Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

Chief Chefs of Z to Alloy: Using A Kitchen Example to Teach Alloy with Z

Sureyya Tarkan Vibha Sazawal

University of Maryland

November 6, 2009

(日) (同) (三) (三)

UMD

Tarkan & Sazawal Chief Chefs of Z to Alloy

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

Outline

Introduction

Z to Alloy Tutorial

Case Studies with Novice Students

Discussion

Conclusion

Related Work

Tarkan & Sazawal Chief Chefs of Z to Alloy ▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

UMD

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

Z is a well-defined and well-known specification language.

- Model checkers enable automatic checking of specifications.
- The lack of student interest in Formal Methods causes educators to focus only on one aspect.
- Educators need a technique to master tool usage besides Z without burdening the students to learn a new language.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

- **Z** is a well-defined and well-known specification language.
- Model checkers enable automatic checking of specifications.
- The lack of student interest in Formal Methods causes educators to focus only on one aspect.
- Educators need a technique to master tool usage besides Z without burdening the students to learn a new language.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

- **Z** is a well-defined and well-known specification language.
- Model checkers enable automatic checking of specifications.
- The lack of student interest in Formal Methods causes educators to focus only on one aspect.
- Educators need a technique to master tool usage besides Z without burdening the students to learn a new language.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

- **Z** is a well-defined and well-known specification language.
- Model checkers enable automatic checking of specifications.
- The lack of student interest in Formal Methods causes educators to focus only on one aspect.
- Educators need a technique to master tool usage besides Z without burdening the students to learn a new language.

Image: A match a ma

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

- Alloy is a model checking tool that provides a language substantially similar to Z.
- There is a lack of examples and educational material for the transition from Z to Alloy.
- To populate the materials, we suggest the use of an easy and yet comprehensive and self-explanatory example.
- We share our experiences with novice students using our online tutorial designed around a Kitchen Environment real-life example.

- **(())) (())) ())**

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

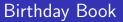
- Alloy is a model checking tool that provides a language substantially similar to Z.
- There is a lack of examples and educational material for the transition from Z to Alloy.
- To populate the materials, we suggest the use of an easy and yet comprehensive and self-explanatory example.
- We share our experiences with novice students using our online tutorial designed around a Kitchen Environment real-life example.

< ロト < 同ト < ヨト < ヨト

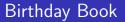
Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

- Alloy is a model checking tool that provides a language substantially similar to Z.
- There is a lack of examples and educational material for the transition from Z to Alloy.
- To populate the materials, we suggest the use of an easy and yet comprehensive and self-explanatory example.
- We share our experiences with novice students using our online tutorial designed around a Kitchen Environment real-life example.

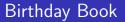
Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					


- Alloy is a model checking tool that provides a language substantially similar to Z.
- There is a lack of examples and educational material for the transition from Z to Alloy.
- To populate the materials, we suggest the use of an easy and yet comprehensive and self-explanatory example.
- We share our experiences with novice students using our online tutorial designed around a Kitchen Environment real-life example.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Tutorial Cont	ent					


- It records people's birthdays and places a reminder when that day comes.
- It can be populated and depopulated, and there is a search option.
- Its Z specification reviews concepts from set theory and teaches the notation.
- An Alloy model is used to automatically check some assertions.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Tutorial Cont	ent					


- It records people's birthdays and places a reminder when that day comes.
- It can be populated and depopulated, and there is a search option.
- Its Z specification reviews concepts from set theory and teaches the notation.
- An Alloy model is used to automatically check some assertions.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Tutorial Cont	ent					

- It records people's birthdays and places a reminder when that day comes.
- It can be populated and depopulated, and there is a search option.
- Its Z specification reviews concepts from set theory and teaches the notation.
- An Alloy model is used to automatically check some assertions.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Tutorial Cont	ent					

- It records people's birthdays and places a reminder when that day comes.
- It can be populated and depopulated, and there is a search option.
- Its Z specification reviews concepts from set theory and teaches the notation.
- An Alloy model is used to automatically check some assertions.

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ont						

- It simulates the actions of a kitchen chef to direct other cook(s) in the preparation of a dish.
- ► The primitive object types and built-in functions are given.
- ▶ We define a list of assertions that are crucial for our system.
- An event-driven programming approach is suggested.
- We develop an approximate Z specification to later convert it into a full Alloy model.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

- It simulates the actions of a kitchen chef to direct other cook(s) in the preparation of a dish.
- The primitive object types and built-in functions are given.
- ▶ We define a list of assertions that are crucial for our system.
- An event-driven programming approach is suggested.
- We develop an approximate Z specification to later convert it into a full Alloy model.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

- It simulates the actions of a kitchen chef to direct other cook(s) in the preparation of a dish.
- The primitive object types and built-in functions are given.
- ▶ We define a list of assertions that are crucial for our system.
- An event-driven programming approach is suggested.
- We develop an approximate Z specification to later convert it into a full Alloy model.

イロト イ理ト イヨト イヨ

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

- It simulates the actions of a kitchen chef to direct other cook(s) in the preparation of a dish.
- The primitive object types and built-in functions are given.
- ▶ We define a list of assertions that are crucial for our system.
- An event-driven programming approach is suggested.
- We develop an approximate Z specification to later convert it into a full Alloy model.

・ロト ・回ト ・ヨト ・ヨト

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

- It simulates the actions of a kitchen chef to direct other cook(s) in the preparation of a dish.
- The primitive object types and built-in functions are given.
- ▶ We define a list of assertions that are crucial for our system.
- An event-driven programming approach is suggested.
- We develop an approximate Z specification to later convert it into a full Alloy model.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

Tutorial Content

Kitchen Schema and Signature

_	_Kitchen	_	
	$cooks : \mathbb{P} COOK$		
	$\begin{array}{l} \textit{items}: \mathbb{P} \ \textit{KITCHEN_ITEM} \\ \textit{ingredients}: \mathbb{P} \ \textit{INGREDIENT} \\ \textit{AvailCook}: COOK \leftarrow \mathbb{N} \\ \textit{Availtem}: \ \textit{KITCHEN_ITEM} \leftrightarrow \mathbb{N} \\ \textit{DirtyItem}: \ \textit{KITCHEN_ITEM} \leftrightarrow \mathbb{N} \\ \textit{HeatedItem}: \ \textit{KITCHEN_ITEM} \leftrightarrow \mathbb{N} \\ \textit{Availingr}: \ \textit{INGREDIENT} \leftrightarrow \mathbb{N} \\ \textit{VsedIngr}: \ \textit{INGREDIENT} \leftrightarrow \mathbb{N} \\ \end{array}$	one	e sig Kitchen { cooks : set Cook, items : set KitchenItem, ingredients : set Ingredient, AvailCook : cooks → Time, AvailItem : items → Time, DirtyItem : items → Time, HeatedItem : items → Time.
	$ \begin{array}{l} \operatorname{dom} AvailCook \subseteq cooks \\ \operatorname{dom} AvailItem \subseteq items \end{array} $		AvailIngr : ingredients \rightarrow Time, UsedIngr : ingredients \rightarrow Time
	$\begin{array}{l} \text{dom} \ Diviplem \subseteq items \\ \text{dom} \ Diviplem \subseteq items \\ \text{dom} \ HeatedItem \subseteq items \\ \text{dom} \ HeatedItem \subseteq ingredients \\ \text{dom} \ UsedIngr \subseteq ingredients \\ \forall t: \mathbb{N} \circ \text{dom} (AvailIngr \triangleright \{t\}) \cap \text{dom} (UsedIngr \triangleright \{t\}) = \emptyset \end{array}$	} { }	all t : Time no AvailIngr.t & UsedIngr.t all t : Time no AvailItem.t & DirtyItem.t
	$\forall t : \mathbb{N} \bullet \operatorname{dom}(\operatorname{AvailItem} \triangleright \{t\}) \cap \operatorname{dom}(\operatorname{DirtyItem} \triangleright \{t\}) = \emptyset$		

メロト メポト メヨト メヨト

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

At each step, we point out the differences and similarities between the two versions.

- ▶ We explain what the limitations of model checking are.
- ▶ We formalize a guarded event implementation.
- Our final Alloy model is long but once a rough Z specification is at hand, Alloy development is not cumbersome.

Image: A math a math

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

- At each step, we point out the differences and similarities between the two versions.
- We explain what the limitations of model checking are.
- ▶ We formalize a guarded event implementation.
- Our final Alloy model is long but once a rough Z specification is at hand, Alloy development is not cumbersome.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	
Tutorial Cont	ent						

- At each step, we point out the differences and similarities between the two versions.
- We explain what the limitations of model checking are.
- We formalize a guarded event implementation.
- Our final Alloy model is long but once a rough Z specification is at hand, Alloy development is not cumbersome.

< ロト < 同ト < ヨト < ヨト

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Tutorial Cont	ent					

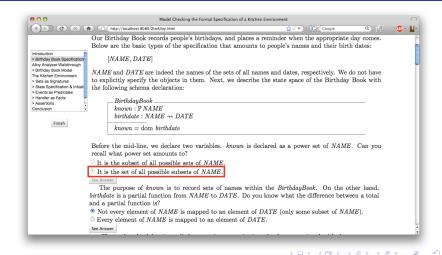
- At each step, we point out the differences and similarities between the two versions.
- We explain what the limitations of model checking are.
- We formalize a guarded event implementation.
- Our final Alloy model is long but once a rough Z specification is at hand, Alloy development is not cumbersome.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Implementati	on					
Design						

- With Kolb's theory [4], we decided to have multiple-choice questions within the tutorial.
- The questions ask the student to think beyond what is given rather than passively reading the text.
- The students reveal the correct answer once they are satisfied with their answer.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Implementati	on					
Design	1					

- ▶ With Kolb's theory [4], we decided to have multiple-choice questions within the tutorial.
- The questions ask the student to think beyond what is given rather than passively reading the text.
- The students reveal the correct answer once they are satisfied with their answer.


Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
Implementati	on					
Design						

- With Kolb's theory [4], we decided to have multiple-choice questions within the tutorial.
- The questions ask the student to think beyond what is given rather than passively reading the text.
- The students reveal the correct answer once they are satisfied with their answer.

Image: A math a math

The Online Interactive Tutorial

Introduction Z to Alloy	5 with Novice Students	Discussion	Conclusion	Related Work	References
0000					

Basics

Task & Procedure

- The students were asked to answer all the questions in the tutorial and fill out the surveys.
- Each student spent 1-3 hours working on the tutorial.

Student Background

- 8 students took our tutorial.
- Students strongly agreed that they have experience with smalland medium-sized software projects.
- Students strongly agreed that they have not had much experience with formal methods.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

Basics

Task & Procedure

- The students were asked to answer all the questions in the tutorial and fill out the surveys.
- Each student spent 1-3 hours working on the tutorial.

Student Background

- 8 students took our tutorial.
- Students strongly agreed that they have experience with smalland medium-sized software projects.
- Students strongly agreed that they have not had much experience with formal methods.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students ●○○	Discussion	Conclusion	Related Work	References
Results						

Tutorial Questions

- Initial questions reviewed the math background but later, more questions became related to the specifics of the examples.
- Both the Birthday Book specification and model were well-received.
- Excluding 2 students who dropped out of the Kitchen Environment, there were 45/58 correct answers on average.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students ●○○	Discussion	Conclusion	Related Work	References
Results						

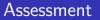
Tutorial Questions

- Initial questions reviewed the math background but later, more questions became related to the specifics of the examples.
- Both the Birthday Book specification and model were well-received.
- Excluding 2 students who dropped out of the Kitchen Environment, there were 45/58 correct answers on average.

イロト イポト イヨト イヨト

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students ●○○	Discussion	Conclusion	Related Work	References
Results						

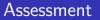
Tutorial Questions


- Initial questions reviewed the math background but later, more questions became related to the specifics of the examples.
- Both the Birthday Book specification and model were well-received.
- Excluding 2 students who dropped out of the Kitchen Environment, there were 45/58 correct answers on average.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \bullet \circ$	Discussion	Conclusion	Related Work	References
Results						

- The quiz questions asked the student to type one line of Alloy code to complete and correct an Address Book model.
- The questions were evaluated based on legitimate rationale rather than exact syntax.
- Students received 2/4 on average.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \bullet \circ$	Discussion	Conclusion	Related Work	References
Results						


The quiz questions asked the student to type one line of Alloy code to complete and correct an Address Book model.

(日) (同) (三) (三)

UMD

- The questions were evaluated based on legitimate rationale rather than exact syntax.
- Students received 2/4 on average.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \bullet \circ$	Discussion	Conclusion	Related Work	References
Results						

- The quiz questions asked the student to type one line of Alloy code to complete and correct an Address Book model.
- The questions were evaluated based on legitimate rationale rather than exact syntax.
- Students received 2/4 on average.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \circ \bullet$	Discussion	Conclusion	Related Work	References
Results						

- Students' appreciation of formal methods, formal specification, and model checking were moderate.
- Students strongly agreed with our statements on the ease of transitioning from Z to Alloy with the tutorial.
- Students agreed that the teaching material and the examples were good and that they were satisfied.
- Students wanted visualizations (pictures, diagrams, tables).
- Students needed examples that are between the Birthday Book and the Kitchen Environment in complexity.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \circ \bullet$	Discussion	Conclusion	Related Work	References
Results						

- Students' appreciation of formal methods, formal specification, and model checking were moderate.
- Students strongly agreed with our statements on the ease of transitioning from Z to Alloy with the tutorial.
- Students agreed that the teaching material and the examples were good and that they were satisfied.
- Students wanted visualizations (pictures, diagrams, tables).
- Students needed examples that are between the Birthday Book and the Kitchen Environment in complexity.

< ロ > < 同 > < 回 > < 回 > < 回

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \circ \bullet$	Discussion	Conclusion	Related Work	References
Results						

- Students' appreciation of formal methods, formal specification, and model checking were moderate.
- Students strongly agreed with our statements on the ease of transitioning from Z to Alloy with the tutorial.
- Students agreed that the teaching material and the examples were good and that they were satisfied.
- Students wanted visualizations (pictures, diagrams, tables).
- Students needed examples that are between the Birthday Book and the Kitchen Environment in complexity.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \circ \bullet$	Discussion	Conclusion	Related Work	References
Results						

- Students' appreciation of formal methods, formal specification, and model checking were moderate.
- Students strongly agreed with our statements on the ease of transitioning from Z to Alloy with the tutorial.
- Students agreed that the teaching material and the examples were good and that they were satisfied.
- Students wanted visualizations (pictures, diagrams, tables).
- Students needed examples that are between the Birthday Book and the Kitchen Environment in complexity.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students $\circ \circ \bullet$	Discussion	Conclusion	Related Work	References
Results						

- Students' appreciation of formal methods, formal specification, and model checking were moderate.
- Students strongly agreed with our statements on the ease of transitioning from Z to Alloy with the tutorial.
- Students agreed that the teaching material and the examples were good and that they were satisfied.
- Students wanted visualizations (pictures, diagrams, tables).
- Students needed examples that are between the Birthday Book and the Kitchen Environment in complexity.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

- ► The student performance did not show a huge drop between Kitchen Environment (77.5%) and Birthday Book (88%).
- Students believe that Z and Alloy are similar and can be taught together but that textbooks using toy examples for Z or Alloy are insufficient.
- Students criticized the length of the tutorial but not the content.

(日) (同) (三) (

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

- ► The student performance did not show a huge drop between Kitchen Environment (77.5%) and Birthday Book (88%).
- Students believe that Z and Alloy are similar and can be taught together but that textbooks using toy examples for Z or Alloy are insufficient.
- Students criticized the length of the tutorial but not the content.

(日) (同) (三) (

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000 00					

- ► The student performance did not show a huge drop between Kitchen Environment (77.5%) and Birthday Book (88%).
- Students believe that Z and Alloy are similar and can be taught together but that textbooks using toy examples for Z or Alloy are insufficient.
- Students criticized the length of the tutorial but not the content.

(日) (同) (三) (

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

Final Remarks

- Novice students are able to learn Z and Alloy and answer questions about an intermediate-sized example after only a couple hours of study.
- We recommend educators to focus on the Alloy tool while teaching the Z language.
- It is necessary to provide well-explained and interesting intermediate-level examples for the Z to Alloy transition.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

Final Remarks

- Novice students are able to learn Z and Alloy and answer questions about an intermediate-sized example after only a couple hours of study.
- We recommend educators to focus on the Alloy tool while teaching the Z language.
- It is necessary to provide well-explained and interesting intermediate-level examples for the Z to Alloy transition.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

Final Remarks

- Novice students are able to learn Z and Alloy and answer questions about an intermediate-sized example after only a couple hours of study.
- We recommend educators to focus on the Alloy tool while teaching the Z language.
- It is necessary to provide well-explained and interesting intermediate-level examples for the Z to Alloy transition.

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References	

- Interactive application of Formal Methods
 Dean's interactive case e-study [3], Pandora's e-tutor [2]
- Similar Educational Materials

Piaget's genetic epistemology theory [8], Z to SPIN module [9]

Content-wise

Real-life examples such as a Bluetooth communication protocol, a Eurovision Song Contest [1, 5, 6, 7]

イロト イポト イヨト イヨト

Introduction	Z to Alloy Tutorial	Case Studies with Novice Stude	nts Discussion	Conclusion	Related Work	References	
	Brakman, H., Driessen, V., Kavuma, J., Bijvank, L.N., Vermolen, S. Supporting formal method teaching with real-life protocols. In Formal Methods in the Teaching Lab: Examples, Cases, Assignments and Projects Enhancing Formal Methods Education, pages 59–68, McMaster University, Canada, 2006.						
	Broda, K., Ma, J., Sinnadurai, G., Summers, A. Friendly e-tutor for natural deduction. In <i>TFM: Practice and Experience</i> , London, 2006. BCS-FACS.						
	N. Dean. Development of an interactive case e-study. In <i>TFM: Practice and Experience Workshop</i> , pages 13–20, Oxford Brookes University, 2003. BCS-FACS.						
	D. Kolb. Experiential learning: Experience as the source of learning and development. Prentice-Hall, Englewood Cliffs, NJ, 1984.						
	P. Larsen. Two courses on vdm++ for embedded systems: Learning by doing. In Formal Methods in the Teaching Lab: Examples, Cases, Assignments and Projects Enhancing Formal Methods Education, pages 21–26, Canada, 2006.						

Tarkan & Sazawal Chief Chefs of Z to Alloy æ

▲日 > ▲圖 > ▲ 国 > ▲ 国 > -

Introduction	Z to Alloy Tutorial	Case Studies with Novice Students	Discussion	Conclusion	Related Work	References
	0000					

D. Lightfoot.

'voici les votes!' – formal specification as light entertainment: An example of audience participation in developing a specification.

In *TFM: Practice and Experience Workshop*, pages 71–75, Oxford Brookes University, 2003. BCS-FACS.

Reed, J.N., Sinclair, J.E.

Motivating study of formal methods in the classroom.

LNCS, 3294:32-46, 2004.

S. Rosa.

Designing algorithms in high school mathematics. *LNCS*, 3294:17–31, 2004.

J. Rudall.

From z to spin in one module.

In *TFM: Practice and Experience Workshop*, pages 71–75, Oxford Brookes University, 2003. BCS-FACS.

UMD