementation

requires multiple output vertices for each input vertex to calculate the optimal bounding box, the

second implementation obtains the bounding polygon by intersecting the bounding triangle with an

Axis-Aligned Bounding Box (AABB), as showed in Figure 8.

Figure 8 – The Optimal Bounding Polygon for a given triangle; (Hasselgren, Akenine-Möller, & Ohlsson, 2005).

In order to dilate/erode the edges of a triangle, the vertex information must be available, so the

implementation requires a geometry shader. The calculations shown below are done in screen

space. This is to reduce the complexity of the calculations to dilate/erode, since 𝑥 and 𝑦

coordinates represent the position of the triangle in the screen, and the 𝑧 coordinate will indicate if

the triangle is visible in the screen.

Algorithm Descriptions

10

2.2.1 Implementation

Given a triangle composed of vertices 𝑣0, 𝑣2 and 𝑣4, the first step of the algorithm is to calculate

the edges of the original triangle in screen space.

𝑒0 = 𝑣2 − 𝑣0
𝑒1 = 𝑣4 − 𝑣2
𝑒2 = 𝑣0 − 𝑣4

(1)

After all of the edges are calculated, we must calculate the perpendicular vector for each edge

(𝑝𝑒𝑁), as if they were lines.

𝑝𝑒N = |(−𝑒𝑁. 𝑥), (𝑒𝑁 . 𝑦)| (2)

These perpendicular edges represent the directions in which the triangle will be eroded or dilated

from, as showed in the diagrams of Figure 9, the orange triangle represents the original triangle

and the blue triangle represents the modified triangle.

Figure 9 – Transformation of the original triangle (orange) to the new triangle (blue); (Left) Dilation; (Right)

Erosion.

But the calculations done now only apply to the edges, in the shader the transformation applies to

the vertex, and since each vertex belongs to two edges, we must calculate the shifted positions of

each vertex following the direction of 𝑝𝑒 that that vertex belongs to, the following equations show

an example for vertex 𝑣0, but these calculations apply for all vertices.

Algorithm Descriptions

11

𝑠𝑎0 = 𝑣0 ± 𝑝𝑒0 ∗ 𝑝𝐷
𝑠𝑏2 = 𝑣0 ± 𝑝𝑒2 ∗ 𝑝𝐷

(3)

Where 𝑝𝐷 represents diagonal length of the pixel cell. The 𝑠𝑎0 is the shifted position of vertex 𝑣0

following the direction 𝑝𝑒0 and 𝑠𝑏2 is the shifted position of 𝑣0 following the direction 𝑝𝑒2. The

 ± means that functions changes depending on the transformation, for erosion the + sign is used

and for dilation the − sign is used.

After calculating all shifted positions of the vertex, we can calculate the intersections of the new

edges to form the new triangle form by the vertices 𝑣’0, 𝑣’2 and 𝑣’4. The following section of code

shows line intersection formula using four points.

There might be cases where the triangle is not visible in screen space. This is because the triangle

is perpendicular to the camera. Therefore, if the 𝑧 normal component is 0, this process is skipped.

vec3 lineLineIntersection(vec3 s1, vec3 e1, vec3 s2, vec3 e2,

 vec3 n, vec3 p) {

 vec3 result;

 float a1 = e1.y - s1.y;

 float b1 = s1.x - e1.x;

 float c1 = a1 * s1.x + b1 * s1.y;

 float a2 = e2.y - s2.y;

 float b2 = s2.x - e2.x;

 float c2 = a2 * s2.x + b2 * s2.y;

 float delta = a1*b2 - a2*b1;

 result = vec3(b2*c1 - b1*c2, a1*c2 - a2*c1, 0) / delta;

 // now result is the 2D coordinate in x,y

// we still need to compute z

 // Ax + By + Cz + D = 0 => z = -(Ax + By + D) / C

 if (n.z != 0) {

 float d = -dot(n, p);

 result.z = -(n.x * result.x + n.y * result.y + d) / n.z;

 }

 else {// this would only happen with a triangle

//which is perpendicular to the screen

 result.z = 0;

 }

 return result;

}

Algorithm Descriptions

12

2.3 Ray Traced Shadows

Considering point or directional lights, shadows are easily created using ray tracing based

algorithms (Glassner, 1989). For every pixel in the scene, a ray is sent from its world position to

the light source.

Figure 10 – Diagram for shadow ray in ray tracing.

When a ray from the camera (primary ray) intersects an object, a new ray is created in the

intersected point (shadow ray). This ray is sent in the direction of the light source. If the shadow

ray intersects any object during its trajectory, then the intersected point is in shadow, if not the

intersected point is being illuminated. Figure 10 illustrates the process to obtain and image using

ray tracing.

This process of creating projected shadows is simple to implement and achieves great detail in the

shadow’s contours.

When considering area light sources, the reproduction of shadows with needs to determine the

percentage of the light source visible for each point in the scenery. That task can be approximated

by using multiple samples of the light. This requires several shadow rays in different directions

within the light source. The percentage of rays that reaches the light provides give an

approximation of the area of visible light. This allows the creation of penumbra effects, as seen in

Figure 11.

Algorithm Descriptions

13

In general, larger number of samples provides better results in the production of penumbra and

umbra regions, however, as a direct consequence, the render time of the image will be larger.

Figure 11 – A comparison of hard shadows (left) and soft shadows (right); (NVIDIA Corporation, 2008).

State of the Art

14

3 State of the Art

3.1 Trapezoidal Shadow Mapping

Trapezoidal Shadow Mapping (Martin & Tiow-Seng, Anti-aliasing and Continuity with Trapezoidal

Shadow Maps, 2004) is a new approach of calculating shadows using trapezoidal shadow maps

which are derived from trapezoidal approximations of the eye’s frustum as seen from the light. It

addresses the resolution problems of the standard shadow mapping, resulting in enhanced shadow

map resolution for both static and dynamic objects from near and far, with no constraint on the

relative positions and motions of the eye and the light. The approach is efficient as only the eight

corners of the eye’s frustum plus the centres of the near and far plane, rather the scene, are

needed to compute a good trapezoidal approximation, thus it scales well to large scenes. Figure 12

shows an example of this approach.

Figure 12 –Bounding Box Approximation (a) vs. Trapezoidal Approximation (b); (Martin & Tiow-

Seng, Anti-aliasing and Continuity with Trapezoidal Shadow Maps, 2004)

State of the Art

15

3.1.1 Increasing Shadow Map Resolution

A shadow map can viewed as a simple construct that contains two types of positions of the eye’s

frustum: the positions within and the positions outside the frustum. It is clear that only the former

is useful to determine whether pixels are in shadow or not. Increasing the shadow map resolution

is to minimize the positions outside the frustum, which are collectively termed as wastage. In other

words, a good way to address the resolution problem is to better utilize the shadow map for the

area within the eye frustum in Figure 13 (denoted as E). This requires the calculation of an

additional normalization matrix 𝑁 to transform the post-perspective space of the light to an 𝑁-

space in general, where 𝑁 refers to the trapezoidal space and bounding box space, respectively in

Figure 13. The shadow map is constructed by transforming the pixel into the 𝑁-space, rather than

into the post-perspective space of the light, for depth comparison.

Figure 13 - Left: The eye frustum as seen from the light; Middle: example for trapezoidal (top) and

bounding box (bottom) approximations; Right: Wastage obtained in the shadow map with

approximations; (Martin & Tiow-Seng, Anti-aliasing and Continuity with Trapezoidal Shadow Maps,

2004).

3.1.2 Constructing the Trapezoid

Since the trapezoid is recognized to be most similar shape to 𝐸, the aim of (Martin & Tiow-Seng,

Anti-aliasing and Continuity with Trapezoidal Shadow Maps, 2004) work is to construct a trapezoid

State of the Art

16

𝑇 to approximate 𝐸, with the constraint that each such consecutive approximation results in a

smooth transition of the shadow map resolution.

The first step is to find two parallel lines in post-perspective space (𝐿) of the light to contain the

base and the top edge of the required trapezoid (𝑇). The aim is to choose the parallel lines such

that there is a smooth transition when the eye moves between frames. The algorithm to determine

those lines follows these steps:

1. Transform the eye’s frustum into 𝐿 of the light to obtain 𝐸;

2. Compute the central line 𝑙, which passes through the centres of the near and far plane of

𝐸;

3. Calculate the 2D convex hull of 𝐸 (which can contain up to six vertices on its boundary);

4. Calculate the top line (𝑙𝑡) that is orthogonal to 𝑙 and touches the boundary of the convex

hull of 𝐸. It intersects 𝑙 at a point closer to the center of the near plane and far plane of 𝐸.

5. Calculate the base line (𝑙𝑏) which is parallel to (and different from) the top line (𝑙𝑡) (i.e.,

orthogonal to 𝑙 too) and touches the boundary of the convex hull of 𝐸.

The calculation of the centre line 𝑙 is important because it allows recalculating the 𝑙𝑡 and 𝑙𝑏

accordingly to the eye’s movement, creating a smooth transition between frames.

3.1.3 Side Lines

The following step is to calculate the side lines of the trapezoid. Assuming the eye is more

interested in objects and their shadows within the first 𝛿 distance from the near plane. That is, the

focus region of the eye is the eye’s frustum truncated at 𝛿 distance from the near plane. Let 𝑝 be a

point of 𝛿 distance away from the near plane with its corresponding point 𝑝𝐿 lying on 𝑙 in 𝐿, as

seen in Figure 14. Let the distance of 𝑝𝐿 from the top line be 𝛿′. The trapezoid has to contain 𝐸, so

that 𝑁𝑡 maps 𝑝𝐿 to some point in 𝑇.

State of the Art

17

Figure 14 – A 1D homogenous perspective projection problem to compute 𝑞; (Martin & Tiow-Seng,

Anti-aliasing and Continuity with Trapezoidal Shadow Maps, 2004).

To do this, we must calculate a transformation matrix 𝑁𝑇 which maps the four corners of the

trapezoid (𝑡0,𝑡1,𝑡2 and 𝑡3) to the front of the unit cube. This can be done with the following

constraints:

(−1, −1, 1, 1)𝑇 = 𝑁𝑇 ∗ 𝑡0
(+1, −1, 1, 1)𝑇 = 𝑁𝑇 ∗ 𝑡1
(+1, +1, 1, 1)𝑇 = 𝑁𝑇 ∗ 𝑡2
(−1, +1, 1, 1)𝑇 = 𝑁𝑇 ∗ 𝑡3

(4)

A straightforward way to determine 𝑁𝑇 with these restrictions is to apply rotation, translation,

shearing, scaling, and normalization operations to the trapezoid to map it to the front side of the

unit cube. This is achieved by calculating the eight matrices: 𝑇1, 𝑅, 𝑇2, 𝐻, 𝑆1, 𝑁, 𝑇3 and 𝑆2.

As the first step, 𝑇1 transforms the centre of the top edge to the origin (Figure 15-(a)).

𝑢 =
(𝑡2 + 𝑡3)

2

𝑇1 = [

1
0
0
0

0
1
0
0

0
0
1
0

−𝑥𝑢

−𝑦𝑢

0
1

]

(5)

Then, the trapezoid 𝑇 is rotated by applying 𝑅 around the origin in such a way, that the top edge

is collinear with the 𝑥-axis (Figure 15-(b)):

State of the Art

18

𝑢 =
(𝑡2 − 𝑡3)

|𝑡2 − 𝑡3|

𝑅 = |

𝑥𝑢

𝑦𝑢

0
0

𝑦𝑢

−𝑥𝑢

0
0

0
0
1
0

0
0
0
1

|

(6)

After the rotation, the intersection 𝑖 of the tow side lines containing the two side edges (𝑡0, 𝑡3) and

(𝑡1, 𝑡2) is transformed, by applying 𝑇2, to the origin (Figure 15-(c)):

𝑢 = 𝑅 ∗ 𝑇1 ∗ 𝑖

𝑇2 = |

1
0
0
0

0
1
0
0

0
0
1
0

−𝑥𝑢

−𝑦𝑢

0
1

|

(7)

As a next step, the trapezoid has to be sheared with 𝐻, so that it is symmetrical to the y-axis

(Figure 15-(d)), i.e. that the line passing through the centre of the bottom edge and centre of the

top edge is collinear with the 𝑦-axis:

𝑢 =
𝑇2 ∗ 𝑅 ∗ 𝑇1 ∗ (𝑡2 + 𝑡3)

2

𝐻 = |

1
0
0
0

−𝑥𝑢/𝑦𝑢

1
0
0

0
0
1
0

0
0
0
1

|

(8)

Now, the trapezoid is scaled by applying 𝑆1(Figure 15-(e)), so that the angle between the two side

lines containing the two side edges (𝑡0, 𝑡3) and (𝑡1, 𝑡2) is 90 degrees, and so that the distance

between the top edge and the 𝑥-axis is 1:

𝑢 = 𝐻 ∗ 𝑇2 ∗ 𝑅 ∗ 𝑇1 ∗ 𝑡2

𝑆1 = |

1/𝑥𝑢

0
0
0

0
1/𝑦𝑢

0
0

0
0
1
0

0
0
0
1

|

(9)

The following transformation 𝑁 (Figure 15-(f)) transforms the trapezoid to a rectangle:

State of the Art

19

𝑁 = |

1
0
0
0

0
1
0
1

0
0
1
0

0
1
0
1

|

(10)

Then, the rectangle is translated along the 𝑦-axis until its centre is coincident with the origin. This

is done by applying 𝑇3 (Figure 15-(g)). After this transformation the rectangle is symmetrical to the

𝑥-axis as well:

𝑢 = 𝑁 ∗ 𝑆1 ∗ 𝐻 ∗ 𝑇2 ∗ 𝑅 ∗ 𝑇1 ∗ 𝑡0
𝑣 = 𝑁 ∗ 𝑆1 ∗ 𝐻 ∗ 𝑇2 ∗ 𝑅 ∗ 𝑇1 ∗ 𝑡2

𝑇3 = |
|

1
0
0
0

0
1
0
0

0
0
1
0

0

− (
𝑦𝑢

𝑤𝑢
+

𝑦𝑣

𝑤𝑉
) 2⁄

0
1

|
|

(11)

As a last step the rectangle has to be scaled with 𝑆2 (Figure 15-(h)) along the 𝑦-axis so that it

covers the front side of the unit cube:

𝑢 = 𝑇3 ∗ 𝑁 ∗ 𝑆1 ∗ 𝐻 ∗ 𝑇2 ∗ 𝑅 ∗ 𝑇1 ∗ 𝑡_0

𝑆2 = |

1
0
0
0

0
−𝑤𝑢 𝑦𝑢⁄

0
0

0
0
1
0

0
0
0
1

|

(12)

Now the trapezoidal transformation 𝑁𝑇 (Figure 15-(i)) can be computed as follows:

𝑁𝑇 = 𝑆2 ∗ 𝑇3 ∗ 𝑁 ∗ 𝑆1 ∗ 𝐻 ∗ 𝑇2 ∗ 𝑅 ∗ 𝑇1 (13)

State of the Art

20

Figure 15 – TSM transformations matrixes: (a) 𝑇1; (b) 𝑅; (c) 𝑇2; (d) 𝐻; (e) 𝑆1; (f) 𝑁; (g) 𝑇3; (i) The

final matrix 𝑁𝑇; (Martin & Tiow-Seng, Trapezoidal Shadow Maps (TSM) - Recipe, 2011).

3.1.4 Focus Region on Shadow Maps

Figure 16 shows one of the problems of the trapezoidal transformation 𝑁𝑡 to 𝑇, given a trapezoid

containing four triangles, like shown in (a). 𝑁𝑡 has the effect of stretching the top edge of the into

a unit length. In this case, the top edge is relatively short compared to the base edge, and

therefore the stretching results in pushing all the showed triangles towards the bottom of the unit

square as showed in (b). This means that the region near the top edge (in other words, close to

the near plane) eventually occupies a major part of the shadow map, which results in over-

sampling of objects near the eye, sacrificing resolution of the other objects (such as the second to

fourth triangles from the top show).

State of the Art

21

Figure 16 - For the trapezoid in (a), its corresponding 𝑇 is shown in (b). In this case, we obtain an

over-sampling for a small region of 𝐸. (c) For a different trapezoid computed with the 80% rule

(having the same top and base lines), its trapezoidal transformation maps the focus region (the

upper part of the trapezoid) to within the first 80% in the shadow map; (Martin & Tiow-Seng, Anti-

aliasing and Continuity with Trapezoidal Shadow Maps, 2004).

The 80% rule allows to all 𝑝𝐿 with the distance 𝛿 from the top line, when applied the trapezoidal

transformation 𝑁𝑡, to be mapped to some point within the 80% line in 𝑇. This increases the

resolution of the far objects, while maintaining a high detail for objects near the eye.

State of the Art

22

3.1.5 Shadow Rendering

After calculating the trapezoidal transformation matrix 𝑁𝑡 the rendering steps for the shadow

mapping process must now envelop the shadow map with the trapezoid. In order to due this they

must apply the following transformations in the vertex shader:

vertexPosition = NT ∗ 𝑃𝑉𝑀 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (14)

After this alteration to the vertex positions, the next steps follow the same process as the regular

shadow mapping algorithm.

3.1.6 Conclusion

Trapezoidal Shadow Maps shows that it is practical and maps well to graphics hardware. It is a

reasonable heuristic to generate shadow maps of good resolution, but the issues on over-sampling

and under-sampling remain for various situations such as in the duelling frusta case where the

trapezoidal approximation does not have any particular advantage over other approximations.

3.2 Parallel Split Shadow Maps

Parallel split shadow maps (Zhang, Sun, Xu, & Lun, 2006) is a method to reduce the amount of

aliasing error in shadow maps by producing an optimized distribution of shadow map texels. In

large-scale environments the shadow map might not have enough resolution in order to create

detailed shadows in the scene. PSSM splits the shadow maps in continuous discrete layers, in

order to maintain the detail despite the distance of camera, as shown in Figure 17.

Figure 17 - Split the view frustum into three parts, and shadow maps with the same resolution are

generated for the split parts; (Zhang, Sun, Xu, & Lun, 2006).

State of the Art

23

The processing steps of the PSSMs scheme are outlined in the following:

1. Split the view frustum into multiple depth parts;

2. Split the light’s frustum into multiple smaller ones, each of which covers one split part also

the objects potentially casting shadows into the part;

3. Render a shadow map for each split part;

4. Render scene shadows for whole scene.

3.2.1 View Frustum Split

The “splitting” is basically dividing the view frustum in to smaller continuous planes, to which a

shadow map will be attributed to each of those planes. These planes are continuous because the

“split” occurs according certain intervals along the 𝑧 axis. Figure 17 shows an example of m split

planes along the 𝑧 axis.

Figure 18 - Along the 𝑧 axis the view frustum is split into parts by using the split planes at

{𝐶_𝑖│0 ≤ 𝑖 ≤ 𝑚}; (Zhang, Sun, Xu, & Lun, 2006).

In Figure 18, the light beams through a texel with the size 𝑑𝑠 × 𝑑𝑠 in normalized texture space

(i.e 𝑠 ∈ [0,1]) falls on a surface with the length 𝑑𝑧 in world space. The size of the view beams 𝑑𝑝

on the screen projected form the surface is approximately 𝑛𝑑𝑦/𝑧. 𝜑 and 𝜃 denote the angles

between the surface normal and vector to the screen and the shadow map plane respectively.

Shadow map under-sampling occurs when 𝑑𝑝 is larger than the pixel size of the screen, this can

happen when perspective aliasing (𝑑𝑧/𝑧𝑑𝑠) or projection aliasing (cos 𝜑 / cos 𝜃) becomes large.

Projection aliasing usually happens when the light’s direction is almost parallel to the surface. Since

State of the Art

24

projections aliasing is heavily related to the scene’s geometry details, the only solution to the

problem is to increase the sampling density, inevitably increasing the scene analysis time. On the

other hand, perspective aliasing comes from the perspective foreshortening effect, which can be

reduced by applying a global transformation to warp the shadow map texels.

(Zhang, Sun, Xu, & Lun, 2006) work presents three split schemes (Figure 19) in order to deal with

different distribution of perspective aliasing errors:

 Logarithmic split scheme;

 Uniform split scheme;

 Practical split scheme.

Figure 19 - Different types of spilt schemes; (Zhang, Sun, Xu, & Lun, 2006).

3.2.2 Uniform Split Scheme

The simplest split scheme is to place the split planes uniformly along the 𝑧 axis:

𝐶𝑖
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

= 𝑛 + (𝑓 − 𝑛)𝑖 𝑚⁄ (15)

This split scheme results in under-sampling at the points near the view and over-sampling in points

further from the view. In contrast to the logarithmic split scheme, uniform split scheme results in

the theoretically worst aliasing distribution.

State of the Art

25

3.2.3 Logarithmic Split Scheme

Logarithmic split scheme is based on optimal distribution of perspective errors, which theoretically

evens distribution of perspective aliasing errors over the whole depth range. This scheme assumes

that the shadow map accurately covers the view frustum and no piece of the resolution is wasted

on invisible parts of the scene.

𝐶𝑖
𝑙𝑜𝑔

= 𝑛(𝑓 𝑛⁄)𝑖/𝑚 (16)

The main drawback of this split scheme is that the lengths of split parts near the viewer are too

small, so few objects can be included in these split parts. This is because of the main assumption

that the shadow map covers the view frustum, which requires that every 𝑧 ∈ [𝑛, 𝑓] must be

mapped to a unique 𝑠 ∈ [0,1] in the normalized texture space, but this can’t be satisfied in

practice, resulting in under-sampling for parts further from the viewer and over-sampling for parts

nearer the viewer.

3.2.4 Practical Split Scheme

Practical split scheme consists in combining the previous two split schemes to produce a moderate

result between the theoretically optimal and worst sampling densities in the extreme cases, the

objects near the viewer and the objects further form the viewer.

In Figure 19, practical split scheme produces moderate sampling for both near and far split parts.

Combining equations 14 and 15, the split positions 𝐶𝑖 can be calculated by the following equation

𝐶𝑖 =
(𝐶𝑖

𝑙𝑜𝑔
+ 𝐶𝑖

𝑢𝑛𝑖𝑓𝑜𝑟𝑚
)

2
+ 𝛿𝑏𝑖𝑎𝑠 , ∀0 ≤ 𝑖 ≤ 𝑚 (17)

The variable 𝛿𝑏𝑖𝑎𝑠 is a non-negative bias that can be used to accurately adjust clip positions

(Tadamura, Qin, Jiao, & Nakamae, 1999), if necessary for the application.

State of the Art

26

3.2.5 PSSMs and Scene Rendering

After the lights frustum is split into 𝑊𝑖, each split part 𝑉𝑖 is rendered to a shadow map 𝑇𝑖 in the

𝑊𝑖 space. These shadow maps can have a fixed size, which is helpful for the uniform and practical

splits.

With the PSSMs generated in previous step, shadows shadow effects can be now synthesized into

the virtual scene. Like standard shadow mapping, each pixel should be transformed into the light

space when determining if the pixel is shadowed or not. The differences here are:

1. The correct shadow map 𝑇𝑖 must be selected;

2. The pixel has to be transformed into 𝑊𝑖 rather 𝑊.

After this, for each rasterized fragment, the sampling must come from the appropriate shadow

map based on the depth value of the fragment. Since the coordinates are measured in clip space,

𝐶𝑖 is transformed to 𝐶𝑖
𝑐𝑙𝑖𝑝

 below:

𝐶𝑖
𝑐𝑙𝑖𝑝

=
𝑓

𝑓 − 𝑛
(𝑛 −

1

𝐶𝑖
) ∈ [0,1] (18)

Then, the pixel in the fragment buffer with the depth value 𝑧𝑐𝑙𝑖𝑝 , if the 𝑧𝑐𝑙𝑖𝑝 ∈ [𝐶𝑖𝑛𝑑𝑒𝑥−1
𝑐𝑙𝑖𝑝

, 𝐶𝑖𝑛𝑑𝑒𝑥
𝑐𝑙𝑖𝑝

]

the shadow map 𝑇𝑖𝑛𝑑𝑒𝑥 is selected. Consequently, this fragment is transformed into the split light’s

frustum 𝑊𝑖𝑛𝑑𝑒𝑥 for the depth comparison.

3.2.6 Conclusion

While parallel-split shadow maps is an intuitive and simple implementation of shadow rendering,

and using the practical split scheme, the quality of the shadows becomes superior to standard

shadow map, without requiring a scene analysis. In fact, PSSM are the only feasible way to deal

with large scenarios.

3.3 Other Shadow Mapping algorithms

Although this work is focused on the production of hard shadows, some soft shadow references

are included in here for completeness.

State of the Art

27

3.3.1 Variance Shadow Mapping

Variance Shadow Mapping (Donnelly & Lauritzen, 2006) is a technique that calculates, besides the

usual depth value, the depth-squared values. These values will then be used to calculate the

probability of each point being lit or not. But due to the fact that the lower bound of brightness is

an approximate value derived from using only one single occluding object, if a scene has a high

depth complexity, there might be light leaking artefacts (areas appearing lit instead of shadowed),

as shown by Figure 20. In most cases this issue can be dealt with using a shadow threshold.

Figure 20 – Variance Shadow Map light leaking example; (Donnelly & Lauritzen, 2006).

3.3.2 Exponential Shadow Mapping

Exponential Shadow Mapping (Annen, Mertens, Seidel, Flerackers, & Kautz, 2008) is a technique

that allows an efficient (pre)-filtering to the shadow by using a single-term approximation with a

simple exponential. The shadow mapping process only stores the nearest surface it encounters

during the creation of the shadow map, projecting shadow on points that are behind the stored

depth sample. With this assumption, the exponential behaves like a step function.

Even thought for many pixels the assumption works, for large kernel sizes, the less likely that

artefacts can be avoided, as shown by Figure 21. This makes exponential shadow mapping’s

performance highly dependent on the scene and kernel size. Again thresholding helps to provide a

less incorrect result.

State of the Art

28

Figure 21 – Exponential Shadow Mapping artefacts; (Annen, Mertens, Seidel, Flerackers, & Kautz,

2008).

3.4 Hybrid Methods

There are been developments to combine ray traced shadow effects with rasterization techniques

the most common methods use shadow mapping, due to its very efficient algorithm performance,

to perform a first pass of the scene, indicating the areas in shadow with the shadow map, followed

by a selective ray tracing algorithm to determine the shadow of the pixel that have a unreliable

shadow status. This greatly reduces the number of ray being cast and intersection calculations,

going better results when compared to shadow maps initial results, with reduced performance

times when compared to pure ray tracing solution.

3.4.1 Hybrid GPU-CPU Renderer

The Hybrid GPU-CPU Renderer (Beister, Ernst, & Stamminger, 2005) presented an algorithm to

render shadows by mixing shadow mapping and ray tracing. The algorithm creates a shadow map

with a bilinear PCF. Then for each pixel in the interpolated result and if the result is 0 or 1 then the

four surrounding pixels will agree and the pixel will be lit (1) or shadowed (0). If the result is

between 0 and 1, then the four surrounding pixels aren’t in agreement the state of the pixel, so

the pixel is marked, as showed in Figure 22. The ray tracer will then calculate the shadowing for

each uncertain pixel marked in the shadow map.

State of the Art

29

This algorithm is also adaptable to the type of light source used in the scenery. If the light source

is a point light, the method describe before is used. But if the light source is an area light, the light

source will be replaced by eight point lights, one in the centre of the area and the other seven will

surround this area. In this case, the agreement will be done using the eight shadow maps, the

results of this can be seen in Figure 23.

Figure 22 – Shadow Demonstration. Left: Pixels that agreed to be shadowed; Middle: Green pixels indicate

the marked pixels for the ray-tracer; Right: Shadows computed for the marked pixels by the ray-tracer;

(Beister, Ernst, & Stamminger, 2005).

This algorithm is robust if the shadow map resolution is adequate to the tessellation of the scene,

but this is difficult because the scene has to be carefully modeled using a constant tessellation

parameter for all objects. Errors may still occur if the four pixels are in agreement are incorrect,

with four pixels indicated that a point is lit, yet the point should be in shadow.

Figure 23 – Soft Shadow Demonstration. Left: Soft shadows by the eight shadow maps; Middle: Blue pixels

marked for the ray-tracer; Right: Soft shadows computed by the ray-tracer; (Beister, Ernst, & Stamminger,

2005).

State of the Art

30

3.4.2 Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

The Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows (Hertel, Hormann, & Westermann,

2009) is used to create alias-free shadows. It creates a conservative rasterization shadow map

(CRSM) that similarly to the normal shadow map, but in this case a triangle will be saved in a pixel

if it overlaps said pixel in any plane, not only in the centre. This is done as shown in chapter 2.

The CSM consists of a two layer texture where one layer contains all the expanded triangles in the

scene (BGSM), and the other layer contains all of the shrunken triangles in the scene (SGSM). In

the scene rendering step, the pixel will be analysed using both layers in the CRSM. If both layers

are in agreement with the state of the pixel, the pixel will be lit or shadowed in the final image. If

the layers disagree on the state of the pixel, the pixel will be classified as “uncertain”. Afterwards,

for each “uncertain” pixel discover is sent to a ray tracer to verify the state of the pixel. This ray-

tracer will use the information of the triangle saved by the pixel and a kD-tree in order to speed up

intersection tests. The information of the depth at which the triangle is found will allow for the ray-

tracer to only start testing for intersections from there, as there should be no other triangle

between this point and the light source.

As can be seen in Figure 24, there are many areas classified as “uncertain” that commonly produce

correct results using shadow maps, namely the triangle junctions for triangles in light. The

performance of this algorithm is highly dependent on the geometry tessellation hence for highly

tessellated models a large number of light rays will be required.

State of the Art

31

Figure 24 – Example of the “uncertain” areas (green) when using the Hybrid GPU Rendering

Pipeline for Alias-Free Hard Shadows; (Hertel, Hormann, & Westermann, 2009).

3.4.3 Conclusion

The hybrid methods demonstrated here use a variety of shadow techniques to detect problems in

the shadow map texture so that the ray tracer segment of the process can correct them. However,

the shadow mapping still produces visual errors that cannot be so easily detected. The following

chapters demonstrate that even with detection methods present before, the final image still

possess errors in the image.

The algorithm presented (Hertel, Hormann, & Westermann, 2009) also raises a significant point of

analyses: the use of adjacency information. Many of these “uncertain” pixels are located in the

connections of triangles in the models, as showed by Figure 24, which causes a significant amount

of pixels to be sent to the ray tracer to correct. The next following chapter will present an

alternative algorithm that shrinks the triangles and maintains the connections of the triangles,

which will be analysed alongside the original version.

Conservative Rasterization Shadow Mapping with Adjacency

32

4 Conservative Rasterization Shadow Mapping

with Adjacency

In the work of (Hertel, Hormann, & Westermann, 2009), the shadow map is created with two

layers. One layer views the triangles of the scene larger than normal, therefore each triangle is

expanded a certain pixel size 𝜆, which results in the big geometry shadow map (BGSM). The other

layer of the shadow map views the triangles in the scene smaller than normal, therefore each

triangle is shrunk a certain pixel size 𝜆, which results in the small geometry shadow map (SGSM).

The pixel size 𝜆 can be calculated by the following equation:

𝜆 = √(
𝜂

𝑙𝑠𝑚
)

2

+ (
𝜂

ℎ𝑠𝑚
)

2

 (19)

Where 𝑙𝑠𝑚 and ℎ𝑠𝑚 are the length and height of the shadow map layer, and 𝜂 indicates the

number of pixels each triangle will expand/shrink. 𝜂 can be altered by the user depending on many

pixels the user wishes to expand/shrink. In this document 𝜂 was set to 1 pixel.

When the shadows are rendered in to the scene, the shades will look to the corresponding texel in

both layers and reach one of the following conclusions.

 If both texels agree that the pixel is in light (𝑡 = 1), the pixel in the scene will be in light;

 If both texels agree that the pixel is in shadow (𝑡 = 0), the pixels in the scene will be in

shadow;

 If both texels disagree on the state of the pixel, the pixel is classified as “uncertain” and a

ray is created to trace the final result.

Although (Hertel, Hormann, & Westermann, 2009) work allows for an effective method of

determining “uncertain” pixels in scene, the method could go further since many of the “uncertain”

pixels are not that uncertain. Figure 25 shows the results of conservative rasterization on a simple

plane consisting of two triangles. In the BGSM (a), the triangles are individually expanded,

resulting in overlapping in the centre of the plane and the unbinding of the edges of triangles.

Since this is a shadow mapping, the overlap is not an issue and the edges can be easily clipped in

the fragment shader to reduce further inconsistencies. In the SGSM (b), the triangles are shrunken

Conservative Rasterization Shadow Mapping with Adjacency

33

individually resulting in the tearing of the geometry in SGSM. When comparing the SGSM with the

BGSM, these tears will be considered in light in the SGSM and be shadowed in the BGSM, and as

result of the test, will considered as “uncertain” pixels and create rays to be traced to determine if

they are shadowed or not. This is an unnecessary test, since even normal shadow map method

would have considered shadowed.

Figure 25 – Geometry Transformations on a pair of triangles that form a plane: (a) Expansion of

the triangles in BGSM; (b) Shrinking of triangles in SGSM, without adjacency information; (c)

Shrinking of triangles in SGSM, with adjacency information.

This work seeks to reduce the amount of “uncertain” pixels obtained by adding the adjacency

information to the work of (Hertel, Hormann, & Westermann, 2009) to produce a more accurate

SGSM (c).

OpenGL gives the geometry shader the information of a triangle and all triangles that share an

edge with it, as showed in Figure 26.

Conservative Rasterization Shadow Mapping with Adjacency

34

Figure 26 – Central triangle (orange) and the adjacent triangles (green) provided to the geometry

shader.

The geometry shader receives an array of vertices, 𝑣𝑒𝑟𝑡𝑒𝑥𝑎𝑑𝑗 = {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. As shown in

Figure 26, the central triangle 𝑇0, is formed by {𝑣0, 𝑣2, 𝑣4}, 𝑇1 is formed by {𝑣0, 𝑣1, 𝑣2}, 𝑇2 and 𝑇3 are

formed by {𝑣2, 𝑣3, 𝑣4} and {𝑣4, 𝑣5, 𝑣0} respectively.

As in conservative rasterization, we can calculate the edges of the new triangles. Following the

example of equation (1) in section 2.3, the other edges can be calculated like this:

𝑒1𝑇1 = 𝑣1 − 𝑣0; 𝑒2𝑇1 = 𝑣2 − 𝑣1;
𝑒1𝑇2 = 𝑣3 − 𝑣2; 𝑒2𝑇2 = 𝑣4 − 𝑣3;
𝑒1𝑇3 = 𝑣5 − 𝑣4; 𝑒2𝑇2 = 𝑣0 − 𝑣5;

(20)

These edges are useful to determine if the adjacent triangle exists and determine the facing of the

triangles relative to the light. This can be done by the following algorithm for any adjacent triangle

(𝑥 ∈ {1,2,3}):

Conservative Rasterization Shadow Mapping with Adjacency

35

The first “if” condition is to determine that if the 𝑇𝑥 vertex exists. In OpenGL, if adjacent triangle

doesn’t exist, it is common to set the respective vertex to the previous vertex, allowing for testing

in the geometry shader. For example, if 𝑣1 doesn’t exist, 𝑣𝑒𝑟𝑡𝑒𝑥𝑎𝑑𝑗 = {𝑣0, 𝑣0, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. The

second “if” condition is to determine the facing of the adjacent triangle, which will effect of the

shrinking of the central triangle, to do this we calculate the normal of the triangle 𝑇𝑥 and produce

the dot product of the normal and the light direction. If it’s positive, the triangle 𝑇𝑥 is facing the

light, therefore it is in light. Otherwise, the 𝑇𝑥 is not facing the light, therefore it is in shadow. Any

adjacent triangle that doesn’t exist will be considered to be in light, since in practical terms the

shadow doesn’t exist because the triangle that would cast it doesn’t exist. Using this assumption

simplifies the shrinking of the central triangle.

We are only altering the triangles that are in shadow, since these triangles are the ones that the

shadow map technique uses to project the shadows into the scene, so we can assume that the

central triangle is in shadow. Since each central triangle has three adjacent triangles, at most, we’ll

have to account the following scenarios:

 None of the adjacent triangles is in shadow;

 One of the adjacent triangles is in shadow;

 Two of the adjacent triangles are in shadow;

 All of the adjacent triangles are in shadow;

 For all of these cases, the shrunken edges produced in normal conservative rasterization must be

calculated, since these edges are used to create the new triangle.

bool txLight //Indicator if the Tx is facing the light/exists

if (!(length(e1Tx) < 0.001)){ //Tx exist

 //Calculate the normal of Tx

 normalTx = normalize(cross(vec3(e1Tx), vec3(e2Tx)));

 if (dot(normalTx, lightDir) > 0)

 txLight = true; //Tx is facing the light

 else

 txLight = false; //Tx is not facing the light

 }

else { //Tx doesn't exist

 txLight = true;

}

Conservative Rasterization Shadow Mapping with Adjacency

36

4.1 0-in-Shadow

The simplest case is when none of the adjacent triangles is in shadow (Figure 27). Basically this

case is treated like it was a single triangle, following the same process as in normal conservative

rasterization, explained in section 2.3.

Figure 27 – 0-in-shadow case: the original triangle (orange) is shrunk using normal conservative

rasterization (blue).

This mostly occurred in isolated triangles in the scene or in particular geometry constructions

where only one triangle is in shadow, while the others are in light. Although this is a rare and

mostly unrealistic scenario, it is a possibility and therefore it must be dealt with.

4.2 1-in-Shadow

The idea of this case is to shrink only the edges of the triangles that are in light to maintain the

connection of the shadowed triangles. To do this we must calculate the intersection between the

new lines formed by the shrinking of the lighted edges, and the old line of the shadowed edge, as

demonstrated in Figure 28.

Conservative Rasterization Shadow Mapping with Adjacency

37

Figure 28 - 1-in-shadow case: The new triangle (blue) is composed by {𝑏2, 𝑎1, 𝑣4
′ }.

Note that 𝑏𝑛 and 𝑎𝑛 in Figure 28 are the intersection points of the new edges.

Before we can handle the adjacency, the algorithm must determine the shrunken triangle, in order

to use the new vertices 𝑣’𝑥. After this process, 𝑣’4 is already taken of. To determine the vertices 𝑏2

and 𝑎1, we’ll have to find the following line intersections:

 The intersection point of the old edge 𝑒0 with the new edge 𝑒’2, which will give us 𝑏2;

 The intersection point of the old edge 𝑒0 with the new edge 𝑒’1, which will give us 𝑎1;

Using the lineLineIntersection function described in section 2.3, these points can be easily

determined:

𝑏2 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣0, 𝑣2, 𝑣4
′ , 𝑣0

′ , 𝑛, 𝑣0);
𝑎1 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣0, 𝑣2, 𝑣2

′ , 𝑣4
′ , 𝑛, 𝑣2);

(21)

After obtaining the new vertices, the geometry shader emits the proper shrunken triangle that

maintains the connection with the adjacent shadowed triangle. Figure 29 shows all possible

scenarios where only one of the adjacent triangles is in shadow.

Conservative Rasterization Shadow Mapping with Adjacency

38

Figure 29 – Three simplified scenarios where the 1-in-Shadow occurs.

These are the easiest cases; there is only the need to calculate two more additional points in order

to create the appropriate shrunken triangle.

4.3 2-in-Shadow

In these cases, two of the adjacent triangles are in shadow, while the other is in light. The obvious

solution is to shrink the edge of the triangle in light. In the example showed in Figure 30, which

would result in a new triangle formed by the vertices {𝑣0, 𝑎1, 𝑏1}.

But due to the restrictions of the adjacency information in OpenGL, the geometry shader only has

access to six vertices at a time, and 𝑣0 could be part of a triangle that could be in light, but in the

current group of vertices we don’t have that information. The only safe assumption we can do is

consider that 𝑣0 is in light in another group of 𝑣𝑒𝑟𝑡𝑒𝑥𝑎𝑑𝑗, so we’ll cut out 𝑣0 of the set and creating

two new triangles in the geometry shader. This will result in the blue and light blue triangles in

Figure 30.

Conservative Rasterization Shadow Mapping with Adjacency

39

Figure 30 – 2-in-Shadow case: The new geometry is formed by the triangle {𝑏2, 𝑎1, 𝑏1} and the

triangle {𝑏1, 𝑎0, 𝑏2}.

Like before we’ll need to determine the intersections of the old and new edges:

 The intersection point of the old edge 𝑒2 with the new edge 𝑒’1, which will give us 𝑏1;

 The intersection point of the old edge 𝑒0 with the new edge 𝑒’1, which will give us 𝑎1;

 The intersection point of the new edge 𝑒’2 with the old edge 𝑒0, which will give us 𝑏2;

 The intersection point of the new edge 𝑒’0 with the old edge 𝑒2, which will give us 𝑎0;

Using the lineLineIntersection function described in section 2.3, these points can be easily

determined:

𝑏1 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣4, 𝑣0, 𝑠𝑎1, 𝑠𝑏1, 𝑛, 𝑣4);
𝑎1 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣0, 𝑣2, 𝑠𝑎1, 𝑠𝑏1, 𝑛, 𝑣2);
𝑏2 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣0, 𝑣2, 𝑠𝑎2, 𝑠𝑏2, 𝑛, 𝑣0);
𝑎0 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣4, 𝑣0, 𝑠𝑎0, 𝑠𝑏0, 𝑛, 𝑣0);

(22)

After obtaining the new vertices, the geometry shader emits two triangles as depicted in Figure 31:

a large triangle, containing the central triangle (dark blue), and a smaller triangle, to cut the corner

between the adjacent triangles that are in shadow (light blue).

Conservative Rasterization Shadow Mapping with Adjacency

40

Figure 31 – Three simplified scenarios where the 2-in-Shadow occurs.

These cases are more complex than the previous ones, as they required the emission additional

geometry to maintain the connections. In a large number of triangles this case is more taxing on

the GPU.

4.4 3-in-Shadow

In this case all the adjacent triangles are in shadow, therefore there is no actual edge to shrink.

However the issue that occurred in the 2-in-shadow cases still occurs, we don’t know if any of

vertices in the original triangle is in light at another 𝑣𝑒𝑟𝑡𝑒𝑥𝑎𝑑𝑗. Following the same assumption as

before, the only thing we can do is to clip the corners of the original triangle, as it’s showed in

Figure 32. In order to do so, we must calculate all the following intersections:

 The intersection point of the new edge 𝑒’0 with the old edge 𝑒2, which will give us 𝑎0;

 The intersection point of the new edge 𝑒’0 with the old edge 𝑒1, which will give us 𝑏0;

 The intersection point of the new edge 𝑒’1 with the old edge 𝑒0, which will give us 𝑎1;

 The intersection point of the new edge 𝑒’1 with the old edge 𝑒2, which will give us 𝑏1;

 The intersection point of the new edge 𝑒’2 with the old edge 𝑒1, which will give us 𝑎2;

 The intersection point of the new edge 𝑒’2 with the old edge 𝑒0, which will give us 𝑏2;

Using the lineLineIntersection function described in section 2.3, these points can be easily

determined:

𝑎0 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣4, 𝑣0, 𝑣0
′ , 𝑣2

′ , 𝑛, 𝑣0);
𝑏0 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣2, 𝑣4, 𝑣0

′ , 𝑣2
′ , 𝑛, 𝑣2);

𝑎1 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣0, 𝑣2, 𝑣2

′ , 𝑣4
′ , 𝑛, 𝑣2);

𝑏1 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣4, 𝑣0, 𝑣2
′ , 𝑣4

′ , 𝑛, 𝑣4);

𝑎2 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣2, 𝑣4, 𝑣4
′ , 𝑣0

′ , 𝑛, 𝑣4);
𝑏2 = 𝑙𝑖𝑛𝑒𝐿𝑖𝑛𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑣0, 𝑣2, 𝑣4

′ , 𝑣0
′ , 𝑛, 𝑣0);

(23)

Conservative Rasterization Shadow Mapping with Adjacency

41

Figure 32 – 3-in-Shadow case: The new geometry is formed by the four triangles: {𝑏1, 𝑎0, 𝑏2},

{𝑏2, 𝑎1, 𝑏1}, {𝑏1, 𝑎1, 𝑎2} and {𝑎2, 𝑎1, 𝑏0}.

After obtaining the new vertices, the geometry shader emits four triangles, depicted by the blue

and light blue lines in Figure 32.

This is the heaviest impact case, since it’s the most common situation when treating shadowed

objects. When a side of an object is shadow, great number of those triangles that are part of the

object will fall in this case, and for each of those triangles, four are emitted to shrink and maintain

the connectivity of the object.

4.5 Flaws of conservative rasterization process

Despite these upsides, Figure 33 shows an example where the use of conservative rasterization

approach fails to completely maintain the connections of all the triangles in the geometry. The

plane formed by four triangles in (b) is shrunk with this approach. While each triangle have the

information of the adjacent triangles that share an edge, the triangles with the same colour share

only a single vertex, and so don’t appear in the adjacency list 𝑣𝑒𝑟𝑡𝑒𝑥𝑎𝑑𝑗, which causes the vertex in

the middle to disappear, since each triangle will clip it out, resulting in a hole in the geometry. This

is due to the restrictions of the adjacency information of only three adjacent triangles, and the

resulting assumptions made in 2-in-Shadow and 3-in-Shadow. A way to counteract this problem is

to provide the shader all of the adjacency information of the scene before rendering.

Conservative Rasterization Shadow Mapping with Adjacency

42

Figure 33 - Errors in the conservative rasterization: (a) Normal conservative rasterization; (b)

Conservative rasterization with adjacency.

Still, the use of the adjacency information provides a superior alternative that normal conservative

rasterization, where the triangles would a shrunk inwards and causer tears in the geometry. While

at (a), rays would have to be traced from all the pixels in the tears, in (b) the only pixels in the

holes would have a ray created to be traced.

4.6 Conclusion

This approach to conservative rasterization solves the problem of tearing when shrinking triangles

in the geometry. By taking the adjacency information, we can determine which edges of a triangle

are safe to shrink to maintain the connectivity of the triangle. Although these transformations will

result in more triangles being emitted by the geometry shader, this will not have an impact in the

result of the shadow map, since these overlaps will occur in the places where tears would occur

normally, filling them in the fragment shader. Regarding performance the computations required to

take advantage of the adjacency information will increase the processing time in the geometry

shader, on the other hand, this leads to less rays being traced in the following step, as shown in

the next chapters.

Analysis and Results

43

5 Analysis and Results

In this section, we will analyse the pixel accuracy of the three main algorithms: PCF, CRSM and

CRSMA, when faced with the results obtained by the pure ray tracing methods, using OptiX Prime’s

results as a base of comparison. The tables and figures used in this chapter are small part of large

test pool, which were chosen to convey a simplified view to conclusions obtained.

5.1 Test Scenes

The following images will show the scenes and that will be used for testing and the various viewpoints

that will be used for said tests.

The first scene consists of a scene with two trees, a lamp, a flower box and a bench, all positioned on

top of a plane representing the ground. The scene has a total of 55026 triangles. This scene will be

called “Bench”. Information of light, camera and field of view of this scene can be observed in Table 1

and Figure 34 shows the image obtained.

Viewport
Coordinates

x y z

Side
Position -23,277 18,541 30,143

Direction 0,397 -0,644774 -0,652

With
Position -37,034573 35,208973 -8,597797

Direction 0,605439 -0,732089 0,312232

Against
Position 27,214222 27,875109 27,032139

Direction -0,560848 -0,777942 -0,283293

Light Direction 0,744 -0,408 0,527

View Frustum Far: 400,0 Near: 1,0 FoV: 60°

Table 1 - Information of viewports used for the Bench Scene.

Analysis and Results

44

Figure 34 - The side (left), with (centre) and against (right) viewpoints of the first scene;

Shadows obtained using OptiX Prime.

The second scene, named “Flowers”, will also use the same models as the first scene, but will closely

observe the shadows cast by the flowers. The flowers are modelled with very small triangles, allowing

the visualization the effect of small geometry on the algorithm. In Table 2 the information of the

camera of each viewpoint can be viewed, and Figure 35 shows the image obtained.

Viewport
Coordinates

x y z

Side
Position -0,260709 22,376335 6,046194

Direction -0,387214 -0,852832 0,350347

With
Position -17,561422 24,968716 4,010894

Direction 0,386402 -0,873032 0,297505

Against
Position -3,263903 24,423452 12,998949

Direction -0,239566 -0,958412 -0,155095

Light Direction 0,744 -0,408 0,527

View Frustum Far: 400,0 Near: 1,0 FoV: 60°

Table 2 - Information of viewports used for the Flower Scene.

Analysis and Results

45

Figure 35 – The side (left), against (centre) and with (right) viewpoints of the second scene;

Shadows obtained using OptiX Prime.

The third scene, called “Trees”, will also use the same models as the second scene, but with focus on

an area of the ground where only the shadows of the trees can be seen. Since the trees are

constituted by big triangles, this will allow the evaluation of the effect of big triangles on the results.

Information of cameras of each viewpoint can be observed in Table 3, and Figure 36 shows the image

obtained.

Viewport
Coordinates

x y z

Side
Position 101,010887 30,839497 -23,4187145

Direction -0,235037 -0,802447 0,548369

With
Position 42,947086 24,103859 -27,831772

Direction 0,415959 -0,784187 0,460467

Against
Position 90,8069972 35,846294 24,138012

Direction -0,400057 -0,835954 0,37568

Light Direction 0,744 -0,408 0,527

View Frustum Far: 400,0 Near: 1,0 FoV: 60°

Table 3 - Information of viewports used for the Trees Scene.

Analysis and Results

46

Figure 36 - The with (left), side (centre) and against (right) viewpoints of the third scene;

Shadows obtained using OptiX Prime.

The fourth scene, called “Sponza”, will use the Crytek’s Sponza Palace model (Meinl, 2011), focusing

attention on a side area, where the shadows of nearby objects are projected to the ground and the

cloth. The light is coming from the second floor on the opposite side form the camera. This scene will

allow us to analyse the obtained shadows on complex geometry. The information of the camera and

the light is shown in Table 4, and Figure 37 shows the image obtained.

Viewport
Coordinates

x y z

Main
Position -83,72924 222,06694 -2,89993

Direction 0,810612 -0,273794 0,517634

Light Direction -0,001881 -0,968051 0,250748

View Frustum Far: 2800,0 Near: 1,0 FoV: 60°

Table 4 - Information of viewports used for the Sponza Scene.

Analysis and Results

47

Figure 37 - Sponza Scene; Shadows obtained using OptiX Prime.

Statistics will be collected all scenes, for shadow map resolutions of 512x512, 1024x1024, 2048x2048

and 4096x4096, and considering viewport resolutions of 512x512, 1024x1024 and 1920x1080

(FullHD). The ray tracing results will be used as source of comparison for the NSM and the hybrid

methods: PCF, CRSM and CRSMA.

The tables and figures shown in this chapter only show the results for the significant test scenes,

mainly the “Flowers” and “Sponza” scenes, the tables and figures for the rest of the test scenes can

be found in section A.1 of the Appendix.

5.2 Ray tracing Statistics

To establish a ground truth to compare the other methods NVIDIA’s OptiX Prime was used to render

all the scenes, under all the viewports.

The collected statistics will show the number of pixels in following states:

 Pixels Facing the Light (PFL), i.e. dot(n,l) > 0;

 Pixels not Facing the Light (PnFL), i.e. dot (n,l) < 0;

 PFL – Pixels in Light;

 PFL – Pixels in Shadow.

Analysis and Results

48

The PFL and the PnFL pixels are directly tied to the geometry of the scene, so the number

represented by these states will be the same for all the methods. PFL can be divided further into two

categories: pixels in light and pixels in shadow, which will be the main source of analysis.

Table 5 shows an example of the data collected for each scene. Both the number of pixels and the

percentages are displayed to ease comparisons. Figure 38 shows the image obtained by OptiX Prime.

Scene Flowers

Viewport With

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 259486 98,99% 1037820 98,97% 2061613 99,42%

PnFL 2658 1,01% 10756 1,03% 11987 0,58%

PFL – in Light 153093 59,00% 612204 58,99% 1458469 70,74%

PFL – in Shadow 106393 41,00% 425616 41,01% 603144 29,26%

Table 5 - OptiX Prime results for the With-Flowers scene: PFL represents the Pixels Facing the Light

and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the pixels in Light

and the pixels in Shadow.

As shown in Table 5, the distribution of the pixels states maintains the same ratio regarding the

viewport sizes. The only significant change occurs in the 1920x1080 viewport due to the aspect ratio

change.

Figure 38 - OptiX Prime Shadows in the With-Flowers scene using the With viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Analysis and Results

49

Table 6 shows an example of the data collected for Sponza scene. Both the number of pixels and the

percentages are displayed to ease comparisons. Figure 39 shows the image obtained by OptiX Prime.

Scene Sponza

Viewport Main

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 207377 79,11% 829652 79,12% 1655090 79,82%

PnFL 54767 20,89% 218924 20,88% 418510 20,18%

PFL – in Light 117780 56,80% 471083 56,78% 955576 57,74%

PFL – in Shadow 89597 43,20% 358569 43,22% 699514 42,26%

Table 6 - OptiX Prime results for the Sponza scene: PFL represents the Pixels Facing the Light and

PnFL represents the Pixels not Facing the Light; The PFLs are then split into the pixels in Light and the

pixels in Shadow.

As shown in Table 6, the distribution of the pixels states maintains the same ratio regarding the

viewport sizes. The only significant change occurs in the 1920x1080 viewport due to the aspect ratio

change, similarly to the results in Table 5.

Figure 39 - OptiX Prime Shadows in the Sponza scene; the green pixels represent the PNFL pixels;

Viewport Size: 1024x1024.

Analysis and Results

50

5.3 Algorithm Precision Testing

In this section we will analyse the pixel precision of the standard shadow map (NSM) method and the

following hybrid methods: PCF method used by Beister’s method (Beister, Ernst, & Stamminger,

2005), the CRSM used in Hertel’s work (Hertel, Hormann, & Westermann, 2009), and the CRSMA

presented in the previous chapter. All of the methods are going to be compared to the ray tracing

results provided by OptiX Prime.

5.3.1 Standard Shadow Mapping errors

In this section we’ll discuss the errors obtained with normal shadow mapping when compared with the

results of OptiX Prime. We will only compare the PFL-Light and PFL-Shadow parameters, since the

total pixels in the PFL is always the same.

As shown in the Table 7, the number of is errors in the NSM method is quite significant, as well as the

placement of these errors, as shown in Figure 40.

Scene Flowers

Viewport With

Pixel State
Pixel Precision

Correct Incorrect

Light 597624 96,93% 18934 3,07%

Shadow 406682 96,54% 14580 3,46%

Total 1004306 96,77% 33514 3,23%

Table 7 – Normal Shadow Mapping errors in the With-Flowers scene with a 1024x1024 viewport and

1024x1024 shadow map

The majority of the errors in this scene are placed in the shadows of the bench and the flower pot.

The placement of errors corresponds to the contours of the real shadows (Moderno, 2011).

Analysis and Results

51

Figure 40 – With-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left)

OptiX Prime results; (Bottom-Left) NSM results; (Right) Significant errors obtained by NSM; Blue pixels

represent the incorrect light pixels, and red pixels represent the incorrect shadow pixels.

Table 8 shows the errors obtained in the Sponza scene, the number of is errors in the NSM method is

quite significant, as well as the placement of these errors, as shown in Figure 41.

Scene Sponza

Viewport Main

Pixel State
Pixel Precision

Correct Incorrect

Light 458890 93,53% 31768 6,47%

Shadow 326793 96,40% 12192 3,60%

Total 785683 94,70% 43960 5,30%

Table 8 – Normal Shadow Mapping errors in the Sponza scene with a 1024x1024 viewport and

1024x1024 shadow map

The great majority the errors in the light pixels are in the flowers pot an in the surrounding areas,

while the errors in the shadow pixels are spread around the image, but are more visible in cloth,

specifically in the contours of the shadows (Moderno, 2011).

Analysis and Results

52

Figure 41 – Sponza scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left) OptiX

Prime results; (Bottom-Left) NSM results; (Right) Significant errors obtained by NSM; Blue pixels

represent the incorrect light pixels, and red pixels represent the incorrect shadow pixels

5.3.2 Viewport Size Variance

Taking consideration the errors found using a fixed viewport, the following table (Table 9) shows how

much the change of the viewport, since it does impact on the errors of the shadow map.

Scene Flowers

Viewport With

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 149396 96,95% 597624 96,93% 1430029 97,74%

C-Shadow 101695 96,49% 406682 96,54% 570054 95,25%

I-Light 4698 3,05% 18934 3,07% 33090 2,26%

I-Shadow 3697 3,51% 14580 3,46% 28440 4,75%

Table 9 – NSM viewport results for the With-Flowers scene, using a fixed shadow map size of

1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Analysis and Results

53

Although the 512x512 and 1024x1024 viewports achieve the similar percentages, when the viewport

changed to 1920x1080, the amount of errors in the shadow pixels increased by approximately 1,29%,

due to the change of the aspect ratio to 1,78, while the errors in the light pixels decreased by 0,81%,

resulting a 0,50% reduction of the total number of incorrect pixels. All the other scenes provide

similar data

Since these percentage changes are very small, with 1% increase of the incorrect pixels as shown in

Figure 42, and the only differences between the viewports in the number of pixels each contains, we

can conclude that the variance in the viewport doesn’t have a great impact in the pixel precision of

the NSM process.

Figure 42 - Viewport Variation results in the With-Flowers scene, using a fixed shadow map with

1024x1024 sizes.

The next table (Table 10) shows how the changing of the viewport size affects the errors obtained in

the Sponza scene.

Scene Sponza

Viewport Main

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 114745 93,53% 458890 93,53% 938410 95,34%

C-Shadow 81660 96,42% 326793 96,40% 653681 97,44%

I-Light 7935 6,47% 31768 6,47% 45827 4,66%

I-Shadow 3035 3,58% 12192 3,60% 17165 2,56%

Table 10 – NSM viewport results for the Sponza scene, using a fixed shadow map size of 1024x1024;

I represents the incorrect pixels and C represent the correct pixels.

0,00%

5,00%

512x512 1024x1024 1920x1080

Incorrect Pixels

Light Shadow

Analysis and Results

54

As shown by Table 10, the 512x512 and 1024x1024 viewports achieve similar percentages, and the

change to the 1920x1080 viewport caused the amount of errors in the light pixel to decreased by

1,81% and the amount of errors in the shadow pixels by 1,04%, as shown by Figure 43. Like before,

these changes are very small and don’t cause significant impact in the pixel precision.

Figure 43 - Viewport Variation results in the Sponza scene, using a fixed shadow map with 1024x1024

sizes.

5.3.3 Shadow Map Size Variance

Now, we’ll analyse the changes in the NSM errors with the change of the shadow map resolution with

a fixed viewport size. As shown in Table 11 and Figure 44, the error tends to decrease as the number

of pixels of the shadow map increase.

Scene Flowers

Viewport With

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 582232 95,89% 597624 96,93% 603076 98,14% 606507 98,70%

C-Shadow 400649 93,04% 406682 96,54% 414179 97,84% 417657 98,65%

I-Light 24967 4,11% 18934 3,07% 11437 1,86% 7959 1,30%

I-Shadow 29972 6,96% 14580 3,46% 9128 2,16% 5697 1,35%

Table 11 - NSM shadow map results in the With-Flowers scene, using a fixed viewport size of

1024x1024; I represents the incorrect pixels and C represents the correct pixels.

This is because as the shadow map increases, more texels are stored in the shadow map, increasing

the shadow precision. The major changes are in the shadow pixels, where the change from 512x512

0,00%

5,00%

10,00%

512x512 1024x1024 1920x1080

Incorrect Pixels

Light Shadow

Analysis and Results

55

to 4096x4096, the decrease in errors is 5,61%, which results in a substantial difference. Similar

results are obtained for the other combinations of scenes/viewports.

Figure 44 – Shadow Map Size variation results in the With-Flowers scene using a fixed viewport of

1024x1024.

The next table (Table 12) shows how the changing of the shadow map sizes affects the errors

obtained in the Sponza scene.

Scene Sponza

Viewport Main

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 446750 91,59% 458890 93,53% 465559 94,68% 468229 95,35%

C-Shadow 317531 92,88% 326793 96,40% 332391 98,37% 335718 99,16%

I-Light 41030 8,41% 31768 6,47% 26170 5,32% 22843 4,65%

I-Shadow 24332 7,12% 12192 3,60% 5523 1,63% 2853 0,84%

Table 12 - NSM shadow map results in the Sponza using a fixed viewport size of 1024x1024; I

represents the incorrect pixels and C represent the correct pixels.

The amount of errors tend to decrease, but the only significant changes are in the shadow pixels as

shown in Figure 45, the change from a 512x512 shadow map to a 4096x4096 shadow map caused a

6,28% decrease of errors, while the light pixels there was only a 3,76% decrease, making these light

pixels the majority of the problem in the NSM method in this scene.

0,00%

2,00%

4,00%

6,00%

8,00%

Incorrect Pixels

Light Shadow

Analysis and Results

56

Figure 45 – Shadow Map Size variation results in the Sponza scene, using a fixed viewport of

1024x1024.

5.4 Hybrids Methods errors

In this section we compare the final images obtained in the PCF, CRSM and CRSMA with the images

obtained using a pure ray tracing approach with OptiX Prime. This is to determine the amount of

correct and incorrect pixels in the images, since ray tracing produces the most accurate images. The

following sub-sections will analyse certain scenarios of shadows, where the differences between the

three methods provide detailed information into their effectiveness.

From here onwards, the tables will split the PFL into two groups: the “certain” pixels and the

“uncertain” pixels. Since the “uncertain” pixels are them sent to the ray tracer to fix them, is it safe to

assume that these pixels will have the same state (light/shadow) as the pixels in the pure ray tracing,

so these pixels are correct when compared to the OptiX Prime. The “certain” pixels will be split into

the correct pixels, which when compared to the respective pixel in the OptiX Prime the states are the

same in both, and the incorrect pixels, where the opposite occurs.

5.4.1 Uncertain Pixels Detection

In the original work where these hybrid methods were introduced, the triangle ID is stored in the

shadow map to allow a single ray intersection. This approach improves performance, but it induces

errors in the image as shown in the Dave’s work (Moderno, 2011). By using the OptiX Prime API, the

0,00%

3,00%

6,00%

9,00%

Incorrect Pixels

Light Shadow

Analysis and Results

57

uncertain pixels are going to be corrected by using the same ray-intersection algorithm used in OptiX

Ray Tracing algorithm, which increases the pixel precision.

The following table shows the results in a simple scene, the “Trees” scene, where there is no PnFL in

the scene. Since each method has a different algorithm to detect uncertain pixels, we need to quantify

the amount of pixels that are found. The following table (Table 13) show the number of “certain” and

“uncertain” pixels in the image.

Scene Trees

Viewport Against

Pixel State
Method

PCF CRSM CRSMA

Certain 787486 75,10% 323513 30,85% 558753 53,29%

Uncertain 261090 24,90% 725063 69,15% 489823 46,71%

Table 13 – Certain and Uncertain pixels found in the Against-Trees scene for each method; results

obtained with a 1024x1024 viewport and a 1024x1024 shadow map.

PCF is able to obtain a higher number of “certain” pixels than the other two, achieving a difference of

48,13% to CRSM’s “certain” pixels and a difference of 21,88% to CRSMA’s “certain” pixels. This is the

positive side of PCF, since it only detect the uncertain pixels in the border of the shadows, as shown in

Figure 46, which result in less rays to be traced.

CRSM method has more “uncertain” pixels than CRSMA, causing a significant difference of 26,25%.

This is because of the tears in the shadows, as shown in Figure 47, where the majority of the

“uncertain” pixels come from the triangulation of the shadows. In contrast, CRSMA doesn’t have the

tears but instead has small holes, as shown in Figure 48, which are the flaws of the adjacency

information as explained in the previous chapter. This is the positive effect of the use of adjacency

information, as it leads to fewer rays to be sent to the ray tracer.

It should be noted, that while the CRSMA has less triangulation tears, both the CRSM and CRSMA

make the shadow of the lamp pole disappear, while PCF doesn’t. This is because in the SGSM and

SGSMA the triangles shrunken to the point that in the shadow map they disappear, while the BGSM

they still exist.

Analysis and Results

58

Figure 46 – PCF’s “uncertain” pixel detection. The purple pixels represent the “uncertain” detected.

Viewport size 1024x1024 and Shadow Map size 2048x2048.

Figure 47 – CRSM’s “uncertain” pixel detection. The purple pixels represent the “uncertain” detected.

Viewport size 1024x1024 and Shadow Map size 2048x2048.

Figure 48 – CRSMA’s “uncertain” pixel detection. The purple pixels represent the “uncertain” detected.

Viewport size 1024x1024 and Shadow Map size 2048x2048.

Analysis and Results

59

5.4.2 Error Analysis

In order to analyse the accuracy of these hybrid methods, we need to separate the “uncertain” pixels

from the correct pixels in the image, since these pixels will be corrected by the ray tracer. These

“certain” pixels are the pixels which the shadow mapping has no problem in ascertain the pixel state,

so this will evaluate the precision of the shadow maps of each method. Table 14, shows these statics

in the Flowers scene, using the With viewport.

Scene Flowers

Viewport With

Method PCF

Pixel State Certain - Correct Uncertain Certain -Incorrect

Light 498196 81,40% 113828 18,60% 2220 0,36%

Shadow 328074 77,05% 97722 22,95% 2400 0,56%

Total 821650 79,17% 211550 20,38% 4620 0,45%

Method CRSM

Pixel State Certain - Correct Uncertain Certain -Incorrect

Light 463211 75,66% 148993 24,34% 0 0,00%

Shadow 38214 8,98% 387402 91,02% 0 0,00%

Total 501425 48,32% 536395 51,68% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain -Incorrect

Light 463211 75,66% 148993 24,34% 0 0,00%

Shadow 234120 55,01% 191496 44,99% 0 0,00%

Total 697331 67,19% 340489 32,81% 0 0,00%

Table 14 – Pixels Precision results in the With-Flowers scene with a 1024x1024 viewport and a

1024x1024 shadow map.

PCF obtains the highest number of incorrect pixels, resulting in 0,45% of the image is incorrect,

despite having 60,56% less “uncertain” pixels than CRSM and having 37,87% less “uncertain” pixels

than CRSMA. Although the percentage of total errors is low, the errors in the image are very

noticeable, as shown in Figure 49.

Contrasting with PCF, CRSM and CRSMA obtained no incorrect pixels in the image, as shown by Figure

50, while CRSMA less “uncertain” pixels than CRSM. Also note that the majority of the pixels sent to

the ray tracer by the CRSM are in the shadow area, while the CRSMA, with the use of adjacency, only

sends half of those pixels, resulting on a difference of 46%.

Analysis and Results

60

Figure 49 – With-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left)

OptiX Prime results; (Bottom-Left) PCF results; (Right) Significant errors obtained by NSM; Blue pixels

represent the incorrect light pixels, and red pixels represent the incorrect shadow pixels.

Figure 50 – With-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (a) OptiX

Prime results; (b) CRSM and CRSMA results.

Analysis and Results

61

The following table (Table 15) presents the errors the hybrid methods produce in the Sponza scene.

Scene Sponza

Viewport Main

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 312081 64,37% 172742 35,63% 14026 2,89%

Shadow 257270 74,61% 87550 25,39% 285 0,08%

Total 555040 66,90% 260292 31,37% 14311 1,72%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 210396 44,45% 262962 55,55% 2276 0,48%

Shadow 117473 32,97% 238812 67,03% 0 0,00%

Total 325593 39,24% 501774 60,48% 2276 0,27%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 210396 44,45% 262962 55,55% 2276 0,48%

Shadow 138589 38,90% 217696 61,10% 0 0,00%

Total 346709 41,79% 480658 57,94% 2276 0,27%

Table 15 – Pixels Precision results in the Sponza scene with a 1024x1024 viewport and a 1024x1024

shadow map.

Like the results of the Flowers scene in Table 14, PCF obtains the highest amount of incorrect pixels,

achieving the 1,72% incorrect pixels, while both CRSM and CRSMA only achieve the 0,27% mark. The

errors of all methods are quite significant, with Figure 51 demonstrating PCF’s error position and

Figure 52 demonstrating the CRSM and CRSMA errors. These errors are the result of the front culling

applied when creating the shadow map, causing triangles in the scene to disappear, since pure ray

tracing doesn’t require to any type of culling, the rays will intersect the non-existing triangles causing

differences in the hybrid and pure ray tracing images. This leads to an incorrect classification of light

pixels in both the BGSM and SGSM, instead of classifying them as “uncertain”. Another important

factor is the lack of incorrect pixels in the shadow in the CRSM and CRSMA. This shows that

conservative rasterization is able to resolve the problems in the shadow, but not all the problems in

the light pixels.

The amount of “uncertain” pixels discovered by CRSM and CRSMA is quite similar, with only a 5,93%

difference, as opposed to the 18,87% difference form Table 14. This means that for more complex

scenes, the use of adjacency information produces diminishing returns to the detection algorithm.

Analysis and Results

62

Figure 51 – Sponza scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left) OptiX

Prime results; (Bottom-Left) PCF results; (Right) Significant errors obtained by NSM; Blue pixels

represent the incorrect light pixels, and red pixels represent the incorrect shadow pixels.

Figure 52 – Sponza scene with a 1024x1024 viewport and 1024x1024 shadow map; (Top-Left) OptiX

Prime results; (Bottom-Left) CRSM and CRSMA results; (Right) Significant errors obtained by NSM;

Blue pixels represent the incorrect light pixels, and red pixels represent the incorrect shadow pixels.

Analysis and Results

63

5.4.2.1 Viewport Variance

Table 16 shows the effect of the viewport size in the amount of correct/incorrect pixels in these hybrid

methods. As expected, these percentile changes are similar to the ones obtained in the NSM testing,

concluding that the viewport size doesn’t affect the pixel precision of the hybrid methods, just like the

NSM.

Scene Flowers

Viewport With

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 205461 79,18% 821650 79,17% 1669064 80,96%

Uncertain 52862 20,37% 211550 20,38% 384002 18,63%

Certain-I 1163 0,45% 4620 0,45% 8547 0,41%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 125343 48,30% 501425 48,32% 1191500 57,79%

Uncertain 134143 51,70% 536395 51,68% 870113 42,21%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 174382 67,20% 697331 67,19% 1386322 67,24%

Uncertain 85104 32,80% 340489 32,81% 675291 32,76%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Table 16 – Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the With-Flowers scene; C - Correct and I - Incorrect.

5.4.2.2 Shadow Map Variance

Table 17 shows the effect of the shadow map size in the amount of correct/incorrect pixels in these

hybrid methods. As expected, PCF obtains better results as the shadow map increases, as the NSM,

the more pixels are available in the shadow map, the more accurate it becomes. Figure 53, shows

this increase in correct pixels in the PCF.

For CRSM and CRSMA the increase of the shadow map resolution does reduce the amount of

“uncertain” pixels detected, as shown in Figure 53. This is due to the λ variable being dependent of

Analysis and Results

64

the shadow map size, as the shadow map increases, the λ will reduce the shrinking/expanding effect

in the shadow maps, reducing the “uncertain” pixels in the image. The negative effect of the λ is to

cause incorrect pixels to appear in the image.

Scene Flowers

Viewport With

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 719491 69,33% 821650 79,17% 909691 87,65% 957219 92,23%

Uncertain 312383 30,10% 211550 20,38% 124541 12,00% 77954 7,51%

Certain-I 5946 0,57% 4620 0,45% 3588 0,35% 2647 0,26%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 420355 40,50% 501425 48,32% 651146 62,74% 795903 76,69%

Uncertain 617464 59,50% 536395 51,68% 386674 37,26% 241903 23,31%

Certain-I 1 0,00% 0 0,00% 0 0,00% 14 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 458953 44,22% 697331 67,19% 808757 77,93% 888952 85,66%

Uncertain 578866 55,78% 340489 32,81% 229063 22,07% 148854 14,34%

Certain-I 0 0,00% 0 0,00% 0 0,00% 14 0,00%

Table 17 – Shadow Map Variation of the pixel precision results, using a fixed viewport of 1024x1024

for the With-Flowers scene; C - Correct and I - Incorrect.

Figure 53 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the With-

Flowers scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,00%

99,50%

100,00%

Correct

PCF CRSM CRSMA

0,00%
20,00%
40,00%
60,00%

Uncertain

PCF CRSM CRSMA

Analysis and Results

65

Table 18 shows the effect of the shadow map size in the amount of correct/incorrect pixels by hybrid

methods in the Sponza. Due to the complexity of the scene, the number of errors obtained by the

hybrid methods is substantially higher than the in the other scenes.

Scene Sponza

Viewport Main

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 358134 43,17% 555040 66,90% 709905 85,57% 754311 90,92%

Uncertain 458780 55,30% 260292 31,37% 101968 12,29% 57013 6,87%

Certain-I 12729 1,53% 14311 1,72% 17770 2,14% 18319 2,21%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 383395 46,21% 325593 39,24% 516196 62,22% 596407 71,89%

Uncertain 444708 53,60% 501774 60,48% 306366 36,93% 224780 27,09%

Certain-I 1540 0,19% 2276 0,27% 7081 0,85% 8456 1,02%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 399318 48,13% 346709 41,79% 535883 64,59% 631836 76,16%

Uncertain 428785 51,68% 480658 57,94% 286679 34,55% 189351 22,82%

Certain-I 1540 0,19% 2276 0,27% 7081 0,85% 8456 1,02%

Table 18 – Shadow Map Variation of the pixel precision results, using a fixed viewport of 1024x1024

for the Sponza scene; C - Correct and I - Incorrect.

Like in the Flowers scene, the increase of the shadow map size causes PCF to obtain more correct

pixels and less uncertain pixels, as Figure 54 shows. However the number of incorrect pixels increases

significantly, as the difference between the 512x512 shadow map and the 4096x4096 is of about

0,68% more incorrect pixels.

Figure 54 also shows the results of the increase of the shadow map size for the CRSM and CRSM

methods, as it does reduce the number of uncertain pixels, but the number of incorrect pixels

obtained by the shadow map increases, as shown in Table 18, resulting in a difference between the

512x512 shadow map and 4096x4096 shadow of about 0,83% more incorrect pixels. The negative

effect of the λ is more significant than in the other scenes, as the incorrect pixels by the CRSM and

CRSMA reach the 1% mark, but it’s still an improvement compared to PCF’s 2,21% of incorrect pixels.

Analysis and Results

66

Figure 54 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the

Sponza scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain

pixel percentages.

5.5 Conclusion

All three hybrid methods provide a significant improvement, regarding pixel accuracy, over NSM

shadows, even though PCF’s “uncertain” pixels detection algorithm does not eliminate all the incorrect

pixels in the image, it still provides an significant reduction, Where the NSM obtain a 3%-5% total

incorrect pixels while PCF only obtains 0,5%-2% total incorrect pixels. The low number of uncertain

pixels also has the advantage of creating fewer rays to be tracing reducing the OptiX Prime ray tracing

time, as detailed further in the next chapter.

The CRSM and the CRSMA provide the best visual results over PCF’s, reaching the 0%-1% total

incorrect pixels marks, but they produce more “uncertain” pixels, which in turn will increase the OptiX

Prime ray tracing time. The use of adjacency information to cover the “tears” in the shadows does

provide significant decreases in simple scenes; in more complex scenes however these benefits are

too small to compensate the overhead cost in the geometry shader, which the next chapter

demonstrate in more detail.

96,00%

98,00%

100,00%

Correct

PCF CRSM CRSMA

0,00%

20,00%

40,00%

60,00%

Uncertain

PCF CRSM CRSMA

Performance Testing

67

6 Performance Testing

In this section, we’ll analyse the performance statistics, mainly the execution time and frame rate, of

the three main algorithms: PCF, CRSM and CRSMA. The tests were performed on a laptop with a

GeForce GTX770M, with 4GB RAM. The results were obtained using a specific pipeline with the

following steps:

1. Render the shadows from the point of view of the light(s) and create the shadow map;

2. Project the shadows in the shadow map and save the result in a colour texture and save the

“uncertain pixels” in a colour-coded map of the scene;

3. Analyse colour-coded map, and for each “uncertain” pixel create a ray and store it in a ray

Buffer;

4. Send the ray buffer to the OptiX Prime to trace the rays and store the results in a hits buffer;

5. Render the final image using the “certain” pixels in the colour texture and the ray tracing

results in the hits buffer.

Figure 55 present a diagram of the test pipeline used, and what passes and material are associated

with each step.

Figure 55 – Pipeline Box Diagram; The Orange Boxes represent pipeline passes while the Blue boxes

represent materials (buffers, textures, variables) used and produced by the pipeline passes.

Performance Testing

68

The CRSM and the CRSMA create a two layer shadow map, in order to access the SGSM and the

BGSM, so in practical terms, the Detect Uncertain step reads from two shadow maps instead of just

the one from PCF’s pipeline.

The results presented in this chapter were achieved in the rendering of the Sponza scene, detailed in

the previous chapter. The results for the other test scenes can be found in section A.2 of the

Appendix.

6.1 OptiX Prime Ray Testing

Before we proceed to Sponza scene results, we will analyse the time required by OptiX Prime to

perform trace rays. Since OptiX Prime is an external API used in this pipeline, we to take in

consideration the time required to setup the tracing engine, and how the number of rays affects the

time need to an obtain a full image.

Note that this solution is itself hybrid, since a rasterization pass is used to provide the shadow ray

information to OptiX. The following table (Table 19) shows the execution time of the OptiX Prime API

to produce an image of the Sponza scene in the most common resolutions sizes. These results provide

a practical comparison stage for the step 3 of the test pipeline. The number of rays traced by the

OptiX Prime is equal to the screen size, as shown in the “#Rays” line.

OptiX Prime Execution Time

Width x Height 800 x 600 1024 x 600 1024 x 768 1280 x 720 1280 x 768 1152 x 864

Rays 480000 614400 786432 921600 983040 995328

Time (ms) 8,31 10,16 12,39 14,06 14,98 15,17

Width x Height 1280 x 800 1360 x 768 1366 x 768 1280 x 960 1440 x 900 1280 x 1024

Rays 1024000 1044480 1049088 1228800 1296000 1310720

Time (ms) 15,41 15,73 15,81 18,20 19,18 18,98

Width x Height 1600 x 900 1400 x 1050 1680 x 1050 1600 x 1200 1920 x 1080

 # Rays 1440000 1470000 1764000 1920000 2073600

Time (ms) 21,50 21,00 25,49 26,89 28,80

Table 19 – OptiX Prime time results (milliseconds) to render the Sponza scene, with common screen

display sizes.

Performance Testing

69

As shown in Table 19, the execution time of the OptiX Prime tends to follow a linear curve as the

image resolution increases, as shown in Figure 56.

Figure 56 - Graphical representation of the OptiX Prime time results to render the Sponza scene

(milliseconds/screen size).

6.2 Execution Time of the Create Shadow Map Step

In this section, we’ll analyse the execution time that the hybrid methods need to produce the shadow

maps (Figure 57).

Figure 57 – Create Shadow Map step diagram.

Table 20 shows clearly that conservative rasterization process impacts time required to make the

shadow map, as PCF is faster to produce a single shadow map, while CRSM and CRSMA take longer

because they create a two layer shadow map.

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00

Optix Prime Execution Time

Performance Testing

70

Execution Time (ms): Create Shadow Map step

Shadow Map Size PCF CRSM CRSMA

512x512 0,14 1,53 10,84

1024x1024 0,16 1,74 12,98

2048x2048 0,26 2,42 17,84

4096x4096 0,63 3,04 24,30

Table 20 - Execution times of the create shadow map step for the Sponza scene.

The time results also show that the use of that adjacent information, with the respective computations

demonstrated in chapter 4, causes the create shadow map step in CRSMA to take more time to

produce the shadow maps than CRSM. As shown in Table 20, for the 512x512 shadow map CRSMA

takes approximately 11 milliseconds more than CRSM. This difference between becomes more

pronounced as the shadow map increases, as shown in Figure 58.

Figure 58 – Graphical representation of the execution times of the Create Shadow Map step for the

Sponza scene.

6.3 Execution Time of the Uncertain Detection Step

In this section, we’ll analyse the execution time that the hybrid methods need to detect uncertain

pixels, and the time required to produce the colour-coded map and the scene colour texture (Figure

59).

0,00

10,00

20,00

30,00

512x512 1024x1024 2048x2048 4096x4096

Create Shadow Map (ms)

PCF

CRSM

CRSMA

Performance Testing

71

Figure 59 - Detect Uncertain step diagram.

As shown in Table 21, all PCF and CRSM and CRSMA achieve similar results. This proves that the

reading of the two layer shadow map spends the same amount of time as the regular shadow map,

and that the detection algorithm doesn’t have much impact in the execution time.

Execution Time (ms): Detect Uncertain step

Viewport Size Shadow Map Size PCF CRSM CRSMA

512 x 512

512x512 0,64 0,65 0,65

1024x1024 0,64 0,65 0,65

2048x2048 0,65 0,65 0,65

4096x4096 0,65 0,64 0,77

1024 x 1024

512x512 2,17 2,17 2,18

1024x1024 2,17 2,17 2,17

2048x2048 2,17 2,17 2,18

4096x4096 2,17 2,22 2,23

1920 x 1080

512x512 4,04 4,04 4,04

1024x1024 4,03 4,05 4,04

2048x2048 4,04 4,04 4,04

4096x4096 4,03 4,05 4,05

Table 21 - Execution times of the Detect Uncertain step for the Sponza scene.

6.4 Execution Time of the Fill Ray Buffer Step

In this section, we’ll analyse the execution time that the hybrid methods need to produce the ray

buffer (Figure 60).

Performance Testing

72

Figure 60 – Fill Ray Buffer step diagram.

As shown in Table 22 and Figure 61, the increase of the shadow map resolution decreases the time

required to fill the ray buffer, as this is tied to the number of uncertain pixels found during the

previous step. Although there are cases where the numbers of uncertain pixels are similar, the fact

that the color-coded map is the same size as viewport, the time it takes to fill the buffer for the same

amount of rays, might be different because of the viewport size.

Execution Time (ms): Fill Ray Buffer step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 114669 2,07 171006 2,72 163432 2,62

1024x1024 65058 1,40 125406 2,29 120168 2,20

2048x2048 25400 0,87 76565 1,69 71613 1,58

4096x4096 14245 0,59 56138 1,24 47295 1,16

1024 x
1024

512x512 458780 7,39 684174 10,15 653842 9,73

1024x1024 260292 4,79 501774 8,31 480658 7,84

2048x2048 101968 2,61 306366 5,92 286679 5,47

4096x4096 57013 1,65 224780 4,39 189351 3,83

1920 x
1080

512x512 1029018 14,85 1349756 20,08 1273137 18,24

1024x1024 614562 10,34 988492 15,96 937996 14,53

2048x2048 240378 5,09 520567 9,62 484444 8,55

4096x4096 98918 2,36 325214 6,20 294871 5,45

Table 22 - Execution times of the fill ray buffer step for the Sponza scene; the # Rays is equal to the

number of “uncertain” pixels found in the Detect Uncertain step.

Performance Testing

73

As expected, PCF’s low number of “uncertain” pixels make it so that the ray buffer is filled much faster

than the other two methods, by an average of approximately 0,5 milliseconds for the 512x512

viewport, and average of 3 milliseconds for the 1024x1024 viewport, and an average of 5 milliseconds

for the 1920x1080 viewport.

The differences between CRSM and CRSMA are very small, with an average difference of 0,10

milliseconds for the 512x512, and average difference of 1,5 difference of the rest of the viewports,

which isn’t sufficient to compensate the CRSMA’s overhead in the create shadow map step.

Figure 61 - Graphical representation of the execution times of the Fill Ray Buffer step for the Sponza

scene.

6.5 Execution Time of the Traced Ray Step

In this section, we’ll analyse the execution time that the OptiX Prime requires to trace the ray buffer

created in the previous step (Figure 62).

Figure 62 – Trace Rays Step diagram

0,00
5,00

10,00
15,00
20,00
25,00

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Fill Ray Buffer (ms)

PCF

CRSM

CRSMA

Performance Testing

74

Table 23 and Figure 63 show that the number of rays reduces for each viewport as the shadow map

increases, causing the time required to trace the rays created from the “uncertain” pixels to reduce,

similarly like in the previous step. However there are differences in the times, because unlike the

previous step, the OptiX Prime API is not affected by the viewport size, only by the number of rays

needed to trace, therefore, some combinations of viewport and shadow map sizes produce very

similar results.

Execution Time (ms): Trace Rays step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 114669 2,38 171006 3,08 163432 3,03

1024x1024 65058 1,68 125406 2,60 120168 2,55

2048x2048 25400 1,13 76565 2,01 71613 1,92

4096x4096 14245 0,89 56138 1,67 47295 1,56

1024 x
1024

512x512 458780 6,69 684174 9,08 653842 8,89

1024x1024 260292 4,42 501774 7,39 480658 7,16

2048x2048 101968 2,47 306366 5,32 286679 4,99

4096x4096 57013 1,70 224780 4,21 189351 3,70

1920 x
1080

512x512 1029018 12,79 1349756 16,53 1273137 15,40

1024x1024 614562 8,55 988492 13,01 937996 12,27

2048x2048 240378 4,28 520567 7,99 484444 7,48

4096x4096 98918 2,37 325214 5,62 294871 5,22

Table 23 - Execution times of the trace rays step for the Sponza scene; the # Rays is equal to the

number of “uncertain” pixels found in the Detect Uncertain step.

Like in the previous step, PCF’s low number of rays makes it the fastest to obtain the needed ray

tracer results, having on average of 1 milliseconds advantage in the 512x512 viewport, and average

advantage of 3,5 milliseconds for the other view ports. Also like in the previous section, CRSM and

CRSMA differences are too small to compensate the use of adjacency information, with an average

improvement of 0,5 milliseconds of the ray tracing time needed to correct.

Performance Testing

75

Figure 63 - Graphical representation of the execution times of the Trace Rays step for the Sponza

scene.

6.6 Execution Time of the Fix Pixels Step

In this section, we’ll analyse the execution time that the OptiX Prime requires to fix the pixels in the

scene’s shadows to produce the final image (Figure 64).

Figure 64 – Fix Pixels step diagram

Like in the step 2 of the pipeline, the hybrid methods achieve the same amount of time results, as

Table 24 shows, due to the fact that in this step we are basically applying to the colour texture the

results in the hits buffer specifically in the positions of the “uncertain” pixels detected before.

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Trace Rays (ms)

PCF

CRSM

CRSMA

Performance Testing

76

Execution Time (ms): Fix Pixels step

Viewport Size PCF CRSM CRSMA

512 x 512 0,07 0,07 0,07

1024 x 1024 0,29 0,29 0,29

1920 x 1080 0,57 0,57 0,57

Table 24 - Execution times of the fix pixels step for the Sponza scene.

6.7 Execution Time of the Entire Pipeline

Finally, we’ll analyse the combined times of each time in order to evaluate the hybrid methods in the

entire pipeline. The results are present in Table 25.

Execution Time (ms): Pipeline

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

4,96

0,50 5,30 8,05 17,21

1024x1024 0,53 3,95 7,35 18,45

2048x2048 0,65 2,98 6,84 22,06

4096x4096 1,11 2,83 6,66 27,86

1024 x 1024

512x512

15,32

0,90 16,68 23,22 31,93

1024x1024 0,94 11,83 19,90 30,44

2048x2048 1,07 7,80 16,12 30,77

4096x4096 1,57 6,44 14,15 34,35

1920 x 1080

512x512

28,73

1,47 32,39 42,75 49,09

1024x1024 1,50 23,65 35,33 44,39

2048x2048 1,59 14,24 24,64 38,48

4096x4096 1,88 9,96 19,48 39,59

Table 25 - Execution times of the test pipeline for the Sponza scene.

As evidenced by the values in Table 25, PCF method is the fastest of three hybrids, having an average

difference of 4 milliseconds and 12 milliseconds difference over the CRSM and CRSMA respectively for

the 512x512 viewport, and a 10 millisecond and 20 milliseconds difference over the CRSM and CRSMA

in the other viewports. The CRSM provides faster times than the CRSMA due to the lack of geometry

manipulations in the create shadow map step, giving it and advantage of approximately 15

milliseconds over the CRSMA. These results show that, as of now, the use of the adjacency

information to cover the “tears” in the shadows is not a viable solution. The resulting in the following

Performance Testing

77

section will collaborate in this assessment with the frame rate analysis of the hybrid methods. Figure

65 provides a graphical representation of these results, providing visual confirmation to this analysis.

Figure 65 - Graphical representation of the execution times of the Pipeline for the Sponza scene.

6.8 Frame Rate for the Entire Pipeline

In this section, we’ll analyse the frame rate achieved with these hybrid methods and compare them

with the frame rate for OptiX Prime and NSM pipeline.

Frame Rate (FPS)

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512

136,01

384,62 89,77 63,56 39,30

1024 384,17 114,89 70,75 37,97

2048 364,70 137,61 78,81 34,26

4096 297,89 145,01 70,82 28,41

1024 x 1024

512

55,37

316,46 34,46 24,82 20,21

1024 325,41 48,60 29,60 22,21

2048 313,87 73,51 38,12 23,88

4096 257,00 87,99 40,50 22,47

1920 x 1080

512

31,03

277,55 17,92 13,48 12,81

1024 249,94 25,60 17,10 15,06

2048 239,58 44,90 26,19 19,43

4096 230,79 63,47 32,50 20,69

Table 26 – Frame rate of the test pipeline for the Sponza scene.

0,00

20,00

40,00

60,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Pipeline Execution (ms)

Prime PCF CRSM CRSMA

Performance Testing

78

As shown by Table 26 and Figure 66, NSM provides the highest frame rate possible in the Sponza

scene. Within the hybrids methods, PCF provides the highest frame rate in all the viewports, only

surpassing the OptiX Prime in the 2048x2048 and 4096x4096 shadow map sizes.

The CRSM provides faster frame rates than CRSMA as expected because of the geometric

transformations of CRSMA, just like in the previous section. These methods also provide

improvements as the shadow map size increases, but rarely provide superior times than OptiX Prime.

The only case of improvement is with the 1920x1080 viewport and the 4096x4096 shadow map,

where the difference between the CRSM and OptiX Prime is approximately 1millisecond, which is not

significant enough to use CRSM over OptiX Prime, as far as performance is concerned.

Figure 66 - Graphical representation of the frame rate (FPS), shown in Table 26. The first number

represents the shadow map size, while the second represent the viewport dimensions.

6.9 Conclusion

In accordance to the test pipeline, the PCF obtains the fastest times, having a slight advantage over

the CRSM, due to the low number of “uncertain” pixels, However, taking in consideration the results

of the previous chapter, it produces significant visual errors. The CRSM provides a compromise

between relatively performance and a low number of visual errors, always stands in the middle of the

PCF’s and CRSMA’s times. CRSMA’s time results show that the use of adjacency information to reduce

the number of uncertain rays does provide a slight decrease in the OptiX Prime’s ray tracing time, but

0,00

50,00

100,00

150,00

200,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Frame Rate

OptiX Prime PCF CRSM CRSMA

Performance Testing

79

these improvements don’t compensate the time overhead in the geometry shader, which increases

the execution time of CRSMA method quite drastically.

In regard to the frame rate obtained by these hybrid methods, the hybrid methods achieve worst

frame rates than the OptiX Prime, the only exception to this is the PCF when the shadow map size is

2048x2048 or above. Taking in consideration the pixels analyses results of the previous chapter, by

increasing the shadow map size in the Sponza scene, it begins to introduce visual errors, so the OptiX

Prime ray tracing engine provides superior results.

Conclusions and Future Work

80

7 Conclusions and Future Work

Shadow mapping (Williams, 1978) is probably the most known and explored method to produce

shadows. Conceptually it is not an error free algorithm due to perspective aliasing, perspective

mismatch, the discrete nature of the z-buffer among other issues.

Several proposals have partially solved this issues resulting in methods that have far less errors than

the standard approach while maintaining high performance even with complex scenes. Trapezoidal

shadow maps (Martin & Tiow-Seng, Trapezoidal Shadow Maps (TSM) - Recipe, 2011) and parallel split

shadow maps (Zhang, Sun, Xu, & Lun, 2006) are two examples. These methods explore the shadow

map useful area, thereby providing better results.

Other approaches such as Percentage Closer Filtering (Reeves, Salesin, & Cook, 1987) use heuristics

to improve the shadows using a kernel filter. More recent developments such as VSM (Donnelly &

Lauritzen, 2006) and ESM (Annen, Mertens, Seidel, Flerackers, & Kautz, 2008) extend the filtering

idea reinterpreting the shadow map such that it can be freely filtered. All these later methods provide

some sort of soft shadows, where VSM and ESM do create an penumbra, whereas PCF only blurs the

shadowing results, not taking into account the distance between the occluder and the occlude.

Ray tracing (Glassner, 1989) is capable of producing error free hard shadows with an amazingly

elegant algorithm. However its performance is far from the previous rasterization based methods.

Today, with the versatility of the graphics hardware it is possible to implement many rendering

paradigms in the GPU. Rasterization and ray tracing are two of the most popular paradigms and this

thesis focus on the combination of both using as a case study the production of hard shadows.

Two previous works have already attempted that, but no comparative evaluation has been performed

so far, both between these methods, as well as against more ray tracing intensive solutions. This work

explored the feasibility of these methods, evaluating their quality and performance.

The essence behind these approaches is a method to determine the correctness of the shadow status

of each pixel. While CRSM (Hertel, Hormann, & Westermann, 2009) ensures an error free method, at

least theoretically, PCF (Beister, Ernst, & Stamminger, 2005) provides a heuristic that is able to

determine the shadow correctness for most pixels. However, in the tested scenes a significant number

of incorrect pixels are not detected by this heuristic, and as shown these can have a significant visual

Conclusions and Future Work

81

impact. Both these methods use a selective ray tracing aid, seeking to reduce the ray tracer load.

Pixels which cannot be classified as correct by the method are then classified by a ray tracer.

To explore the accuracy of the detection of possibly incorrect pixels in the shadow map an extension

to CRSM (Hertel, Hormann, & Westermann, 2009) using adjacency information is also presented

(CRSMA). The main purpose of this extension is to ascertain the shadow status of the pixels in the

gaps between adjacent triangles created when the triangles are shrunk. This results in more pixels

being classified as correct, which in turn reduces even further the number of pixels that must be sent

to the ray-tracer to determine their shadow status.

The hybrid methods analysed in this dissertation provide a significant visual improvement to standard

shadow mapping producing less errors. The results show that even PCF with its heuristic approach

can significantly improve the shadow map results, while both CRSM and CRSMA provide an almost

error free solution. The advantage of the usage of adjacency information varies a lot from scene to

scene, having less impact on scenes with smaller triangles, yet it consistently requires less

intervention from the ray tracer.

From a performance point of view, being able to ascertain the correctness of the shadow status for a

large number of pixels results in a faster ray tracing step, since as shown the performance of the ray

tracer varies in a linear fashion with the number of rays.

However, determining the correctness of the shadow status of each pixel requires previous work

preparing a shadow map that helps with this evaluation. Having to shrink and extend triangles takes

its time and the usage of adjacency information to fill in the gaps has a huge performance penalty,

rendering this extension useless with current hardware. CRSM is able to perform faster than the OptiX

solution but it requires a large shadow map.

The main disadvantage of using OptiX is the memory cost, since it requires a duplicate of the scene.

Note that, as mentioned before, the OptiX solution is itself hybrid.

Regarding future work there are two avenues that may be worth exploring:

Test CRSM and CRSMA with NVIDIA Maxwell architecture (NVIDIA Corporation, 2014) which offers

hardware support for conservative rasterization;

Conclusions and Future Work

82

Test with other ray tracing engines, namely Embree™ (Wald, Woop, Benthin, Johnson, & Ernst, 2014)

and AMD’s FireRays™ (Trudeau, 2015). In particular Embree could prove to be a useful ally for the

hybrid rasterization approach since it works exclusively on the CPU, effectively leaving the GPU free

for other effects.

Bibliography

83

References

Abrantes, J. (2009). Analysis and Proposal of a Shadow Mapping Remix Approach (Masters Thesis).

School of Engineering, Department of Informatics. Braga: University of Minho.

Akenine-Moller, T., & Aila, T. (2005). Conservative and Tiled Rasterization Using a Modified Triangle

Setup. Journal of Graphics Tools, 10, 1-8.

Annen, T., Mertens, T., Seidel, H.-P., Flerackers, E., & Kautz, J. (2008). Exponential Shadow Maps.

Proceedings of Graphics Interface 2008. GI '08, pp. 155-161. Windsor, Ontario, Canada:

Canadian Information Processing Society.

Beister, M., Ernst, M., & Stamminger, M. (2005). A Hybrid GPU-CPU Renderer. In G. Greiner, J.

Hornegger, H. Niemann, & M. Stamminger (Ed.), Vision, Modeling, and Visualization 2005,

(pp. 415-420). Berlin: Akademische Verlagsgesellschaft Aka GmbH.

Cabeleira, J. P. (2010). Combining Rasterization and Ray Tracing Techniques to Approximate Global

Illumination in Real-Time (Masters Thesis). Instituto Superior Técnico, Department of

Computer Science and Engineering. Lisboa: Technical University of Lisbon.

Christensen, P., Fong, J., Laur, D., & Batali, D. (2006). Ray Tracing For The Movie "Cars". IEEE

Symposium on Interactive Ray Tracing, 1-6.

Cook, R., Carpenter, L., & Catmull, E. (1987). The Reyes Image Rendering Architecture. Proceedings

of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

'87 (pp. 95-102). New York, NY, USA: ACM.

Donnelly, W., & Lauritzen, A. (2006). Variance Shadow Maps. Proceedings of the 2006 Symposium on

Interactive 3D Graphics and Games (pp. 161-165). Redwood City, California: ACM.

Glassner, A. S. (1989). An Introduction to Ray Tracing. London, UK: Academic Press Ltd.

Hasselgren, J., Akenine-Möller, T., & Ohlsson, L. (2005). Conservative Rasterization. In GPU Gems 2

(pp. 677-690). Addison-Wesley Professional.

Bibliography

84

Hertel, S., Hormann, K., & Westermann, R. (2009). A Hybrid GPU Rendering Pipline for Alias-Free

Hard Shadows. Proceedings of Eurographics 2009 Area (pp. 59–66). München, Germany:

Eurographics Association.

Koltun, V., Cohen-Or, D., & Chrysanthou, Y. (2001). Hardware-accelerated from-region visibility using

a dual ray space. Eurographics Workshop on Rendering (pp. 204-214). The Eurographics

Association.

Lloyd, B., Wendt, J., Govindaraju, N., & Manocha, D. (2004). CC Shadow Volumes. In Proceedings of

the 2nd EG Symposium on Rendering. Eurographics Association.

Martin, T., & Tiow-Seng, T. (2004). Anti-aliasing and Continuity with Trapezoidal Shadow Maps.

Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques (pp. 153-

160). Norrköping, Sweden: Eurographics Association.

Martin, T., & Tiow-Seng, T. (2011, May 2). Trapezoidal Shadow Maps (TSM) - Recipe. (School of

Computing, National University of Singapore) Retrieved September 15, 2015, from Anti-

aliasing and Continuity with Trapezoidal Shadow Maps:

http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html

Meinl, F. (2011, July 27). McGuire Graphics Data - Meshes. Retrieved December 5, 2015, from

McGuire Graphics Data: http://graphics.cs.williams.edu/data/meshes.xml

Moderno, D. (2011). Shadow Mapping and Ray-Tracing (Master Thesis). School of Engineering,

Department of Informatics. Braga: University of Minho.

Myszkowski, K., Okunev, O. G., & Kunii, T. L. (1995). Fast Collision detection between complex solids

using rasterization graphics hardware. The Visual Computer 11, 9, 497-512.

Nealen, A. V. (2002). Shadow Mapping and Shadow Volumes: Recent Developments in Real-Time

(Project Report). University of British Columbia.

NVIDIA Corporation. (2008). NVIDIA® OptiX™ Ray Tracing Engine. Retrieved October 25, 2013, from

https://developer.nvidia.com/optix

Bibliography

85

NVIDIA Corporation. (2014, November 19). Don't be conservative with Conservative Rasterization.

(NVIDIA Corporation) Retrieved December 18, 2015, from NVIDIA Developer Zone:

https://developer.nvidia.com/content/dont-be-conservative-conservative-rasterization

Reeves, W., Salesin, D., & Cook, R. (1987). Rendering Antialiased Shadows with Depth Maps.

SIGGRAPH Comput. Graph., 21(4), 283-291.

Tadamura, K., Qin, X., Jiao, G., & Nakamae, E. (1999). Rendering optimal solar shadows using plural

sunlight depth buffers. Proceedings of the International Conference on Computer Graphics.

Washington, DC, USA: IEEE Computer Society.

Trudeau, J. (2015, August 14). AMD FireRays Library Accelerates Ray Tracing. (AMD) Retrieved 11 25,

2015, from http://developer.amd.com/community/blog/2015/08/14/amd-firerays-library/

Wald, I., Woop, S., Benthin, C., Johnson, G. S., & Ernst, M. (2014). Embree: A Kernel Framework for

Efficient CPU Ray Tracing. ACM Trans. Graph., 33, 143:1-143:8.

Williams, L. (1978). Casting Curved Shadows on Curved Surfaces. Proceedings of the 5th Annual

Conference on Computer Graphics and Interactive Techniques (pp. 270-274). New York, NY,

USA: ACM.

Zhang, F., Sun, H., Xu, L., & Lun, L. (2006). Parallel-split Shadow Maps for Large-scale Virtual

Environments. Proceedings of the 2006 ACM International Conference on Virtual Reality

Continuum and Its Applications (pp. 311-318). Hong Kong, China: ACM.

Appendix

86

A Appendix

A.1 Pixel Analysis and Results

A.1.1 OptiX Prime

Scene Bench

Viewport Against

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 255894 97,62% 1023625 97,62% 2045839 98,66%

PnFL 6250 2,38% 24951 2,38% 27761 1,34%

PFL – in Light 151055 59,03% 604274 59,03% 1296685 63,38%

PFL – in Shadow 104839 40,97% 419351 40,97% 749154 36,62%

Table 27 - OptiX Prime results for the Bench scene with the Against viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split

into the pixels in Light and the pixels in Shadow.

Figure 67 - OptiX Prime Shadows in the Bench scene using the Against viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

87

Scene Bench

Viewport Side

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 248797 94,91% 995221 94,91% 2014185 97,13%

PnFL 13347 5,09% 53355 5,09% 59415 2,87%

PFL – in Light 181422 72,92% 725643 72,91% 1493410 74,14%

PFL – in Shadow 67375 27,08% 269578 27,09% 520775 25,86%

Table 28 - OptiX Prime results for the Bench scene with the Side viewport; PFL represents the Pixels

Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the

pixels in Light and the pixels in Shadow.

Figure 68 - OptiX Prime Shadows in the Bench scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

88

Scene Bench

Viewport With

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 261769 99,86% 1047046 99,85% 2071919 99,92%

PnFL 375 0,14% 1530 0,15% 1681 0,08%

PFL – in Light 170302 65,06% 681183 65,06% 1421847 68,62%

PFL – in Shadow 91467 34,94% 365863 34,94% 650072 31,38%

Table 29 - OptiX Prime results for the Bench scene with the With viewport; PFL represents the Pixels

Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the

pixels in Light and the pixels in Shadow.

Figure 69 - OptiX Prime Shadows in the Bench scene using the With viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

89

Scene Flowers

Viewport Against

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 246986 94,22% 987818 94,21% 2005998 96,74%

PnFL 15158 5,78% 60758 5,79% 67602 3,26%

PFL – in Light 130891 53,00% 523454 52,99% 1399264 69,75%

PFL – in Shadow 116095 47,00% 464364 47,01% 606734 30,25%

Table 30 - OptiX Prime results for the Flowers scene with the Against viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split

into the pixels in Light and the pixels in Shadow.

Figure 70 - OptiX Prime Shadows in the Flowers scene using the Against viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

90

Scene Flowers

Viewport Side

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 254287 97,00% 1017330 97,02% 1993921 96,16%

PnFL 7857 3,00% 31246 2,98% 79679 3,84%

PFL – in Light 159907 62,88% 639789 62,89% 1314683 65,93%

PFL – in Shadow 94380 37,12% 377541 37,11% 679238 34,07%

Table 31 - OptiX Prime results for the Flowers scene with the Side viewport; PFL represents the Pixels

Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the

pixels in Light and the pixels in Shadow.

Figure 71 - OptiX Prime Shadows in the Flowers scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

91

Scene Trees

Viewport Against

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 262144 100,00% 1048576 100,00% 2073600 100,00%

PnFL 0 0,00% 0 0,00% 0 0,00%

PFL – in Light 114468 43,67% 457662 43,65% 957000 46,15%

PFL – in Shadow 147676 56,33% 590914 56,35% 1116600 53,85%

Table 32 - OptiX Prime results for the Trees scene with the Against viewport; PFL represents the

Pixels Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split

into the pixels in Light and the pixels in Shadow.

Figure 72 - OptiX Prime Shadows in the Trees scene using the Against viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

92

Scene Trees

Viewport Side

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 262144 100,00% 1048576 100,00% 2073445 99,99%

PnFL 0 0,00% 0 0,00% 155 0,01%

PFL – in Light 168949 64,45% 675786 64,45% 1320293 63,68%

PFL – in Shadow 93195 35,55% 372790 35,55% 753152 36,32%

Table 33 - OptiX Prime results for the Trees scene with the Side viewport; PFL represents the Pixels

Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the

pixels in Light and the pixels in Shadow.

Figure 73 - OptiX Prime Shadows in the Trees scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

93

Scene Trees

Viewport With

Pixel Types
Viewport Size

512x512 1024x1024 1920x1080

PFL 262144 100,00% 1048576 100,00% 2073600 100,00%

PnFL 0 0,00% 0 0,00% 0 0,00%

PFL – in Light 163824 62,49% 655342 62,50% 1331188 64,20%

PFL – in Shadow 98320 37,51% 393234 37,50% 742412 35,80%

Table 34 - OptiX Prime results for the Trees scene with the With camera; PFL represents the Pixels

Facing the Light and PnFL represents the Pixels not Facing the Light; The PFLs are then split into the

pixels in Light and the pixels in Shadow.

Figure 74 - OptiX Prime Shadows in the Bench scene using the Side viewport; the green pixels

represent the PNFL pixels; Viewport Size: 1024x1024.

Appendix

94

A.1.2 Standard Shadow Mapping

Scene Bench

Viewport Against

Pixel State
Pixel Precision

Correct Incorrect

Light 593185 97,36% 16085 2,64%

Shadow 403266 97,32% 11089 2,68%

Total 996451 97,35% 27174 2,65%

Table 35 - Normal Shadow Mapping errors in the Bench scene with the Against viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 75 - Against-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

95

Scene Bench

Viewport Against

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 148289 97,35% 593185 97,36% 1266825 97,98%

C-Shadow 100801 97,33% 403266 97,32% 723093 96,03%

I-Light 4038 2,65% 16085 2,64% 26061 2,02%

I-Shadow 2766 2,67% 11089 2,68% 29860 3,97%

Table 36 - NSM viewport results in the Bench scene with the Against viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Bench

Viewport Against

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 581478 96,54% 593185 97,36% 595705 98,83% 600553 99,13%

C-Shadow 398503 94,59% 403266 97,32% 412292 97,96% 414070 99,11%

I-Light 20848 3,46% 16085 2,64% 7059 1,17% 5281 0,87%

I-Shadow 22796 5,41% 11089 2,68% 8569 2,04% 3721 0,89%

Table 37 - NSM shadow map results in the Bench scene with the Against viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 76 - Shadow Map Size variation results in the Against-Bench scene using a fixed viewport of

1024x1024.

0,00%

2,00%

4,00%

6,00%

Incorrect Pixels

Light Shadow

Appendix

96

Scene Bench

Viewport Side

Pixel State
Pixel Precision

Correct Incorrect

Light 718232 98,76% 8984 1,24%

Shadow 260594 97,23% 7411 2,77%

Total 978826 98,35% 16395 1,65%

Table 38 - Normal Shadow Mapping errors in the Bench scene with the Side viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 77 - Side-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

97

Scene Bench

Viewport Side

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 179521 98,72% 718232 98,76% 1474955 98,82%

C-Shadow 65039 97,16% 260594 97,23% 503144 96,46%

I-Light 2336 1,28% 8984 1,24% 17631 1,18%

I-Shadow 1901 2,84% 7411 2,77% 18455 3,54%

Table 39 - NSM viewport results in the Bench scene with the Side viewport, using a fixed shadow map

size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Bench

Viewport Side

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 712690 97,81% 718232 98,76% 720739 99,16% 722975 99,39%

C-Shadow 253592 95,14% 260594 97,23% 263452 98,17% 265154 99,00%

I-Light 15986 2,19% 8984 1,24% 6126 0,84% 4424 0,61%

I-Shadow 12953 4,86% 7411 2,77% 4904 1,83% 2668 1,00%

Table 40 - NSM shadow map results in the Bench scene with the Side viewport, using a fixed viewport

size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 78 - Shadow Map Size variation results in the Side-Bench scene using a fixed viewport of

1024x1024.

0,00%

2,00%

4,00%

6,00%

Incorrect Pixels

Light Shadow

Appendix

98

Scene Bench

Viewport With

Pixel State
Pixel Precision

Correct Incorrect

Light 672574 98,66% 9109 1,34%

Shadow 356754 97,64% 8609 2,36%

Total 1029328 98,31% 17718 1,69%

Table 41 - Normal Shadow Mapping errors in the Bench scene with the With viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 79 - With-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

99

Scene Bench

Viewport With

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 168196 98,69% 672574 98,66% 1399990 98,53%

C-Shadow 89226 97,69% 356754 97,64% 629226 96,64%

I-Light 2241 1,31% 9109 1,34% 20846 1,47%

I-Shadow 2106 2,31% 8609 2,36% 21857 3,36%

Table 42 - NSM viewport results in the Bench scene with the With viewport, using a fixed shadow map

size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Bench

Viewport With

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 665562 97,82% 672574 98,66% 676652 99,17% 678718 99,55%

C-Shadow 350996 95,74% 356754 97,64% 360197 98,76% 362790 99,33%

I-Light 14867 2,18% 9109 1,34% 5666 0,83% 3073 0,45%

I-Shadow 15621 4,26% 8609 2,36% 4531 1,24% 2465 0,67%

Table 43 - NSM shadow map results in the Bench scene with the With viewport, using a fixed viewport

size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 80 - Shadow Map Size variation results in the With-Bench scene using a fixed viewport of

1024x1024.

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%

Incorrect Pixels

Light Shadow

Appendix

100

Scene Flowers

Viewport Against

Pixel State
Pixel Precision

Correct Incorrect

Light 510737 97,14% 15023 2,86%

Shadow 449341 97,25% 12717 2,75%

Total 960078 97,19% 27740 2,81%

Table 44 - Normal Shadow Mapping errors in the Flowers scene with the Against viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 81 - Against-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

OptiX Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

101

Scene Flowers

Viewport Against

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 127712 97,13% 510737 97,14% 1373497 98,20%

C-Shadow 112327 97,25% 449341 97,25% 581599 95,76%

I-Light 3768 2,87% 15023 2,86% 25134 1,80%

I-Shadow 3179 2,75% 12717 2,75% 25767 4,24%

Table 45 - NSM viewport results in the Flowers scene with the Against viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Flowers

Viewport Against

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 498481 95,99% 510737 97,14% 515356 98,12% 518487 98,66%

C-Shadow 443563 94,67% 449341 97,25% 454500 98,25% 457336 98,93%

I-Light 20801 4,01% 15023 2,86% 9864 1,88% 7028 1,34%

I-Shadow 24973 5,33% 12717 2,75% 8098 1,75% 4967 1,07%

Table 46 - NSM shadow map results in the Flowers scene with the Against Camera, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 82 - Shadow Map Size variation results in the Against-Flowers scene using a fixed viewport of

1024x1024.

0,00%

2,00%

4,00%

6,00%

Incorrect Pixels

Light Shadow

Appendix

102

Scene Flowers

Viewport Side

Pixel State
Pixel Precision

Correct Incorrect

Light 624443 97,50% 16042 2,50%

Shadow 361499 95,93% 15346 4,07%

Total 985942 96,91% 31388 3,09%

Table 47 - Normal Shadow Mapping errors in the Flowers scene with the Side viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 83 - Side-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

103

Scene Flowers

Viewport Side

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 156075 97,50% 624443 97,50% 1284602 97,86%

C-Shadow 90381 95,93% 361499 95,93% 651151 95,58%

I-Light 3999 2,50% 16042 2,50% 28087 2,14%

I-Shadow 3832 4,07% 15346 4,07% 30081 4,42%

Table 48 - NSM viewport results in the Flowers scene with the Side viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Flowers

Viewport Side

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 603129 97,40% 624443 97,50% 631302 98,10% 634106 98,83%

C-Shadow 361436 90,79% 361499 95,93% 365319 97,73% 370053 98,49%

I-Light 16105 2,60% 16042 2,50% 12222 1,90% 7488 1,17%

I-Shadow 36660 9,21% 15346 4,07% 8487 2,27% 5683 1,51%

Table 49 - NSM shadow map results in the Flowers scene with the Side viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 84 - Shadow Map Size variation results in the Side-Flowers scene using a fixed viewport of

1024x1024.

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

Incorrect Pixels

Light Shadow

Appendix

104

Scene Trees

Viewport Against

Pixel State
Pixel Precision

Correct Incorrect

Light 444767 96,78% 14797 3,22%

Shadow 576117 97,81% 12895 2,19%

Total 1020884 97,36% 27692 2,64%

Table 50 - Normal Shadow Mapping errors in the Trees scene with the Against viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 85 - Against-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

105

Scene Trees

Viewport Against

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 111240 96,81% 444767 96,78% 925202 96,96%

C-Shadow 144015 97,81% 576117 97,81% 1087640 97,16%

I-Light 3661 3,19% 14797 3,22% 28960 3,04%

I-Shadow 3228 2,19% 12895 2,19% 31798 2,84%

Table 51 - NSM viewport results in the Trees scene with the Against viewport, using a fixed shadow

map size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Trees

Viewport Against

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 426075 94,44% 444767 96,78% 451089 98,42% 454397 99,19%

C-Shadow 565841 94,71% 576117 97,81% 583662 98,89% 587222 99,45%

I-Light 25073 5,56% 14797 3,22% 7252 1,58% 3692 0,81%

I-Shadow 31587 5,29% 12895 2,19% 6573 1,11% 3265 0,55%

Table 52 - NSM shadow map results in the Trees scene with the Against viewport, using a fixed

viewport size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 86 - Shadow Map Size variation results in the Against-Trees scene using a fixed viewport of

1024x1024.

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%
6,00%

Incorrect Pixels

Light Shadow

Appendix

106

Scene Trees

Viewport Side

Pixel State
Pixel Precision

Correct Incorrect

Light 662529 98,49% 10162 1,51%

Shadow 362628 96,47% 13257 3,53%

Total 1025157 97,77% 23419 2,23%

Table 53 - Normal Shadow Mapping errors in the Trees scene with the Side viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 87 - Side-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

107

Scene Trees

Viewport Side

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 165613 98,48% 662529 98,49% 1293046 97,88%

C-Shadow 90643 96,45% 362628 96,47% 725120 96,38%

I-Light 2552 1,52% 10162 1,51% 28032 2,12%

I-Shadow 3336 3,55% 13257 3,53% 27247 3,62%

Table 54 - NSM viewport results in the Trees scene with the Side viewport, using a fixed shadow map

size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Trees

Viewport Side

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 654341 97,06% 662529 98,49% 670402 99,18% 673197 99,54%

C-Shadow 352965 94,27% 362628 96,47% 367260 98,56% 369699 99,30%

I-Light 19825 2,94% 10162 1,51% 5530 0,82% 3091 0,46%

I-Shadow 21445 5,73% 13257 3,53% 5384 1,44% 2589 0,70%

Table 55 - NSM shadow map results in the Trees scene with the Side viewport, using a fixed viewport

size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 88 - Shadow Map Size variation results in the Side-Trees scene using a fixed viewport of

1024x1024.

0,00%

2,00%

4,00%

6,00%

8,00%

Incorrect Pixels

Light Shadow

Appendix

108

Scene Trees

Viewport With

Pixel State
Pixel Precision

Correct Incorrect

Light 642100 97,93% 13590 2,07%

Shadow 379644 96,63% 13242 3,37%

Total 1021744 97,44% 26832 2,56%

Table 56 - Normal Shadow Mapping errors in the Bench scene with the With viewport, with a

1024x1024 viewport and 1024x1024 shadow map.

Figure 89 - With-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) OptiX

Prime results; (Right) NSM results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

109

Scene Trees

Viewport With

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

C-Light 160517 97,92% 642100 97,93% 1293783 97,51%

C-Shadow 94916 96,63% 379644 96,63% 709377 94,99%

I-Light 3404 2,08% 13590 2,07% 33035 2,49%

I-Shadow 3307 3,37% 13242 3,37% 37405 5,01%

Table 57 - NSM viewport results in the Trees scene with the With viewport, using a fixed shadow map

size of 1024x1024; I represents the incorrect pixels and C represent the correct pixels.

Scene Trees

Viewport With

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

C-Light 628509 96,17% 642100 97,93% 649170 98,95% 652024 99,47%

C-Shadow 368176 93,21% 379644 96,63% 386339 98,43% 389740 99,16%

I-Light 25058 3,83% 13590 2,07% 6895 1,05% 3494 0,53%

I-Shadow 26833 6,79% 13242 3,37% 6172 1,57% 3318 0,84%

Table 58 - NSM shadow map results in the Trees scene with the With viewport, using a fixed viewport

size of 1024x1024; I represents the incorrect pixels and C represents the correct pixels.

Figure 90 - Shadow Map Size variation results in the With-Trees scene using a fixed viewport of

1024x1024.

0,00%
2,00%
4,00%
6,00%
8,00%

Incorrect Pixels

Light Shadow

Appendix

110

A.1.3 Hybrid Methods

Scene Bench

Viewport Against

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 520628 86,23% 83108 13,77% 1892 0,31%

Shadow 317692 75,66% 102197 24,34% 2430 0,58%

Total 833998 81,47% 185305 18,10% 4322 0,42%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 477355 79,00% 126919 21,00% 0 0,00%

Shadow 34580 8,25% 384771 91,75% 0 0,00%

Total 511935 50,01% 511690 49,99% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 477355 79,00% 126919 21,00% 0 0,00%

Shadow 182163 43,44% 237188 56,56% 0 0,00%

Total 659518 64,43% 364107 35,57% 0 0,00%

Table 59 - Pixels Precision results in the Bench scene with the Against viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 91 - Against-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

111

Scene Bench

Viewport Side

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 676275 93,22% 49224 6,78% 1032 0,14%

Shadow 213259 79,07% 56463 20,93% 1176 0,44%

Total 887326 89,16% 105687 10,62% 2208 0,22%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 646787 89,13% 78856 10,87% 0 0,00%

Shadow 21062 7,81% 248516 92,19% 0 0,00%

Total 667849 67,11% 327372 32,89% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 646787 89,13% 78856 10,87% 0 0,00%

Shadow 129768 48,14% 139810 51,86% 0 0,00%

Total 776555 78,03% 218666 21,97% 0 0,00%

Table 60 - Pixels Precision results in the Bench scene with the Side viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 92 - Side-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

112

Scene Bench

Viewport With

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 608023 89,29% 72903 10,71% 675 0,10%

Shadow 296469 80,98% 69651 19,02% 932 0,25%

Total 902885 86,23% 142554 13,61% 1607 0,15%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 566053 83,10% 115136 16,90% 6 0,00%

Shadow 22585 6,17% 343272 93,83% 0 0,00%

Total 588632 56,22% 458408 43,78% 6 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 566053 83,10% 115135 16,90% 5 0,00%

Shadow 205275 56,11% 160583 43,89% 0 0,00%

Total 771323 73,67% 275718 26,33% 5 0,00%

Table 61 - Pixels Precision results in the Bench scene with the With viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 93 - With-Bench scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

113

Scene Flowers

Viewport Against

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 420456 80,46% 102101 19,54% 1918 0,37%

Shadow 384027 82,54% 81234 17,46% 2815 0,61%

Total 799750 80,96% 183335 18,56% 4733 0,48%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 386569 73,85% 136885 26,15% 0 0,00%

Shadow 27666 5,96% 436698 94,04% 0 0,00%

Total 414235 41,93% 573583 58,07% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 386569 73,85% 136885 26,15% 0 0,00%

Shadow 270110 58,17% 194254 41,83% 0 0,00%

Total 656679 66,48% 331139 33,52% 0 0,00%

Table 62 - Pixels Precision results in the Flowers scene with the Against viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 94 - Against-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left)

PCF results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red

pixels represent the incorrect shadow pixels.

Appendix

114

Scene Flowers

Viewport Side

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 532193 83,31% 106608 16,69% 1899 0,30%

Shadow 298371 78,82% 80158 21,18% 2887 0,76%

Total 825778 81,17% 186766 18,36% 4786 0,47%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 513380 80,24% 126410 19,76% 1 0,00%

Shadow 24412 6,47% 353128 93,53% 0 0,00%

Total 537791 52,86% 479538 47,14% 1 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 513380 80,24% 126409 19,76% 0 0,00%

Shadow 216081 57,23% 161460 42,77% 0 0,00%

Total 729461 71,70% 287869 28,30% 0 0,00%

Table 63 - Pixels Precision results in the Flowers scene with the Side viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 95 - Side-Flowers scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

115

Scene Trees

Viewport Against

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 334384 72,96% 123899 27,04% 1079 0,24%

Shadow 453102 76,76% 137191 23,24% 458 0,08%

Total 785949 74,95% 261090 24,90% 1537 0,15%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 269766 58,94% 187896 41,06% 0 0,00%

Shadow 53747 9,10% 537167 90,90% 0 0,00%

Total 323513 30,85% 725063 69,15% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 269766 58,94% 187896 41,06% 0 0,00%

Shadow 288987 48,91% 301927 51,09% 0 0,00%

Total 558753 53,29% 489823 46,71% 0 0,00%

Table 64 - Pixels Precision results in the Trees scene with the Against viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 96 - Against-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

116

Scene Trees

Viewport Side

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 573225 84,86% 102252 15,14% 0 0,00%

Shadow 267271 71,64% 105828 28,36% 309 0,08%

Total 840187 80,13% 208080 19,84% 309 0,03%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 525398 77,75% 150388 22,25% 0 0,00%

Shadow 14479 3,88% 358311 96,12% 0 0,00%

Total 539877 51,49% 508699 48,51% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 525398 77,75% 150387 22,25% 0 0,00%

Shadow 124392 33,37% 248399 66,63% 1 0,00%

Total 649789 61,97% 398786 38,03% 1 0,00%

Table 65 - Pixels Precision results in the Trees scene with the Side viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 97 - Side-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

117

Scene Trees

Viewport With

Method PCF

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 529645 80,90% 125021 19,10% 0 0,00%

Shadow 260053 66,02% 133857 33,98% 676 0,17%

Total 789022 75,25% 258878 24,69% 676 0,06%

Method CRSM

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 463670 70,75% 191672 29,25% 0 0,00%

Shadow 5198 1,32% 388036 98,68% 0 0,00%

Total 468868 44,71% 579708 55,29% 0 0,00%

Method CRSMA

Pixel State Certain - Correct Uncertain Certain - Incorrect

Light 463670 70,75% 191672 29,25% 0 0,00%

Shadow 107191 27,26% 286043 72,74% 0 0,00%

Total 570861 54,44% 477715 45,56% 0 0,00%

Table 66 - Pixels Precision results in the Trees scene with the With viewport, with a 1024x1024

viewport and a 1024x1024 shadow map.

Figure 98 - With-Trees scene with a 1024x1024 viewport and 1024x1024 shadow map; (Left) PCF

results; (Right) CRSM/CRSMA results; Blue pixels represent the incorrect light pixels, and red pixels

represent the incorrect shadow pixels.

Appendix

118

A.1.3.1 Viewport Variance

Scene Bench

Viewport Against

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 208483 81,47% 833998 13,77% 1620174 79,19%

Uncertain 46328 18,10% 185305 81,47% 417252 20,40%

Certain-I 1083 0,42% 4322 0,42% 8413 0,41%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 127973 50,01% 511935 50,01% 1020542 49,88%

Uncertain 127921 49,99% 511690 49,99% 1025297 50,12%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 164840 64,42% 659518 64,43% 1210372 59,16%

Uncertain 91054 35,58% 364107 35,57% 835467 40,84%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Table 67 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Against-Bench scene; C - Correct and I - Incorrect.

Appendix

119

Scene Bench

Viewport Side

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 221867 89,18% 887326 6,78% 1778089 88,28%

Uncertain 26391 10,61% 105687 89,16% 231527 11,49%

Certain-I 539 0,22% 2208 0,22% 4569 0,23%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 167011 67,13% 667849 67,11% 1354639 67,25%

Uncertain 81786 32,87% 327372 32,89% 659544 32,74%

Certain-I 0 0,00% 0 0,00% 2 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 194127 78,03% 776555 78,03% 1544128 76,66%

Uncertain 54670 21,97% 218666 21,97% 470055 23,34%

Certain-I 0 0,00% 0 0,00% 2 0,00%

Table 68 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Side-Bench scene; C - Correct and I - Incorrect.

Appendix

120

Scene Bench

Viewport With

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 225808 86,26% 902885 10,71% 1723748 83,20%

Uncertain 35573 13,59% 142554 86,23% 342530 16,53%

Certain-I 388 0,15% 1607 0,15% 5641 0,27%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 147118 56,20% 588632 56,22% 1166972 56,32%

Uncertain 114648 43,80% 458408 43,78% 904947 43,68%

Certain-I 3 0,00% 6 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 192854 73,67% 771323 73,67% 1352739 65,29%

Uncertain 68913 26,33% 275718 26,33% 719180 34,71%

Certain-I 2 0,00% 5 0,00% 0 0,00%

Table 69 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the With-Bench scene; C - Correct and I - Incorrect.

Appendix

121

Scene Flowers

Viewport Against

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 199959 80,96% 799750 19,54% 1643701 81,94%

Uncertain 45824 18,55% 183335 80,96% 354853 17,69%

Certain-I 1203 0,49% 4733 0,48% 7443 0,37%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 103578 41,94% 414235 41,93% 1138259 56,74%

Uncertain 143408 58,06% 573583 58,07% 867738 43,26%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 164235 66,50% 656679 66,48% 1320774 65,84%

Uncertain 82751 33,50% 331139 33,52% 685213 34,16%

Certain-I 0 0,00% 0 0,00% 10 0,00%

Table 70 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Against-Flowers scene; C - Correct and I - Incorrect.

Appendix

122

Scene Flowers

Viewport Side

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 206436 81,18% 825778 16,69% 1649401 82,72%

Uncertain 46670 18,35% 186766 81,17% 334768 16,79%

Certain-I 1181 0,46% 4786 0,47% 9752 0,49%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 134424 52,86% 537791 52,86% 1104398 55,39%

Uncertain 119862 47,14% 479538 47,14% 889523 44,61%

Certain-I 1 0,00% 1 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 182341 71,71% 729461 71,70% 1401555 70,29%

Uncertain 71946 28,29% 287869 28,30% 592366 29,71%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Table 71 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Side-Flowers scene; C - Correct and I - Incorrect.

Appendix

123

Scene Trees

Viewport Against

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 196503 74,96% 785949 27,04% 1496253 72,16%

Uncertain 65257 24,89% 261090 74,95% 573361 27,65%

Certain-I 384 0,15% 1537 0,15% 3986 0,19%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 80881 30,85% 323513 30,85% 586961 28,31%

Uncertain 181263 69,15% 725063 69,15% 1486638 71,69%

Certain-I 0 0,00% 0 0,00% 1 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 139694 53,29% 558753 53,29% 946991 45,67%

Uncertain 122450 46,71% 489823 46,71% 1126609 54,33%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Table 72 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Against -Trees scene; C - Correct and I - Incorrect.

Appendix

124

Scene Trees

Viewport Side

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 210059 80,13% 840187 15,14% 1530001 73,79%

Uncertain 52007 19,84% 208080 80,13% 542168 26,15%

Certain-I 78 0,03% 309 0,03% 1276 0,06%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 134955 51,48% 539877 51,49% 940847 45,38%

Uncertain 127189 48,52% 508699 48,51% 1132598 54,62%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 162416 61,96% 649789 61,97% 1090849 52,61%

Uncertain 99728 38,04% 398786 38,03% 982596 47,39%

Certain-I 0 0,00% 1 0,00% 0 0,00%

Table 73 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the Side-Trees scene; C - Correct and I - Incorrect.

Appendix

125

Scene Trees

Viewport With

Method PCF

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 197243 75,24% 789022 19,10% 1439163 69,40%

Uncertain 64727 24,69% 258878 75,25% 625022 30,14%

Certain-I 174 0,07% 676 0,06% 9415 0,45%

Method CRSM

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 117215 44,71% 468868 44,71% 874549 42,18%

Uncertain 144929 55,29% 579708 55,29% 1199051 57,82%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Viewport Size

512x512 1024x1024 1920x1080

Certain-C 142704 54,44% 570861 54,44% 918812 44,31%

Uncertain 119440 45,56% 477715 45,56% 1154788 55,69%

Certain-I 0 0,00% 0 0,00% 0 0,00%

Table 74 - Viewport Variation of the pixel precision results using a fixed Shadow Map Size of

1024x1024 for the With-Trees scene; C - Correct and I - Incorrect.

Appendix

126

A.1.3.2 Shadow Map Variance

Scene Bench

Viewport Against

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 712204 69,58% 833998 81,47% 914675 89,36% 956649 93,46%

Uncertain 305954 29,89% 185305 18,10% 106105 10,37% 65707 6,42%

Certain-I 5467 0,53% 4322 0,42% 2845 0,28% 1269 0,12%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 506460 49,48% 511935 50,01% 671142 65,57% 790877 77,26%

Uncertain 517165 50,52% 511690 49,99% 352483 34,43% 232739 22,74%

Certain-I 0 0,00% 0 0,00% 0 0,00% 9 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 560117 54,72% 659518 64,43% 809721 79,10% 878205 85,79%

Uncertain 463508 45,28% 364107 35,57% 213904 20,90% 145411 14,21%

Certain-I 0 0,00% 0 0,00% 0 0,00% 9 0,00%

Table 75 - Shadow Map Variation of the pixel precision results, using a fixed viewport of 1024x1024

for the Against-Bench scene; C - Correct and I - Incorrect.

Figure 99 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Against-

Bench scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,00%

99,50%

100,00%

Correct

PCF CRSM CRSMA

0,00%
20,00%
40,00%
60,00%

Uncertain

PCF CRSM CRSMA

Appendix

127

Scene Bench

Viewport Side

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 816713 82,06% 887326 89,16% 930029 93,45% 953564 95,81%

Uncertain 174391 17,52% 105687 10,62% 62711 6,30% 39873 4,01%

Certain-I 4117 0,41% 2208 0,22% 2481 0,25% 1784 0,18%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 669997 67,32% 667849 67,11% 762997 76,67% 845311 84,94%

Uncertain 325224 32,68% 327372 32,89% 232224 23,33% 149860 15,06%

Certain-I 0 0,00% 0 0,00% 0 0,00% 50 0,01%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 726928 73,04% 776555 78,03% 860120 86,43% 903529 90,79%

Uncertain 268293 26,96% 218666 21,97% 135101 13,57% 91642 9,21%

Certain-I 0 0,00% 0 0,00% 0 0,00% 50 0,01%

Table 76 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024 for

the Side-Bench scene; C - Correct and I - Incorrect.

Figure 100 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Side-

Bench scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,00%

99,50%

100,00%

Correct

PCF CRSM CRSMA

0,00%

20,00%

40,00%

Uncertain

PCF CRSM CRSMA

Appendix

128

Scene Bench

Viewport With

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 800563 76,46% 902885 86,23% 967494 92,40% 1003203 95,81%

Uncertain 241344 23,05% 142554 13,61% 78419 7,49% 42953 4,10%

Certain-I 5139 0,49% 1607 0,15% 1133 0,11% 890 0,09%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 595297 56,85% 588632 56,22% 736608 70,35% 869006 83,00%

Uncertain 451748 43,15% 458408 43,78% 310435 29,65% 178031 17,00%

Certain-I 1 0,00% 6 0,00% 3 0,00% 9 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 665555 63,57% 771323 73,67% 901443 86,09% 969072 92,55%

Uncertain 381490 36,43% 275718 26,33% 145600 13,91% 77965 7,45%

Certain-I 1 0,00% 5 0,00% 3 0,00% 9 0,00%

Table 77 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024 for

the With-Bench scene; C - Correct and I - Incorrect.

Figure 101 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the With-

Bench scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,20%
99,40%
99,60%
99,80%

100,00%

Correct

PCF CRSM CRSMA

0,00%
15,00%
30,00%
45,00%

Uncertain

PCF CRSM CRSMA

Appendix

129

Scene Flowers

Viewport Against

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 731924 74,10% 799750 80,96% 865525 87,62% 917970 92,93%

Uncertain 249400 25,25% 183335 18,56% 119301 12,08% 67168 6,80%

Certain-I 6494 0,66% 4733 0,48% 2992 0,30% 2680 0,27%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 415735 42,09% 414235 41,93% 568621 57,56% 727695 73,67%

Uncertain 572083 57,91% 573583 58,07% 419197 42,44% 260059 26,33%

Certain-I 0 0,00% 0 0,00% 0 0,00% 64 0,01%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 527911 53,44% 656679 66,48% 765507 77,49% 843197 85,36%

Uncertain 459907 46,56% 331139 33,52% 222311 22,51% 144557 14,63%

Certain-I 0 0,00% 0 0,00% 0 0,00% 64 0,01%

Table 78 - Shadow Map Variation of the pixel precision results, using a fixed viewport of 1024x1024

for the Against-Flowers scene; C - Correct and I - Incorrect.

Figure 102 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Against-

Flowers scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,00%

99,50%

100,00%

Correct

PCF CRSM CRSMA

0,00%

20,00%

40,00%

60,00%

Uncertain

PCF CRSM CRSMA

Appendix

130

Scene Flowers

Viewport Side

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 776881 76,36% 825778 81,17% 888745 87,36% 939695 92,37%

Uncertain 229184 22,53% 186766 18,36% 125608 12,35% 75324 7,40%

Certain-I 11255 1,11% 4786 0,47% 2977 0,29% 2311 0,23%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 537659 52,85% 537791 52,86% 664398 65,31% 803043 78,94%

Uncertain 479670 47,15% 479538 47,14% 352932 34,69% 214284 21,06%

Certain-I 1 0,00% 1 0,00% 0 0,00% 3 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 653426 64,23% 729461 71,70% 809094 79,53% 884584 86,95%

Uncertain 363903 35,77% 287869 28,30% 208236 20,47% 132743 13,05%

Certain-I 1 0,00% 0 0,00% 0 0,00% 3 0,00%

Table 79 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024 for

the Side-Flowers scene; C - Correct and I - Incorrect.

Figure 103 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Side-

Flowers scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

98,00%

99,00%

100,00%

Correct

PCF CRSM CRSMA

0,00%

15,00%

30,00%

45,00%

Uncertain

PCF CRSM CRSMA

Appendix

131

Scene Trees

Viewport Against

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 559905 53,40% 785949 74,95% 912800 87,05% 979647 93,43%

Uncertain 480724 45,85% 261090 24,90% 135326 12,91% 68896 6,57%

Certain-I 7947 0,76% 1537 0,15% 450 0,04% 33 0,00%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 299556 28,57% 323513 30,85% 576188 54,95% 788061 75,16%

Uncertain 749019 71,43% 725063 69,15% 472388 45,05% 260515 24,84%

Certain-I 1 0,00% 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 330796 31,55% 558753 53,29% 814941 77,72% 931993 88,88%

Uncertain 717779 68,45% 489823 46,71% 233635 22,28% 116583 11,12%

Certain-I 1 0,00% 0 0,00% 0 0,00% 0 0,00%

Table 80 - Shadow Map Variation of the pixel precision results, using a fixed viewport of 1024x1024

for the Against-Trees scene; C - Correct and I - Incorrect.

Figure 104 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Against-

Trees scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

98,50%

99,00%

99,50%

100,00%

Correct

PCF CRSM CRSMA

0,00%

25,00%

50,00%

75,00%

Uncertain

PCF CRSM CRSMA

Appendix

132

Scene Trees

Viewport Side

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 653884 62,36% 840187 80,13% 941155 89,76% 994716 94,86%

Uncertain 393303 37,51% 208080 19,84% 107364 10,24% 53841 5,13%

Certain-I 1389 0,13% 309 0,03% 57 0,01% 19 0,00%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 545915 52,06% 539877 51,49% 694820 66,26% 841050 80,21%

Uncertain 502661 47,94% 508699 48,51% 353756 33,74% 207526 19,79%

Certain-I 0 0,00% 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 564028 53,79% 649789 61,97% 863908 82,39% 958986 91,46%

Uncertain 484548 46,21% 398786 38,03% 184668 17,61% 89590 8,54%

Certain-I 0 0,00% 1 0,00% 0 0,00% 0 0,00%

Table 81 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024 for

the Side-Trees scene; C - Correct and I - Incorrect.

Figure 105 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the Side-

Trees scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,80%

99,90%

100,00%

Correct

PCF CRSM CRSMA

0,00%

25,00%

50,00%

Uncertain

PCF CRSM CRSMA

Appendix

133

Scene Trees

Viewport With

Method PCF

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 548902 52,35% 789022 75,25% 916714 87,42% 981878 93,64%

Uncertain 495147 47,22% 258878 24,69% 131810 12,57% 66668 6,36%

Certain-I 4527 0,43% 676 0,06% 52 0,00% 30 0,00%

Method CRSM

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 480596 45,83% 468868 44,71% 642687 61,29% 808423 77,10%

Uncertain 567980 54,17% 579708 55,29% 405889 38,71% 240153 22,90%

Certain-I 0 0,00% 0 0,00% 0 0,00% 0 0,00%

Method CRSMA

Pixel State
Shadow Map Size

512x512 1024x1024 2048x2048 4096x4096

Certain-C 485761 46,33% 570861 54,44% 828779 79,04% 940158 89,66%

Uncertain 562815 53,67% 477715 45,56% 219797 20,96% 108418 10,34%

Certain-I 0 0,00% 0 0,00% 0 0,00% 0 0,00%

Table 82 - Shadow Map Variation of the pixel precision results using a fixed viewport of 1024x1024 for

the With-Trees scene; C - Correct and I - Incorrect.

Figure 106 – Shadow Map size Variation results using a fixed viewport of 1024x1024 for the With-

Trees scene; (Left) Correct pixel percentages (Certain-C and Uncertain); (Right) Uncertain pixel

percentages.

99,00%

99,50%

100,00%

Correct

PCF CRSM CRSMA

0,00%

20,00%

40,00%

60,00%

Uncertain

PCF CRSM CRSMA

Appendix

134

A.2 Performance Testing

A.2.1 Bench Scene

Execution Time (ms): Create Shadow Map step

Shadow Map Size PCF CRSM CRSMA

512x512 0,01 0,15 0,76

1024x1024 0,01 0,16 0,86

2048x2048 0,01 0,18 0,92

4096x4096 0,04 0,18 0,99

Table 83 - Execution times of the create shadow map step for the With-Bench scene.

Figure 107 – Graphical representation of the execution times of the Create Shadow Map step for the

With-Bench scene.

0,00

0,20

0,40

0,60

0,80

1,00

512x512 1024x1024 2048x2048 4096x4096

Create Shadow Map (ms)

PCF

CRSM

CRSMA

Appendix

135

Execution Time (ms): Detect Uncertain step

Viewport Size Shadow Map Size PCF CRSM CRSMA

512 x 512

512x512 0,27 0,27 0,27

1024x1024 0,27 0,27 0,27

2048x2048 0,27 0,27 0,27

4096x4096 0,27 0,26 0,27

1024 x 1024

512x512 0,95 0,95 0,95

1024x1024 0,95 0,95 0,95

2048x2048 0,95 0,95 0,95

4096x4096 0,95 0,95 0,95

1920 x 1080

512x512 1,77 1,77 1,77

1024x1024 1,77 1,77 1,77

2048x2048 1,77 1,77 1,77

4096x4096 1,77 1,77 1,77

Table 84 - Execution times of the Detect Uncertain step for the With-Bench scene.

Execution Time (ms): Fill Ray Buffer step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 60366 1,13 138190 1,94 132793 1,93

1024x1024 35573 0,82 114648 1,72 68913 1,56

2048x2048 19632 0,62 77614 1,49 36347 1,13

4096x4096 10764 0,52 44513 1,27 19508 0,85

1024 x
1024

512x512 241344 3,91 451748 7,6 381490 7,57

1024x1024 142554 2,68 458408 6,55 275718 5,73

2048x2048 78419 1,88 310435 5,3 145600 3,73

4096x4096 42953 1,47 178031 3,93 77965 2,53

1920 x
1080

512x512 601005 9,15 1051937 14,16 1057880 14,24

1024x1024 342530 5,83 904947 12,56 719180 12,05

2048x2048 190290 3,84 673444 10,34 352098 8,14

4096x4096 100823 2,71 407141 7,62 179835 5,28

Table 85 - Execution times of the fill ray buffer step for the With-Bench scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step.

Appendix

136

Figure 108 - Graphical representation of the execution times of the Fill Ray Buffer step for the With-

Bench scene.

Execution Time (ms): Trace Rays step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 60366 2,21 138190 2,78 132793 2,80

1024x1024 35573 2,03 114648 2,67 68913 2,51

2048x2048 19632 1,81 77614 2,41 36347 2,23

4096x4096 10764 1,49 44513 2,21 19508 2,00

1024 x
1024

512x512 241344 3,94 451748 6,44 381490 6,42

1024x1024 142554 3,28 458408 5,74 275718 5,06

2048x2048 78419 2,59 310435 4,67 145600 3,84

4096x4096 42953 2,13 178031 3,71 77965 3,16

1920 x
1080

512x512 601005 6,28 1051937 9,86 1057880 9,85

1024x1024 342530 4,5 904947 8,94 719180 8,67

2048x2048 190290 3,67 673444 7,41 352098 6,10

4096x4096 100823 2,66 407141 5,48 179835 4,46

Table 86 - Execution times of the trace rays step for the With-Bench scene; the # Rays is equal to the

number of “uncertain” pixels found in the Detect Uncertain step.

0
2
4
6
8

10
12
14
16

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Fill Ray Buffer (ms)

PCF

CRSM

CRSMA

Appendix

137

Figure 109 - Graphical representation of the execution times of the Trace Rays step for the With-

Bench scene.

Execution Time (ms): Fix Pixels step

Viewport Size PCF CRSM CRSMA

512 x 512 0,07 0,07 0,07

1024 x 1024 0,29 0,29 0,29

1920 x 1080 0,57 0,57 0,57

Table 87 - Execution times of the fix pixels step for the With-Bench scene.

0

2

4

6

8

10

12
5

1
2

x5
1

2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Trace Rays (ms)

PCF

CRSM

CRSMA

Appendix

138

Execution Time (ms): Pipeline

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

4,53

0,18 3,69 5,21 5,83

1024x1024 0,18 3,20 4,89 5,27

2048x2048 0,19 2,78 4,42 4,62

4096x4096 0,22 2,39 3,99 4,18

1024 x 1024

512x512

10,78

0,51 9,10 15,43 15,99

1024x1024 0,52 7,21 13,69 12,89

2048x2048 0,52 5,72 11,39 9,73

4096x4096 0,55 4,88 9,06 7,92

1920 x 1080

512x512

17,22

0,96 17,78 26,51 27,19

1024x1024 0,96 12,68 24,00 23,92

2048x2048 0,96 9,86 20,27 17,50

4096x4096 0,98 7,75 15,62 13,07

Table 88 - Execution times of the test pipeline for the With-Bench scene.

Figure 110 - Graphical representation of the execution times of the Pipeline for the With-Bench scene.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Pipeline Execution (ms)

Prime PCF CRSM CRSMA

Appendix

139

Frame Rate (FPS)

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

200,46

981,35 153,02 103,54 96,44

1024x1024 946,07 185,67 111,84 112,31

2048x2048 968,99 212,54 130,38 135,52

4096x4096 903,34 244,74 152,23 152,60

1024 x 1024

512x512

86,44

722,02 63,97 35,97 35,18

1024x1024 728,33 84,65 41,03 46,17

2048x2048 686,81 108,45 52,08 64,63

4096x4096 652,32 131,56 68,82 83,04

1920 x 1080

512x512

54,59

535,62 32,11 20,47 20,24

1024x1024 527,15 47,17 23,16 23,76

2048x2048 513,87 64,27 28,44 34,81

4096x4096 514,67 84,88 39,19 50,17

Table 89 – Frame rate of the test pipeline for the With-Bench scene.

Figure 111 - Graphical representation of the frame rate (FPS) obtained in the With-Bench scene. The

first number represents the shadow map size, while the second represent the viewport dimensions.

0,00

50,00

100,00

150,00

200,00

250,00

300,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Frame Rate

Prime PCF CRSM CRSMA

Appendix

140

A.2.2 Flowers Scene

Execution Time (ms): Create Shadow Map step

Shadow Map Size PCF CRSM CRSMA

512x512 0,01 0,12 0,76

1024x1024 0,01 0,14 0,86

2048x2048 0,01 0,14 0,91

4096x4096 0,01 0,11 0,97

Table 90 - Execution times of the create shadow map step for the Side-Flowers scene.

Figure 112 – Graphical representation of the execution times of the Create Shadow Map step for the

Side-Flowers scene.

0,00

0,20

0,40

0,60

0,80

1,00

512x512 1024x1024 2048x2048 4096x4096

Create Shadow Map (ms)

PCF

CRSM

CRSMA

Appendix

141

Execution Time (ms): Detect Uncertain step

Viewport Size Shadow Map Size PCF CRSM CRSMA

512 x 512

512x512 0,34 0,35 0,35

1024x1024 0,34 0,35 0,35

2048x2048 0,34 0,35 0,35

4096x4096 0,35 0,34 0,35

1024 x 1024

512x512 1,16 1,16 1,16

1024x1024 1,16 1,16 1,16

2048x2048 1,16 1,16 1,16

4096x4096 1,16 1,16 1,16

1920 x 1080

512x512 2,04 2,04 2,04

1024x1024 2,04 2,04 2,04

2048x2048 2,04 2,04 2,04

4096x4096 2,04 2,04 2,04

Table 91 - Execution times of the Detect Uncertain step for the Side-Flowers scene.

Execution Time (ms): Fill Ray Buffer step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 57250 1,04 129145 1,89 118686 1,90

1024x1024 46670 0,89 119862 1,84 71946 1,64

2048x2048 31402 0,78 88192 1,61 52024 1,27

4096x4096 18842 0,64 53546 1,39 33169 0,98

1024 x
1024

512x512 229184 3,76 516668 7,36 474857 7,48

1024x1024 186766 3,19 479538 7,01 287869 6,12

2048x2048 125608 2,57 352932 5,81 208236 4,49

4096x4096 75324 1,95 214284 4,23 132743 3,23

1920 x
1080

512x512 499844 7,65 946373 13,35 942120 13,29

1024x1024 334768 5,50 889523 12,79 592366 11,27

2048x2048 238631 4,52 694762 10,75 405949 8,01

4096x4096 144211 3,38 448651 7,96 264530 5,80

Table 92 - Execution times of the fill ray buffer step for the Side-Flowers scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step.

Appendix

142

Figure 113 - Graphical representation of the execution times of the Fill Ray Buffer step for the Side-

Flowers scene.

Execution Time (ms): Trace Rays step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 57250 2,74 129145 5,11 118686 5,13

1024x1024 46670 2,61 119862 5,00 71946 4,57

2048x2048 31402 2,19 88192 4,49 52024 3,91

4096x4096 18842 2,40 53546 4,02 33169 3,46

1024 x
1024

512x512 229184 6,21 516668 12,31 474857 12,35

1024x1024 186766 5,51 479538 11,97 287869 10,45

2048x2048 125608 4,78 352932 10,21 208236 8,66

4096x4096 75324 4,49 214284 8,05 132743 7,16

1920 x
1080

512x512 499844 7,77 946373 15,99 942120 15,92

1024x1024 334768 6,56 889523 15,69 592366 14,34

2048x2048 238631 6,37 694762 13,58 405949 11,36

4096x4096 144211 5,55 448651 10,70 264530 9,19

Table 93 - Execution times of the trace rays step for the Side-Flowers scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step.

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Fill Ray Buffer (ms)

PCF

CRSM

CRSMA

Appendix

143

Figure 114 - Graphical representation of the execution times of the Trace Rays step for the Side-

Flowers scene.

Execution Time (ms): Fix Pixels step

Viewport Size PCF CRSM CRSMA

512 x 512 0,07 0,07 0,07

1024 x 1024 0,29 0,29 0,29

1920 x 1080 0,57 0,57 0,57

Table 94 - Execution times of the fix pixels step for the Side-Flowers scene.

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Trace Rays (ms)

PCF

CRSM

CRSMA

Appendix

144

Execution Time (ms): Pipeline

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

8,81

0,19 4,20 7,54 8,21

1024x1024 0,19 3,92 7,40 7,49

2048x2048 0,20 3,39 6,66 6,51

4096x4096 0,20 3,47 5,93 5,83

1024 x 1024

512x512

21,03

0,56 11,43 21,24 22,04

1024x1024 0,57 10,16 20,57 18,88

2048x2048 0,57 8,81 17,61 15,51

4096x4096 0,57 7,90 13,84 12,81

1920 x 1080

512x512

29,63

1,01 18,04 32,07 32,58

1024x1024 1,01 14,68 31,23 29,08

2048x2048 1,01 13,51 27,08 22,89

4096x4096 1,02 11,55 21,38 18,57

Table 95 - Execution times of the test pipeline for the Side-Flowers scene.

Figure 115 - Graphical representation of the execution times of the Pipeline for the Side-Flowers

scene.

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Pipeline Execution (ms)

Prime PCF CRSM CRSMA

Appendix

145

Frame Rate (FPS)

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

108,76

1007,05 141,80 83,79 78,90

1024x1024 998,00 154,49 86,49 88,55

2048x2048 986,19 180,93 98,35 103,41

4096x4096 915,75 181,82 116,32 117,98

1024 x 1024

512x512

45,83

672,49 56,25 30,28 29,67

1024x1024 717,88 63,86 31,66 35,56

2048x2048 660,50 76,30 37,94 44,64

4096x4096 642,67 87,47 49,73 56,15

1920 x 1080

512x512

32,56

503,78 33,91 19,26 19,00

1024x1024 517,06 43,29 20,02 21,92

2048x2048 514,14 49,70 23,51 29,06

4096x4096 503,27 60,76 31,14 37,45

Table 96 – Frame rate of the test pipeline for the Side-Flowers scene.

Figure 116 - Graphical representation of the frame rate (FPS) obtained in the Side-Flowers scene. The

first number represents the shadow map size, while the second represent the viewport dimensions.

0,00

50,00

100,00

150,00

200,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Frame Rate

Prime PCF CRSM CRSMA

Appendix

146

A.2.3 Trees Scene

Execution Time (ms): Create Shadow Map step

Shadow Map Size PCF CRSM CRSMA

512x512 0,01 0,13 0,76

1024x1024 0,01 0,15 0,86

2048x2048 0,01 0,16 0,91

4096x4096 0,03 0,15 0,98

Table 97 - Execution times of the create shadow map step for the Against-Trees scene.

Figure 117 – Graphical representation of the execution times of the Create Shadow Map step for the

Against-Trees scene.

0,00

0,20

0,40

0,60

0,80

1,00

512x512 1024x1024 2048x2048 4096x4096

Create Shadow Map (ms)

PCF

CRSM

CRSMA

Appendix

147

Execution Time (ms): Detect Uncertain step

Viewport Size Shadow Map Size PCF CRSM CRSMA

512 x 512

512x512 0,24 0,24 0,24

1024x1024 0,24 0,24 0,24

2048x2048 0,24 0,24 0,24

4096x4096 0,24 0,23 0,24

1024 x 1024

512x512 0,24 0,23 0,24

1024x1024 0,85 0,85 0,85

2048x2048 0,85 0,85 0,85

4096x4096 0,85 0,85 0,85

1920 x 1080

512x512 1,65 1,65 1,65

1024x1024 1,65 1,65 1,65

2048x2048 1,65 1,65 1,65

4096x4096 1,65 1,65 1,65

Table 98 - Execution times of the Detect Uncertain step for the Against-Trees scene.

Execution Time (ms): Fill Ray Buffer step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 261090 2,12 725063 3,21 489823 3,18

1024x1024 65257 1,53 181263 2,83 122450 2,67

2048x2048 33839 1,10 118101 2,38 58407 2,02

4096x4096 17222 0,86 65085 2,16 29122 1,46

1024 x
1024

512x512 480724 8,84 749019 11,00 717779 10,54

1024x1024 261090 4,80 725063 10,65 489823 9,80

2048x2048 135326 3,11 472388 8,33 233635 6,47

4096x4096 68896 2,29 260515 6,06 116583 4,22

1920 x
1080

512x512 1039063 15,82 1770977 24,22 1693958 24,05

1024x1024 573361 10,08 1486638 20,82 1126609 20,08

2048x2048 299942 6,44 1001660 16,90 514134 13,30

4096x4096 154671 4,49 563932 12,06 257146 8,50

Table 99 - Execution times of the fill ray buffer step for the Against-Trees scene; the # Rays is equal

to the number of “uncertain” pixels found in the Detect Uncertain step.

Appendix

148

Figure 118 - Graphical representation of the execution times of the Fill Ray Buffer step for the Against-

Trees scene.

Execution Time (ms): Trace Rays step

Viewport
Size

Shadow
Map Size

PCF CRSM CRSMA

#Rays Time #Rays Time #Rays Time

512 x
512

512x512 261090 1,88 725063 2,88 489823 2,89

1024x1024 65257 1,35 181263 2,49 122450 2,28

2048x2048 33839 0,97 118101 1,90 58407 1,59

4096x4096 17222 0,77 65085 1,37 29122 1,09

1024 x
1024

512x512 480724 6,26 749019 7,50 717779 7,19

1024x1024 261090 3,40 725063 7,26 489823 6,54

2048x2048 135326 2,17 472388 5,26 233635 4,08

4096x4096 68896 1,45 260515 3,36 116583 2,44

1920 x
1080

512x512 1039063 10,35 1770977 15,87 1693958 15,18

1024x1024 573361 6,72 1486638 13,81 1126609 12,93

2048x2048 299942 4,13 1001660 10,12 514134 7,96

4096x4096 154671 2,61 563932 6,44 257146 4,67

Table 100 - Execution times of the trace rays step for the Against-Trees scene; the # Rays is equal to

the number of “uncertain” pixels found in the Detect Uncertain step.

0,00
5,00

10,00
15,00
20,00
25,00
30,00

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Fill Ray Buffer (ms)

PCF

CRSM

CRSMA

Appendix

149

Figure 119 - Graphical representation of the execution times of the Trace Rays step for the Against-

Trees scene.

Execution Time (ms): Fix Pixels step

Viewport Size PCF CRSM CRSMA

512 x 512 0,07 0,07 0,07

1024 x 1024 0,29 0,29 0,29

1920 x 1080 0,57 0,57 0,57

Table 101 - Execution times of the fix pixels step for the Against-Trees scene.

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

5
1

2
x5

1
2

1
0

2
4

x1
0

2
4

2
0

4
8

x2
0

4
8

4
0

9
6

x4
0

9
6

512 x 512 1024 x 1024 1920 x 1080

Trace Rays (ms)

PCF

CRSM

CRSMA

Appendix

150

Execution Time (ms): Pipeline

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

4,98

0,18 4,32 6,53 7,14

1024x1024 0,18 3,20 5,78 6,12

2048x2048 0,19 2,39 4,75 4,83

4096x4096 0,19 1,97 3,98 3,84

1024 x 1024

512x512

13,61

0,49 15,64 19,16 19,02

1024x1024 0,50 9,35 19,20 18,34

2048x2048 0,50 6,43 14,89 12,60

4096x4096 0,50 4,91 10,71 8,78

1920 x 1080

512x512

24,66

0,92 28,40 42,44 42,21

1024x1024 0,92 19,03 37,00 36,09

2048x2048 0,94 12,80 29,40 24,39

4096x4096 0,94 9,35 20,87 16,37

Table 102 - Execution times of the test pipeline for the Against-Trees scene.

Figure 120 - Graphical representation of the execution times of the Pipeline for the Against-Trees

scene.

0,00

10,00

20,00

30,00

40,00

50,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Pipeline Execution (ms)

Prime PCF CRSM CRSMA

Appendix

151

Frame Rate (FPS)

Viewport Size Shadow Map Size OptiX Prime NSM PCF CRSM CRSMA

512 x 512

512x512

188,21

970,87 117,80 78,51 74,51

1024x1024 1013,17 164,88 89,83 91,13

2048x2048 989,12 223,81 112,49 123,30

4096x4096 943,40 272,33 147,10 154,30

1024 x 1024

512x512

70,11

748,50 40,03 24,03 23,70

1024x1024 741,29 61,62 28,72 31,46

2048x2048 740,19 91,60 38,94 48,33

4096x4096 684,93 123,20 56,84 72,25

1920 x 1080

512x512

38,78

542,89 19,98 12,50 12,38

1024x1024 540,25 31,54 14,54 15,63

2048x2048 522,47 48,78 19,87 25,10

4096x4096 509,42 69,51 29,77 39,89

Table 103 – Frame rate of the test pipeline for the Against-Trees scene.

Figure 121 - Graphical representation of the frame rate (FPS) obtained in the Against-Trees scene.

The first number represents the shadow map size, while the second represent the viewport

dimensions.

0,00

50,00

100,00

150,00

200,00

250,00

300,00

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

512 x 512 1024 x 1024 1920 x 1080

Frame Rate

Prime PCF CRSM CRSMA

