
Teaching Formal Methods Based on
Rewriting Logic and Maude

Peter C. Ölveczky

University of Oslo

Nov. 6, 2009

Peter C. Ölveczky TFM’09



Content

Use of rewriting logic and Maude to teach introductory formal
methods at University of Oslo

Peter C. Ölveczky TFM’09



“Widening the Access to Formal Methods”

Motivate use of formal methods (FM)

No formal/logic background

Like to program!

Peter C. Ölveczky TFM’09



Rewriting Logic

“Algebraic specifications” for distributed systems

Data types defined by algebraic equational specification
(S ,≤, Σ, E )

Concurrent transitions modeles by rewrite rules

l : [t]E −→ [t ′]E if cond

Rules not terminating or confluent

Expressive and general model for distributed systems

Natural model for distributed objects

distributed state: multiset of objects and messages

Peter C. Ölveczky TFM’09



Rewriting Logic

“Algebraic specifications” for distributed systems

Data types defined by algebraic equational specification
(S ,≤, Σ, E )

Concurrent transitions modeles by rewrite rules

l : [t]E −→ [t ′]E if cond

Rules not terminating or confluent

Expressive and general model for distributed systems

Natural model for distributed objects

distributed state: multiset of objects and messages

Peter C. Ölveczky TFM’09



Rewriting Logic

“Algebraic specifications” for distributed systems

Data types defined by algebraic equational specification
(S ,≤, Σ, E )

Concurrent transitions modeles by rewrite rules

l : [t]E −→ [t ′]E if cond

Rules not terminating or confluent

Expressive and general model for distributed systems

Natural model for distributed objects

distributed state: multiset of objects and messages

Peter C. Ölveczky TFM’09



Rewriting Logic

“Algebraic specifications” for distributed systems

Data types defined by algebraic equational specification
(S ,≤, Σ, E )

Concurrent transitions modeles by rewrite rules

l : [t]E −→ [t ′]E if cond

Rules not terminating or confluent

Expressive and general model for distributed systems

Natural model for distributed objects

distributed state: multiset of objects and messages

Peter C. Ölveczky TFM’09



Rewriting Logic

“Algebraic specifications” for distributed systems

Data types defined by algebraic equational specification
(S ,≤, Σ, E )

Concurrent transitions modeles by rewrite rules

l : [t]E −→ [t ′]E if cond

Rules not terminating or confluent

Expressive and general model for distributed systems

Natural model for distributed objects

distributed state: multiset of objects and messages

Peter C. Ölveczky TFM’09



Maude

Maude : high-performance tool for rewriting logic

order-sorted and membership equational specification

deduction modulo A/C/AC

equational reduction

simulation of one behavior

reachability analysis by explicit-state breadth-first search

LTL model checking

Peter C. Ölveczky TFM’09



Maude

Maude : high-performance tool for rewriting logic

order-sorted and membership equational specification

deduction modulo A/C/AC

equational reduction

simulation of one behavior

reachability analysis by explicit-state breadth-first search

LTL model checking

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (I)

Basic algebraic specification in Maude:

order-sorted signatures, terms, equations, memberships,
lists, multisets, binary trees
quick-sort, merge-sort

Classic term rewriting theory

confluence
termination (incl. theory of simplification orderings)

Equational logic

deduction rules
(un)decidability results
inductive theorems

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (I)

Basic algebraic specification in Maude:

order-sorted signatures, terms, equations, memberships,
lists, multisets, binary trees
quick-sort, merge-sort

Classic term rewriting theory

confluence
termination (incl. theory of simplification orderings)

Equational logic

deduction rules
(un)decidability results
inductive theorems

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (I)

Basic algebraic specification in Maude:

order-sorted signatures, terms, equations, memberships,
lists, multisets, binary trees
quick-sort, merge-sort

Classic term rewriting theory

confluence
termination (incl. theory of simplification orderings)

Equational logic

deduction rules
(un)decidability results
inductive theorems

Peter C. Ölveczky TFM’09



Specification in Maude: Lists

Lists in Maude:

sorts List NeList . subsorts Int < NeList < List .

op nil : -> List [ctor] .
op __ : List List -> List [assoc id: nil ctor] .
op __ : NeList NeList -> NeList [assoc id: nil ctor] .

op length : List -> Nat . ops first last : NeList -> Int .
op rest : NeList -> List . op reverse : List -> List .

vars I J K : Int . vars L L’ : List . vars NEL NEL’ : NeList .

eq length(nil) = 0 . eq reverse(nil) = nil .
eq length(I L) = 1 + length(L) . eq reverse(L I) = I reverse(L) .

eq first(I L) = I . eq rest(I L) = L .

eq last(L I) = I .

Peter C. Ölveczky TFM’09



Specification in Maude: Lists

Lists in Maude:

sorts List NeList . subsorts Int < NeList < List .

op nil : -> List [ctor] .
op __ : List List -> List [assoc id: nil ctor] .
op __ : NeList NeList -> NeList [assoc id: nil ctor] .

op length : List -> Nat . ops first last : NeList -> Int .
op rest : NeList -> List . op reverse : List -> List .

vars I J K : Int . vars L L’ : List . vars NEL NEL’ : NeList .

eq length(nil) = 0 . eq reverse(nil) = nil .
eq length(I L) = 1 + length(L) . eq reverse(L I) = I reverse(L) .

eq first(I L) = I . eq rest(I L) = L .

eq last(L I) = I .

Peter C. Ölveczky TFM’09



Specification in Maude: Merge-Sort

op mergeSort : List -> List .
op merge : List List -> List [comm] .

eq mergeSort(nil) = nil .
eq mergeSort(I) = I .

ceq mergeSort(NEL NEL’) = merge(mergeSort(NEL), mergeSort(NEL’))
if length(NEL) == length(NEL’) or length(NEL) == s length(NEL’) .

eq merge(nil, L) = L .
ceq merge(I L, J L’) = I merge(L, J L’) if I <= J .

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (II)

Dynamic systems

rewriting logic

simple examples: soccer game, NFL, lives of people, coffee
bean game, . . .

object-oriented specification of distributed systems

dining philosophers, . . .

simulation and reachability analysis

search for deadlocks in dining philosophers, etc.

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (II)

Dynamic systems

rewriting logic

simple examples: soccer game, NFL, lives of people, coffee
bean game, . . .

object-oriented specification of distributed systems

dining philosophers, . . .

simulation and reachability analysis

search for deadlocks in dining philosophers, etc.

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (III)

Communication protocols: alternating bit, sliding windows,

search in sliding windows takes time

Two-phase commit protocol for distrubuted transactions

NSPK authentication protocol

model of NSPK for multiple runs + Dolev-Yao intruders
search for bad state

Linear temporal logic properties and model checking

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (III)

Communication protocols: alternating bit, sliding windows,

search in sliding windows takes time

Two-phase commit protocol for distrubuted transactions

NSPK authentication protocol

model of NSPK for multiple runs + Dolev-Yao intruders
search for bad state

Linear temporal logic properties and model checking

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (III)

Communication protocols: alternating bit, sliding windows,

search in sliding windows takes time

Two-phase commit protocol for distrubuted transactions

NSPK authentication protocol

model of NSPK for multiple runs + Dolev-Yao intruders
search for bad state

Linear temporal logic properties and model checking

Peter C. Ölveczky TFM’09



Beginner’s FM Course in Oslo: Content (III)

Communication protocols: alternating bit, sliding windows,

search in sliding windows takes time

Two-phase commit protocol for distrubuted transactions

NSPK authentication protocol

model of NSPK for multiple runs + Dolev-Yao intruders
search for bad state

Linear temporal logic properties and model checking

Peter C. Ölveczky TFM’09



Example: NSPK

Message 1. A→ B : A.B.{Na.A}PK(B)

Message 2. B → A : B.A.{Na.Nb}PK(A)

Message 3. A→ B : A.B.{Nb}PK(B)

rl [read-2-send-3] :
(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)
< A : Initiator | initSessions : initiated(B, NONCE) IS >
=>
< A : Initiator | initSessions : trustedConnection(B) IS >
msg (encrypt NONCE’ with pubKey(B)) from A to B .

Peter C. Ölveczky TFM’09



Example: NSPK: Search for Bad State

Maude> (search [1]

< "Scrooge" : Initiator |

initSessions :

notInitiated("Beagle Boys"), ... >

< "Bank" : Responder | respSessions : emptySession,

nonceCtr : 1 >

< "Beagle Boys" : Intruder |

initSessions :

notInitiated("Bank"), ... >

=>*

C:Configuration

< "Bank" : Responder |

respSessions :

trustedConnection("Scrooge")

RS:RespSessions > .)

Peter C. Ölveczky TFM’09



Discussion (I)

Algebraic specification/TRS + modeling/analysis of
distributed systems

”Fun” functional and object-oriented programming/modeling

simple and intuitive formalism for distributed systems

Mature and high-performance tool support

Easy to model wide range of distributed systems

(NSKP++) motivates use of formal methods

Peter C. Ölveczky TFM’09



Discussion (I)

Algebraic specification/TRS + modeling/analysis of
distributed systems

”Fun” functional and object-oriented programming/modeling

simple and intuitive formalism for distributed systems

Mature and high-performance tool support

Easy to model wide range of distributed systems

(NSKP++) motivates use of formal methods

Peter C. Ölveczky TFM’09



Discussion (I)

Algebraic specification/TRS + modeling/analysis of
distributed systems

”Fun” functional and object-oriented programming/modeling

simple and intuitive formalism for distributed systems

Mature and high-performance tool support

Easy to model wide range of distributed systems

(NSKP++) motivates use of formal methods

Peter C. Ölveczky TFM’09



Discussion (I)

Algebraic specification/TRS + modeling/analysis of
distributed systems

”Fun” functional and object-oriented programming/modeling

simple and intuitive formalism for distributed systems

Mature and high-performance tool support

Easy to model wide range of distributed systems

(NSKP++) motivates use of formal methods

Peter C. Ölveczky TFM’09



Discussion (I)

Algebraic specification/TRS + modeling/analysis of
distributed systems

”Fun” functional and object-oriented programming/modeling

simple and intuitive formalism for distributed systems

Mature and high-performance tool support

Easy to model wide range of distributed systems

(NSKP++) motivates use of formal methods

Peter C. Ölveczky TFM’09



Discussion (II)

Well motivated introduction of key FM elements

deduction systems: equational and rewriting logic
verification of program properties:

termination and confluence
inductive properties

formal modeling
model checking
state space explosion
(LTL) properties of distributed systems

Extensions: probabilistic and real-time systems

“Hot” research topic

Used in industry:

new browser security flaws (Microsoft Research)
bugs in embedded automotive software (Japan)
. . .

Peter C. Ölveczky TFM’09



Discussion (II)

Well motivated introduction of key FM elements

deduction systems: equational and rewriting logic
verification of program properties:

termination and confluence
inductive properties

formal modeling
model checking
state space explosion
(LTL) properties of distributed systems

Extensions: probabilistic and real-time systems

“Hot” research topic

Used in industry:

new browser security flaws (Microsoft Research)
bugs in embedded automotive software (Japan)
. . .

Peter C. Ölveczky TFM’09



Discussion (II)

Well motivated introduction of key FM elements

deduction systems: equational and rewriting logic
verification of program properties:

termination and confluence
inductive properties

formal modeling
model checking
state space explosion
(LTL) properties of distributed systems

Extensions: probabilistic and real-time systems

“Hot” research topic

Used in industry:

new browser security flaws (Microsoft Research)
bugs in embedded automotive software (Japan)
. . .

Peter C. Ölveczky TFM’09



Discussion (III)

Course book exists

Positive student feedback in Oslo

Different groups at University of Oslo use Maude

Ex-TA has start-up company developing Maude product

Main complaint: Full Maude (Maude’s OO extension) not
robust and does not give good error messages

Peter C. Ölveczky TFM’09



Discussion (III)

Course book exists

Positive student feedback in Oslo

Different groups at University of Oslo use Maude

Ex-TA has start-up company developing Maude product

Main complaint: Full Maude (Maude’s OO extension) not
robust and does not give good error messages

Peter C. Ölveczky TFM’09



Discussion (III)

Course book exists

Positive student feedback in Oslo

Different groups at University of Oslo use Maude

Ex-TA has start-up company developing Maude product

Main complaint: Full Maude (Maude’s OO extension) not
robust and does not give good error messages

Peter C. Ölveczky TFM’09


