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Content

Use of rewriting logic and Maude to teach introductory formal
methods at University of Oslo
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“Widening the Access to Formal Methods”

Motivate use of formal methods (FM)

No formal/logic background

Like to program!
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Rewriting Logic

“Algebraic specifications” for distributed systems

Data types defined by algebraic equational specification
(S ,≤, Σ, E )

Concurrent transitions modeles by rewrite rules

l : [t]E −→ [t ′]E if cond

Rules not terminating or confluent

Expressive and general model for distributed systems

Natural model for distributed objects

distributed state: multiset of objects and messages
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Maude

Maude : high-performance tool for rewriting logic

order-sorted and membership equational specification

deduction modulo A/C/AC

equational reduction

simulation of one behavior

reachability analysis by explicit-state breadth-first search

LTL model checking
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Beginner’s FM Course in Oslo: Content (I)

Basic algebraic specification in Maude:

order-sorted signatures, terms, equations, memberships,
lists, multisets, binary trees
quick-sort, merge-sort

Classic term rewriting theory

confluence
termination (incl. theory of simplification orderings)

Equational logic

deduction rules
(un)decidability results
inductive theorems
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Specification in Maude: Lists

Lists in Maude:

sorts List NeList . subsorts Int < NeList < List .

op nil : -> List [ctor] .
op __ : List List -> List [assoc id: nil ctor] .
op __ : NeList NeList -> NeList [assoc id: nil ctor] .

op length : List -> Nat . ops first last : NeList -> Int .
op rest : NeList -> List . op reverse : List -> List .

vars I J K : Int . vars L L’ : List . vars NEL NEL’ : NeList .

eq length(nil) = 0 . eq reverse(nil) = nil .
eq length(I L) = 1 + length(L) . eq reverse(L I) = I reverse(L) .

eq first(I L) = I . eq rest(I L) = L .

eq last(L I) = I .
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Specification in Maude: Merge-Sort

op mergeSort : List -> List .
op merge : List List -> List [comm] .

eq mergeSort(nil) = nil .
eq mergeSort(I) = I .

ceq mergeSort(NEL NEL’) = merge(mergeSort(NEL), mergeSort(NEL’))
if length(NEL) == length(NEL’) or length(NEL) == s length(NEL’) .

eq merge(nil, L) = L .
ceq merge(I L, J L’) = I merge(L, J L’) if I <= J .

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (II)

Dynamic systems

rewriting logic

simple examples: soccer game, NFL, lives of people, coffee
bean game, . . .

object-oriented specification of distributed systems

dining philosophers, . . .

simulation and reachability analysis

search for deadlocks in dining philosophers, etc.

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (II)

Dynamic systems

rewriting logic

simple examples: soccer game, NFL, lives of people, coffee
bean game, . . .

object-oriented specification of distributed systems

dining philosophers, . . .

simulation and reachability analysis

search for deadlocks in dining philosophers, etc.
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Beginner’s FM Course in Oslo: Content (III)

Communication protocols: alternating bit, sliding windows,

search in sliding windows takes time

Two-phase commit protocol for distrubuted transactions

NSPK authentication protocol

model of NSPK for multiple runs + Dolev-Yao intruders
search for bad state

Linear temporal logic properties and model checking
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Example: NSPK

Message 1. A→ B : A.B.{Na.A}PK(B)

Message 2. B → A : B.A.{Na.Nb}PK(A)

Message 3. A→ B : A.B.{Nb}PK(B)

rl [read-2-send-3] :
(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)
< A : Initiator | initSessions : initiated(B, NONCE) IS >
=>
< A : Initiator | initSessions : trustedConnection(B) IS >
msg (encrypt NONCE’ with pubKey(B)) from A to B .
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Example: NSPK: Search for Bad State

Maude> (search [1]

< "Scrooge" : Initiator |

initSessions :

notInitiated("Beagle Boys"), ... >

< "Bank" : Responder | respSessions : emptySession,

nonceCtr : 1 >

< "Beagle Boys" : Intruder |

initSessions :

notInitiated("Bank"), ... >

=>*

C:Configuration

< "Bank" : Responder |

respSessions :

trustedConnection("Scrooge")

RS:RespSessions > .)
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Discussion (I)

Algebraic specification/TRS + modeling/analysis of
distributed systems

”Fun” functional and object-oriented programming/modeling

simple and intuitive formalism for distributed systems

Mature and high-performance tool support

Easy to model wide range of distributed systems

(NSKP++) motivates use of formal methods
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Discussion (II)

Well motivated introduction of key FM elements

deduction systems: equational and rewriting logic
verification of program properties:

termination and confluence
inductive properties

formal modeling
model checking
state space explosion
(LTL) properties of distributed systems

Extensions: probabilistic and real-time systems

“Hot” research topic

Used in industry:

new browser security flaws (Microsoft Research)
bugs in embedded automotive software (Japan)
. . .
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Discussion (III)

Course book exists

Positive student feedback in Oslo

Different groups at University of Oslo use Maude

Ex-TA has start-up company developing Maude product

Main complaint: Full Maude (Maude’s OO extension) not
robust and does not give good error messages
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