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Preface

F ormal methods are reputed to be difficult, and their acceptance in industry proceeds
slowly. Some might wonder whether this is a serious problem. After all, informa-

tion technology seems to be doing fine regardless of this situation.
Actually, the rapid growth in this area creates a huge quantity of design and im-

plementation tasks that can be done and, more importantly, are being done with little
or no scientific, professional or educational background. This makes it difficult to con-
vincingly advocate true engineering —by definition involving the use of “scientific and
mathematical principles” 1— on the basis of direct everyday necessities. Hence one
might think: if things work anyway, so much the better. However, from a longer-term
viewpoint, the same observations indicate that, intellectually, information technology is
a victim of its own economic success.

Indeed, industries dealing with the design of complex and critical systems have an
increasing need for methods that provide reasonable confidence in the result, and are
often looking for external assistance in the area of formal methods from consulting
firms and academia. Arguably, the professionalism that is a necessity for complex and
critical systems is an opportunity for run-of-the-mill systems in terms of design quality
(the process as well as the product). The short-term view accepting the status quo lets
this opportunity go to waste.

One may also hope that, utilitarian trends notwithstanding, intellectual curiosity and
professional pride have not become outdated. Holloway [2] is sufficiently positive in
this respect to base his arguments advocating formal methods on the premiss that “soft-
ware engineers strive to be true engineers”. As Parnas [4] points out, it is the ability to
use mathematical models that distinguishes professional engineers from other design-
ers. In the same spirit, a significant number of university staff enjoys the intellectual
challenge of research in formal techniques and of teaching them to students.

Unfortunately, however, an increasing number of students de-select formal methods
in the curriculum, due to various causes and trends.

One such cause is a general mathphobic tendency in society and in education. Even
at world-class universities, colleagues observe that students are increasingly unprepared
to invest hard work in their study2, especially mathematics, because of the demand
for immediate gratification that is instilled in them from various sides, especially via
the media. Curricula that yield to this pressure increase the gap between the excellent
and the average students, because the latter are less able to patch deficiencies in their
education on their own.

Another cause is that, in many EE/CS departments, all too few lecturers have a
background in the mathematical foundations of formal methods, while the aforemen-
tioned opportunities for getting along without such background limits the incentive of

1 This is the common element in most definitions on the web. The “and” assumedly serves
emphasis only!

2 Some reports indicate a difference between Western and Oriental, and between male and fe-
male students.
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their colleagues to develop it. Some lecturers teaching CS students are even mathphobic
themselves [1], and in extreme cases lecturers unwilling to proceed beyond traditional
mathematics (such as analysis) openly or covertly resist curriculum changes that might
give the students a fresh, broader perspective. In brief, sometimes the staff may consti-
tute a larger obstacle than the students to the acceptance of formal methods because of
the need to update their courses (Page [3]) or just the intellectual challenge (Gries [1],
Wing [5]).

These trends are so pervasive that the small minority of FM educators has little hope
to curb them in the near future. More effective in the long term is instilling a higher
degree of professionalism in the next generation. This requires in particular a directed,
positive action towards helping all students in becoming more motivated towards and
proficient in the use of formal methods.

This workshop is intended as an opportunity for exchanging educational experi-
ences and all other kinds of information that may be useful to educators in Formal
Methods and related fields for making such action more effective.

Emphasis of this workshop This workshop welcomes short papers, presentations,
demonstrations and evaluations describing sharp classroom or lab experiments which
have proved particularly beneficial to the students’ understanding and motivation for
formal methods.

The emphasis is not on (new) theories or methods but on specific illustrations and
exercises that can be used by colleagues in their own courses, perhaps applying their
own formalisms. The main goals are:

– to share knowledge and experience on the practicalities of teaching and learning
formal methods;

– to build a collection of interesting cases, examples, assignments and projects that
FM teachers can use in educational activities.

Format The workshop is organized as a forum-like event, with short presentations,
demos and informal discussion slots.

After the workshop, provided the evaluation committee decides that there is a suffi-
cient number of high-quality contributions, an agreement will be sought with Springer
Lecture Notes in Computer Science about publishing a special volume. In case of a pos-
itive outcome, authors will be invited to submit a revised version of their contribution
for refereeing.

The following preprints are derived from the initial versions, which have been sub-
ject to light reviewing and corrected by the authors based on the reviews.
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3 Formal Methods Group, INTEC, Universiteit Gent, Belgium
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4 Departamento de Informática, Universidade do Minho, Braga, Portugal
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The Use of an Electronic Voting System in a Formal
Methods Course

Alice Miller and Quintin Cutts

Department of Computing Science
University of Glasgow

Glasgow, Scotland.
{alice,quintin}@dcs.gla.ac.uk

Abstract. We describe the design of a discussion-based tutorial within an hon-
ours “Modelling Reactive Systems” course facilitated with an electronic voting
system. The approach combats confidence and breadth issues, and we report on
its effectiveness.

1 Introduction

In industry, formal methods are traditionally viewed as obscure, unscalable and lacking
in sufficient tool support [4]. In the lecture theatre too, formal methods can seem too
mathematical [8] and of little practical use in the development of complex systems [7].

In order to gain any insight into the benefits of formal methods, it is important
that students are allowed to develop confidence with a specific formal notation, and
use it to solve a wide range of problems [7]. This is usually achieved via practical lab
sessions in which students are encouraged to complete a set of problems for practice
and assessment, typically using only one formalism, due to the limited time available.
We have observed that, with such a restriction, students are unlikely to reflect upon their
practical experience and relate it to the other formalisms introduced in the course only
theoretically.

In this paper we describe how we have developed a single teaching tutorial, making
use of an electronic voting system (EVS), to complement an existing model checking
course. The tutorial is designed specifically to consider the problem described above
incorporating small group teaching techniques, such as buzz groups and brainstorming
[2], along with the use of an EVS.

The authors are both lecturers in Computing Science at Glasgow University. Quintin
Cutts’ recent research focuses on the use of an EVS within the context of higher edu-
cation, and computing science education in particular [6,10]. His focus is on engaging
the students with the material either by problem solving or by reflecting deeply on their
own understanding or misconceptions.

Alice Miller’s research is in the area of formal methods. Specifically her interests are
in the use of advanced mathematical techniques, like induction and symmetry reduction,
for model checking [11,3]. She is director of the “Modelling Reactive systems course”
discussed in this paper.
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2 Modelling Reactive Systems Course (MRS4)

“Modelling Reactive Systems” (MRS4) is a fourth year honours course provided by
the department of Computing Science at Glasgow University [5], which has now been
running for 5 years. Designed to introduce and explore a variety of formal process
description and analysis techniques used in the design of reactive systems, the course
consists of 20 hours of lectures and 8 of lab sessions. It is divided into two parts. The
first part of the course contains an introduction to reactive systems and basic (graphical)
modelling formalisms, and focuses largely on the use of the model checker SPIN [9].
The second part (consisting of 6 lectures) is concerned with tools designed for real
time systems development (e.g. SDL 2000). This paper relates to the first part of the
course. There are, on average, 35 students in the class, with a wide range of ability. The
mathematics in the course is kept to a minimum, although some students still struggle
with some of the more theoretical concepts – the definition of Büchi automata etc.
This is, of course, a well known phenomenon with formal methods courses [8]. Since
the students perceive the course to be difficult, they choose not to participate when
prompted for a response by the lecturer, in case they get an answer wrong. In addition,
the mathematical nature of the course leads the students to assume that every problem
has a right or wrong answer, although in many cases (for example, the most appropriate
formalism to use in a particular situation) there is more than one possible solution.

Because of the steep learning curve and lack of time available, in the labs the stu-
dents only gain experience from one formalism (SPIN). There is no scope within these
sessions for wider discussion of the issues involved and to generalise experience across
the breadth of the subject.

3 Electronic Voting System (EVS)

A typical EVS consists of a set of keypads, one per student, and a receiver connected to
a PC. Multiple choice questions can be presented verbally, on the board, by overhead
projector (OHP), or using a PC; students then submit their answer using the keypad.
Finally, a bar chart showing the collated responses is displayed by the PC at the front of
the class. The lecturer can then use the answers, and the increased knowledge about the
students’ level of understanding provided by the answers, to guide class-wide or buzz
group discussions designed to encourage the students to explore the topics more deeply.
Students typically report the anonymity of answering and their increased attentiveness
to the subject matter at hand as the key benefits of the system; lecturers the feedback on
student understanding, which they use to guide their ongoing course delivery.

4 Using EVS in MRS4

In order to address the problems posed by strict lecture plus lab teaching methods de-
scribed above, we introduced a tutorial session to the course which exploited the EVS.
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4.1 Objectives

The major objectives here are:

1. to encourage participation in lab sessions prior to the tutorial
2. to affect self-learning via reading of a prescribed text
3. to promote reflection, an appreciation that issues are not always black and white,

and a deeper knowledge of formal methods.

4.2 Methods

The task took the form of a set of 8 multiple choice questions (see below for a set of
sample questions). The first 5 questions were assessed (in total they contributed up to
2% of the final mark for this course). The reason for making these questions assessed
was to encourage the students to prepare for, and turn up to the session. The percentage
was kept small, as it was based on only 1 of 28 teaching hours related to the course. The
remaining questions were designed to promote debate within the class. The structure
of the questions (and the mark obtainable) was discussed with the class prior to the
session.

In order to achieve objective (1) above, the first three questions were based on issues
that arose from discussions in the lab sessions related to the example sheets. In order
to achieve objective (2), questions 3− 5 were based on the prescribed text, namely
“The Great Debates”, a discussion of some of the deeper questions relating to formal
verification (see [9]). Finally, to achieve objective (3), some more open-ended questions
were provided. We will discuss how these questions were used below.

The multiple choice questions We give samples from the set of questions only, due to
lack of space.

1. In SPIN, what can be passed as parameters to processes?
(a) global variables and constants
(b) constants and channel names
(c) channel names and global variables

4. One of the following statements about the temporal logics CTL and LTL is true.
Which is it?
(a) CTL is much more expressive
(b) the expressiveness of the two logics do not overlap
(c) LTL is more suitable for “on the fly” verification

6. What do you think of the statement “SPIN allows us to accurately model synchronous
communication”?
(a) the statement is true
(b) the statement is false
(c) The statement is not exactly true, but it is close enough.

7. Some real world examples of protocols (e.g. IEEE 802.11, FireWire, bluetooth de-
vice discovery) include some notion of randomness and probability. However Gerard



6 A. Miller and Q. Cutts

Holzmann does not believe that the addition of probabilities to SPIN is necessary. Do
you
(a) agree
(b) disagree
(c) neither agree nor disagree (i.e. you have a better solution..)

8. What do you think is the most important thing that is lacking in SPIN?
(a) a reliable, informative type-checker
(b) the ability to model real time
(c) something else (that you can describe)

Responses and Discussion Using EVS the students became increasingly confident
in choosing their response and became far more engaged in this session than in other
classes. (Until this session there had been almost no student participation in whole
group sessions.)

Question 1 (and two further questions based on lecture/lab material): Over 80% of
students answered these questions correctly (b for question 1). This was gratifying as it
showed that discussions within lectures arising from problems in the labs had brought
the relevant issues home. Answering these initial questions correctly also encouraged
the students to be bold in answering the subsequent questions.

Question 4. 75% of students got this right (c). This demonstrated that they had read
and understood the text. As this was the only exposure to CT L model checking that the
students had on the course, their success was surprising.

Question 6. This prompted a lively discussion lasting several minutes. Most students
went for (c), (which is the answer suggested in the prescribed text). Students were split
into buzz groups and asked to come up with examples of synchronous/asynchronous
systems. Some good examples arose (email, slot machine, cash machine, ADSL, token
ring). The class discovered that it is generally very difficult to decide which systems are
synchronous (in terms of communication) and which are not – it depends very much
on the actual implementation. Some students expressed surprise (and, in some cases,
relief) that an issue such as this was not completely black and white.

Question 7. The responses were approximately half (a) and half (b). The students were
asked to discuss the problem for 5 minutes within buzz groups and then two students
were selected, one to advocate (a) and one to advocate (b) (each justifying their an-
swer). The main argument for (a) was that one can use non-determinism instead of
probabilistic choice to some extent (when considering discrete time probabilistic sys-
tems, this point was perhaps too sophisticated for the class). The main argument for
(b) was that we can only allow for a limited number of choices using non-determinism.
The issues that arose in the discussion were: probability is not suitable for adding to
SPIN, but there are other more suitable tools: probabilistic model checkers like PRISM
for example; and that probability is a very important aspect of some protocols.
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Question 8. Almost all of the students went for (c). This led to some very lively and
noisy debate. The students had strong opinions on this issue as they had spent several
hours in the lab working with SPIN, and were keen to express their opinions on its
perceived shortcomings. We did not attempt to divide the class into small groups in this
case as time was running short. Students were invited to volunteer their suggestions to
the rest of the class. There followed enthusiastic criticism of the error messages given
by SPIN, the poor editor etc.

4.3 Outcomes

– Reassurance that students had read and understood material that could then com-
fortably be referred to later in the course. The first 3 (of the original 8) questions
probed their understanding of the course material, and the remaining questions their
ability to self-teach. They could not have understood the later questions if they had
not read the text provided.

– Noticeable increase in confidence with students volunteering to answer questions
within the class in subsequent lectures. Previous to the EVS session there had been
no response from most students to questions asked in the class. After the session
there were responses to questions, interruptions from the class and (well-meaning)
contradictions from other students.

– The use of EVS was very popular with the students as a means to communicate
anonymously. A typical comment in the course feedback was:
“we enjoyed the session with the handsets more than we thought we would. It was
good to argue with each other and made a change from lectures which can be rather
boring”.
EVS was also invaluable for providing an immediate summary of responses, en-
abling further discussion.

– The debate-style questions prompted a great deal of discussion and gave rise to
unexpected responses with a high degree of ingenuity. An observer (a lecturer from
the Electronic Engineering department at the University of Glasgow) commented
thus:
“The groups behaved like groups in a pub quiz. Correct answers even caused cheer-
ing and strengthened the spirit of the group ... Besides the fun aspect the students
found it much easier to speak to the whole class after having discussed the issues
with their peers – possibly because they had the approval from their peer group.”

Note that the major benefit of using EVS was that students had the means to anony-
mously express their doubts and opinions. This could, to some extent, be achieved by
other means, e.g. via a Moodle forum [1]. However, we believe that the immediate feed-
back, within a controlled environment could not have been reproduced in that context.
We also point out that our outcomes are based on our observations rather than from the
result of a rigorously controlled experiment. We had no control group, like that used
in [12] for example. However, we could compare the behaviour of students before and
after the intervention, and with students taking the course in previous years.
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5 Conclusion

We have identified two major problems with the traditional lecture plus lab teaching of
Formal Methods, namely low class participation in discussions, and lack of breadth in
acquired learning. We have implemented a tutorial session using EVS which has pro-
vided an environment in which these problems have successfully been addressed. We
are planning to extend the concept to a greater number of sessions in the next academic
year.
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Introducing Model Checking to Undergraduates

Abhik Roychoudhury

Department of Computer Science, National University of Singapore
abhik@comp.nus.edu.sg

Abstract. Introducing temporal logics and model checking to undergraduate stu-
dents is usually an involved activity. The difficulty stems from the students’ lack
of exposure to logics, unfamiliarity with reactive systems and lack of conviction
that model checking search can lead to anything practical. Here, I narrate some
experiences in attempting to overcome these stereotypes over a period of five
years at the National University of Singapore.

1 Introduction

Teaching of formal techniques has always been a topic of discussion and debate in
Computer Science (CS) education. CS academics have underlined the importance of
encouraging formal system development practices by trying to incorporate them into
the CS curriculum (e.g. see [2]).

However, in reality the task of convincing students of the value of formal methods
could be a formidable one. This is typically because of the paucity of formal methods
courses in the CS curriculum which results in students’ inherent lack of exposure to
formal techniques. Often times, we face the following arguments from our students (or
even our colleagues).

– CS students (particularly undergraduates) are not strong enough to learn formal
methods, or

– It is difficult to get CS students used to the rigor of formal methods (even if they
are capable), or

– Formal methods is mostly about mathematics which is of limited value for building
(computer) systems.

As a formal methods educator, I feel that all of these arguments are false. The question
is how to do we get past such stereotype arguments which may reside in the minds of
our students (who might think that formal methods courses are to be avoided) or even
our colleagues (who might perceive formal methods to be of little value).

In this year’s International Conference on Software Engineering (ICSE), there was
a panel on Formal Methods where the panelists were asked — if you have $10 million
for promoting formal methods how would you invest it ? Several panelists underscored
the value of education for such investment. More importantly, an interesting analogy [1]
was drawn with engineering undergraduates who reguarly learn complex mathematical
concepts (such as differential equations) thereby strongly alluding to the incorrectness
of the usual argument that Computer science undergraduates are not strong enough to
learn formal methods.
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In this article, I describe some experiences in teaching formal methods to under-
graduate students over five years. Primarily, I deal with issues arising from exposing
undergraduate students in Computer Engineering to a course on model checking. All
course materials have been made freely available from

http://www.comp.nus.edu.sg/∼abhik/CS4271

Before proceeding to elaborate on the teaching methods, I give some background
information about the course which may be helpful in judging the applicability of my
teaching methods.

2 Background Information about the Course

The course in question was offered as an elective module once a year for five years at
the National University of Singapore. It was part of the Computer Engineering curricu-
lum, that is, it was offered to our Computer Science students specializing in Computer
Engineering. These students take a wide variety of Computer Science courses with a
concentration of courses on embedded system design. Consequently, they are required
to take four electives on system design from various courses such as:

– Critical Systems and their Verification
– Hardware Software Codesign
– Mobile Computing
– Performance Analysis of Embedded Systems
– Embedded Software Design
– An advanced course on Computer Networks
– An advanced course on Programming Language Design and Implementation
– ...

The course we are discussing here is the first one in the above list – Critical Systems
and their Verification. Note that the other courses in the list are more focused on (em-
bedded) system performance rather than formal techniques. So, our course (which was
offered as an elective) is inherently somewhat different from the other elective modules.

Our course on formal verification is taken by third or fourth year Computer Engi-
neering undergraduates with most of the students coming from the fourth year. The total
number of students in the Computer Engineering programme is approximately 75 out
of which approximately 45 students have opted for the formal verification module in
the last three offerings of the module. The exact enrolment numbers over the five years
are as follows.

2001-02 2002-03 2003-04 2004-05 2005-06
3 32 34 45 54

Since our verification course was offered as part of the Computer Engineering cur-
riculum, we could not require a course in Logic to be a pre-requisite (since a Logic
course in not mandatory in our Computer Engineering curriculum). This in fact made
the offering of the course more challenging. The only pre-requisites of our course on
formal verification were:
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– a first year undergraduate course on Discrete Mathematics (which gives the students
brief exposure to propositional and predicate logic), and

– a first year undergraduate course on Computer Organization (which gives the stu-
dents some exposure to combinational/sequential circuits, buses etc).

Note that most of our students were in their fourth year and they only had a brief
introduction to logic in their first year of undergraduate study. Hence it was neces-
sary to communicate to them that the course goes beyond logic/discrete maths. On the
other hand, it was also important to refresh their background on logics while introduc-
ing temporal logics. In the next section, I proceed to outline the main strategies that
were adopted as an attempt to enhance the students’ learning experience. Some of these
strategies are standard ones, while some were learnt gradually by offering the course
multiple times.

3 Strategies to Enhance Students’ Learning Experience

For enhancing the students’ learning experience, we need to elicit more student interest
and participation by relating the techniques (in this case model checking) to real-life.
However, this is often done in a rather extreme way by mentioning dramatic histor-
ical disasters which happened due to lack of formal verification. Too often we mo-
tivate a formal verification technique by mentioning the Arianne space shuttle disas-
ter, or the Therac-25 accidents. If we (the formal methods educators) decide to be a
bit more down-to-earth while motivating our techniques, at most we refer to the In-
tel Pentium floating-point error from 1994 (which resulted in substantial financial loss
for Intel). Clearly, mentioning these historical incidents to the students serve an im-
portant purpose— they get the students’ initial attention/interest. However, from my
experience, this interest is often difficult to retain — possibly because many of these
historical disasters seem to be far removed to the students. Emphasizing these histori-
cal incidents also serves to emphasize the students’ perception that formal methods is
something “exotic” — a perception we as educators should fight against.

Students need to understand, they do not need to be surprised As a first step, I have
avoided mentioning historical disasters in my lectures for the purpose of motivating
formal verification. Instead, in the first lecture, I try to refer to existing industry practice
in “verification and validation” — why these practices do not amount to formal veri-
fication, and what needs to be done to achieve formal verification. Since my course is
part of a programme with Embedded System focus, I refer to some existing Electronic
Design Automation industry practices in this regard (methods like in-circuit emulation).
I try to explain how the existing methods are intrusive to the design process and how
a model-based technique can help the design cycle. This results in a rather different
pedagogical style, where the aim is to discuss the system design cycle with the students
rather than impressing/surprising the students with the power of formal verification.

Presenting formal verification as a tool to improve the system design cycle helps. It
removes the misconception that formal methods are required only for very very safety-
critical systems which normal engineers need not be bothered with. However, until and
unless the students can get some amount of gratification from using formal methods,
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they are quite likely to forget about it once the semester ends. Often, we (as formal
methods educators) take a view that the theory should be taught prior to the tool. In
a course focusing on model checking this would mean that the students need to learn
about Kripke Structures, Temporal Logics, Explicit-state checking, Binary Decision Di-
agrams (BDD) and Symbolic Checking — even before they can write a single line of
code in a model checker! Clearly, such an approach is unlikely to evoke student interest.
We could try to improve the state of affairs by teaching only Kripke Structures, Tem-
poral Logics and explicit-state checking prior to discussing model checkers. However,
from my experience, a significant fraction of the students still feel lost by the time the
model checkers are introduced. To effectively teach model checking, it is important to
discuss system modeling (from requirements) as early as possible.

Discuss System Modeling as early as possible To address this issue, I try to familiarize
the students with (at least) the input language of a model checker even before they learn
temporal logics and model checking. So, the rough flow of my course (which focuses
on model checking) is

– Transition Systems and Kripke Structures
– SMV model checker and case studies
– Temporal Logics
– Explicit-state Model Checking
– Binary Decision Diagrams (BDDs)
– Symbolic Model Checking using BDDs

A few points need to be emphasized at this stage. When we discuss SMV and its case
studies, I try to pick moderate sized but real-life case studies. These examples serve
an important purpose — they are not toy examples, but they are not so large that their
modeling cannot be discussed in details. I believe this is more effective than mentioning
some very large case studies, where the students may be more surprised/impressed but
they may not understand the intricacies of modeling a real-life protocol. Also, note that
when we discuss the SMV model checker and case studies, the students have not yet
been introduced to temporal logics. Hence, the properties being verified in the case
studies are mentioned informally at this stage and they are formalized in subsequent
lectures. The detailed flow of the course is available (in the form of a Lesson Plan)
from

http://www.comp.nus.edu.sg/∼abhik/CS4271/lesson-plan.html

Unfamiliarity (with temporal logics & reactive systems) breeds contempt From my
experience, students are often uncomfortable with one of the following.

– connection between program behaviors and transition systems,
– understanding reactive systems which have execution traces of infinite length
– interpreting temporal logic formulae over infinite execution traces.

The first hurdle is relatively easy to overcome. A refresher revision hour on oper-
ational semantics might help in this regard. However, since the students are typically



Introducing Model Checking to Undergraduates 13

familiar with transformational systems it takes them substantial time to make the con-
ceptual switch to systems with execution traces of infinite length. This can be aided by
presenting (successively more complex) example transition systems in class and telling
the students to list out the infinite execution traces of the given transition system. Get-
ting familiar with reactive systems (and infinite length execution traces) is often the
primary hurdle in the minds of students. Once this barrier is overcome, they can (rela-
tively) easily adapt to the concept of Linear-time temporal logic (LTL) and its operators.
Branching-time temporal logics are then covered by building on Linear-time logics.

Finally, keep it project-based The final point that I want to discuss here is a lesson
that was learnt the hard way. In retrospect, it is probably an obvious lesson but it was
not obvious (to me) when I started teaching the course. To give the students hands-
on experience with the model checking tools, I had the option of designing a series
of assignments or allowing them to choose term-projects. From a pragmatic point of
view, managing an assignment-based course is easier (for grading and other purposes).
I ran the course in two successive years in two different modes (project based and
assignment-based). The student response was overwhelmingly in favor of the project-
based version. In retrospect, this was so for more reasons than one.

– A term project allows the student some choice and encourages some independent
exploration for fixing the project as well as during modeling/validation.

– A term project gradually builds on itself during the entire semester and is more
substantial. This way the students can see the benefit of using model checking on
some substantial-sized examples.

I feel that engaging the students in a medium-sized term project might be the best way
to convince them of the applicability of formal techniques. However, if the entire class
does the same term-project it becomes a bit like an extended assignment depriving the
students of a sense of independent exploration. For this reason, it might be important to
allow students (individually or in groups of 2-3) choose different term projects even if
the module administration becomes difficult.

An initial list of possible project ideas that I gave out to students in my course is
available from

http://www.comp.nus.edu.sg/∼abhik/CS4271/proj-ideas.html

Needless to say, students did projects outside this list as well. We should note that
for a course based on independent term projects there are several adminstration issues
involved such as counseling the students on deciding their project (particularly this
needs to be done at the beginning of the semester when the students are not yet famil-
iar with formal tools/techniques). If the course is offered multiple times, there is the
additional issue of modifying/upgrading the list of project ideas in subsequent years.

One should emphasize here that prior to actually doing their term projects, the
students go through substantial experience in modeling and analysis of several case
studies, particularly when I introduce the SMV tool. These include

– medium-sized examples which are fleshed out in full details for the students to
grasp intricacies of system modeling (such as the examples in [4]), and
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– larger scale real-life protocol verification examples (such as lessons learnt from
model checking the AMBA system-on-chip bus protocol running on ARM pro-
cessors [3]) which lets the students appreciate the value of modeling and model
checking.

4 Discussion

The lessons mentioned in this paper should be (at least partially) applicable to vari-
ous formal methods courses — even those not covering model checking. The generic
versions of these lessons are as follows.

– Do not rely on historical incidents to motivate formal methods.
– Emphasize system modeling (from requirements) rather than focusing only on ver-

ification techniques.
– Introduce verification tools prior to techniques as far as practicable.
– Allow students freedom in doing term projects (rather than assignments or fixed

projects) even if module administration becomes difficult.

I sincerely hope that these general issues (which I learnt gradually over a period of
five years) and the course materials (which I have made available through the Internet)
will be useful to fellow formal methods educators in other universities and institutes.
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1 Introduction

Every Engineer must understand the properties of the materials that they use. Whether
it be concrete, steel, or electronic components, the materials available are limited in
their capabilities and an Engineer cannot be sure that a product is “fit for use” unless
those limitations are known and have been taken into consideration. The properties of
physical products can be divided into two classes: (1) technological properties, such
as rigidity, which apply to specific products and will change with new developments,
(2) fundamental properties, such as Maxwell’s laws or Newton’s laws, which will not
change with improved technology.

In many cases technological properties are expressed in terms of numerical param-
eters and the parameter values appear in product descriptions. This makes these lim-
itations concrete and meaningful to pragmatic developers. It is the responsibility of
engineering educators to make sure that students understand the technological proper-
ties, know how to express them, know how to determine them for any specific product,
and know how to take them into account when designing or evaluating a product.

However, it is also the responsibility of educators to make sure that students under-
stand the fundamental limitations of the materials that they use. It is for this reason, that
accredited engineering programs are required to include a specified amount of basic
science (see [9]). Explaining the relevance of basic science to Engineers is a difficult
job; technological limitations are used to compare products; in contrast, fundamental
limitations are never mentioned in comparisons because they apply to all competing
products. As a result, the technological limitations seem more real and students do not
perceive fundamental limitations as relevant.

For Software Engineers, the materials used for construction are computers and soft-
ware. In this area too, the limitations can also be divided into two classes: (1) technolog-
ical limitations, such as memory capacity, processor speed, word length, types of bus
connections, precision obtained by a specific program, availability of specific software
packages, etc., (2) fundamental limitations, such as limits on computability, complexity
of problems, and the inevitability of noise in data.

Computer Scientists have developed a variety of useful models that allow us to
classify problems and determine which problems can be solved by specific classes of
computing devices.

The most limited class of machine is the finite state machine. Finite state machines
can be enhanced by adding a “last-in-first-out” memory known as a stack. Adding an



16 D.L. Parnas and M. Soltys

infinitely extensible tape that can move both forwards and backwards through the read-
er/writer makes the machine more powerful (in an important sense) than any computer
that can actually be built. Practicing software developers can use these models to de-
termine how to approach a problem. For example, there are many problems that can be
solved completely with the simplest model, but others must be restricted before they
can be solved. Many people know these things in theory, but most do not understand
how to use the theory in practice.

Like the students in other engineering disciplines, software engineering students
must be able to understand and deal with technological limitations. Even the youngest
have seen rapid improvements in technology and most of them easily understand the
practical implications of those differences.

It is not useful to spend a lot of time on the technological limitations of specific
current products. Much of what students learn about products will be irrelevant before
they graduate. However, it is very important to teach the full meaning of technologi-
cal parameters and how to determine which products will be appropriate for a given
application.

Nonetheless, the fundamental properties of computers are very important because
they affect what we can and cannot do. Sometimes, an understanding of these properties
is necessary to find the best solution to a problem. In most cases, those who understand
computing fundamentals can anticipate problems and adjust their goals so that they can
get the real job done. Those who do not understand these limitations, may waste their
time attempting something impossible or, even worse, produce a product with poorly
understood or not clearly stated capabilities. Further, those that understand the funda-
mental limitations are better equipped to clearly state the capabilities and limitations
of a product that they produce. Finally, an understanding of these limitations, and the
way that they are proved, often reveals practical solutions to practical problems. Con-
sequently, “basic science” should be a required component of any accredited Software
Engineering program.

In the next section, we will give a few illustrations to make these points clearer.

2 A few anecdotes

2.1 What can be said with grammars

Many years ago, Robert Floyd encountered a graduate student who was trying to find a
complete context-free grammar for Algol-60, one that specified that all variables must
be declared before use. The student’s plan was to use the grammar as input to a compiler
generator. Floyd’s understanding of CS fundamentals allowed him to prove that no such
grammar could exist. The graduate student was saved months, perhaps years, of futile
effort. With this information he understood that he would have to find another way to
express those restrictions as input to his compiler generator. [6]

This anecdote makes it clear that it is very important to be able to decide whether
or not a task is impossible. Some people spend their lives trying to solve impossible
problems.
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2.2 The meaning of computational complexity

Computer Scientists have developed ways to classify the complexity of algorithms and
to classify problems in terms of the complexity-class of the best solution to those prob-
lems. This allows them to determine whether or not an algorithm is as good as it can
get (optimal). However, strange as it may sound, sometimes an “optimal” algorithm is
not the best choice for a practical application.

In the 70’s Fred Brooks, working on visualization tools for chemists, announced
that he wanted an optimal algorithm for a well defined problem. A very bright gradu-
ate student proposed such an algorithm and submitted a short paper proving that it was
optimal. Brooks insisted that the algorithm be implemented and its performance com-
pared with the performance of the method that they had been using; the performance
of the “optimal” algorithm was worse than the old one. Computer Science complexity
methods refer to asymptotic performance, that is, performance for very large problems.
Algorithms that are not optimal may actually be faster than the “optimal” ones for cer-
tain values of the key parameters. Since a developer may find an “optimal” algorithm
in a textbook, she must be aware of what “optimal” means and check to see that the
performance is actually better in practice than other algorithms. Moreover, a developer
who knows the asymptotically optimal algorithm can often modify it to produce an
algorithm that will be fast for the application at hand.

Another such example is Linear Programming. The widely used Simplex algorithm
is known to be exponential in the worst case. However, the Simplex has superb perfor-
mance in practice (in fact, it’s expected performance is provably polynomial). On the
other hand, the (“worst-case”) polynomial algorithm for Linear Programming, known
as the Ellipsoid Algorithm, appears to be impractically slow. [10]

2.3 The practicality of a “bad” solution to the “Knapsack Problem”

In the “Knapsack Problem” the input is a set of weights w1,w2, . . . ,wd , and the capacity,
C, of the knapsack. We want to pack as much weight into the knapsack, without going
over the capacity. The most obvious approach, starting with the largest weights, does
not work, because if we have three weights w1 = 51,w2 = 50,w3 = 50, and C = 100,
and our strategy is to pack as much as possible at each step, we would put 51 in, and
we would have no more space left for w2 and w3. The optimal solution in this case is of
course w2 +w3 = 100.

The “Knapsack Problem” can be solved with Dynamic Programming, where we
construct a table with dimensions d×C (d = number of weights, C = capacity), and
fill it out using simple recursion. A classical worst-case running time analysis of the
dynamic programming algorithm shows that it requires exponential time. The reason
is that the algorithm builds a d×C table, so if C is given in binary, the size of the ta-
ble is exponential in the size of the capacity (i.e., exponential in the size of the input).
Therefore, the dynamic programming solution to the Knapsack Problem runs in expo-
nential time in the size of the capacity of the knapsack, and hence it is asymptotically
infeasible.

In fact, the dynamic programming solution to the “Knapsack Problem” is widely
used in Computer Science. In applications such as Compilers and Optimization prob-



18 D.L. Parnas and M. Soltys

lems, equivalent problems arise frequently, and they are solved using dynamic program-
ming. The method is practical, even with many weights, for reasonable C.

One should not interpret this as meaning that the theoretical complexity is use-
less; au contraire, it demonstrates why even practitioners who think that they are not
interested in “theory” should understand computational complexity when developing
algorithms for difficult problems.

2.4 Maximum size for a halting problem

Two software developers were asked to produce a tool to check for termination of pro-
grams in a special purpose language used for building discrete event control systems.
One refused the job claiming that it was impossible because we cannot solve the halt-
ing problem. A second, who understood the proof of the impossibility of the halting
problem, realized that the language in question was so limited that a check would be
possible if a few restrictions were added to the language. The resulting tool was very
useful. Here again, an understanding of the nature of this “very theoretical” result was
helpful in developing a practical tool with precisely defined limitations.

2.5 Can we prove that loops terminate

Dr. Robert Baber, a software engineering educator who has long advocated more rigor-
ous software development [1,2,3,4] was giving a seminar in which he stated that it was
the responsibility of programmers to determine whether or not loops they have written
will terminate. He was interrupted by a young faculty member who asserted that this
was impossible, “the halting problem says that we cannot do that.” In fact, the halting
problem limits our ability to write a program that will test all programs for termination,
not about our ability to check a given program for termination. This incident shows that
a superficial understanding of computer science theory can lead people astray and cause
them to be negligent.

Clearly, we must teach fundamentals in such a way that the student knows how to
translate theoretical results into practical knowledge. For example, when teaching about
the general undecidability of halting problems, one can accompany the proof with an
assignment to determine the conditions under which a particular machine or program
is sure to terminate. Comparing the general result with the specific example helps the
student to understand the real meaning of the general result.

2.6 The implications of finite word length

In 1969, some software developers became enthusiastic about a plan to store 6 bytes in a
4 byte word. They proposed computing the product of 6 bytes and converting the result
to a 4 byte floating-point number. Sadly, none of the programmers in the organization
understood the impossibility of this scheme and they invested a lot of time discussing
it. Luckily, an academic visitor1 who did understand basic information theory, could
convince them of its applicability by providing a counter-example, i.e., an example

1 Dave Parnas.
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where the same output would be obtained for two different inputs. It was quite possible
that even extensive testing would not have revealed the error, but it would cause “bugs”
in practice.

2.7 The limitations on push-down automata

Recently one of us had occasion to talk to some people who were familiar with the
standard results about push-down automata, i.e., that the class of problems that they
could solve was smaller than that for Turing machines. He reminded them that in to-
day’s market, one can buy an auxiliary disk and attach it to a laptop or other personal
computer. He asked if this changed the fundamental properties of the machine (it does
not). He then asked what would happen if we could buy an auxiliary push-down stack
and attach it as a separate device on a push-down automata that already had one stack.
All claimed that the result would still be a push-down automata, i.e., they did not rec-
ognize that having a second (independently accessible) stack changed the fundamental
capabilities of the machine. The same group included many who did not realize that
placing limits on the depth and item size of the stack in a push-down automaton made
it no more powerful than any other finite state machine. This meant that they did not
understand that there would be an upper limit in the number of nested parenthesis in an
expression that would be parsed by any realizable push-down automaton, or that a twin-
stack push-down automaton (with infinite stacks) was as powerful as a Turing machine
and more powerful than any realizable computer.

2.8 The practical limitations of open questions

There are number of problems in computability and complexity theory that remain
open. Many practitioners and students believe that these problems are of interest only to
theoreticians. In fact, they have very practical implications. Probably the most dramatic
of these is the “P = NP” question [5] for which a prize of $1,000,000 has been offered.
This does not interest most students who realize that they will not win the prize. How-
ever, the question has very important implications in cryptography. Some very widely
used encoding algorithms are only “safe” if the answer is that P 6= NP. If it is not, it
might be possible to find ways to crack codes quickly (see [5,7]). (The reason is that if
P = NP, then that would imply the existence of a polytime algorithm for factoring, and
such an algorithm would render the RSA encryption scheme insecure.)

3 A course in basic science for Software Engineers

McMaster Universities CEAB accredited Software Engineering Program includes a
course designed to teach its students both the parts of “theoretical computer science”
that they ought to know and how to use them. For a complete outline of the course
see [12]; here we mention the main topics: (1) Finite Automata (finite number of states,
and no memory), (2) Regular Expressions, (3) Context-Free Grammars, (4) Pushdown
Automata (like finite automata, except they have a stack, with no limit on how much can
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be stored in the stack), (5) Turing Machines (simplified model of a general computer,
but equivalent to general computers), (6) Rudimentary Complexity.

For four years we used [8] as the textbook, but last year (2005-06) we used [11].
The former was perhaps better suited for engineers, but the latter has a better complexity
section and de-emphasizes push-down automata which have lost ground in the last years
as a theoretical constuction.

Deeper discussions of the basic subject matter can be found in [7,8,10]. However,
these references do not discuss educational motivations as we do.

4 Conclusions

Established engineering accreditation rules require that each engineering student have
a minimum exposure to basic science. As accredited software engineering programs
are relatively new, there is no clear understanding what constitutes appropriate basic
science. Although we believe that every Engineer should have been taught basic phys-
ical science, we believe that those who will specialize in software require a thorough
exposure to the topics discussed above. This paper has illustrated why, a course on
these topics should be required as part of the basic science component of a program for
engineers specializing in software intensive products.

References

1. R.L. Baber. Software Reflected: the Socially Responsible Programming of Our Computers.
North-Holland Publishing Co., 1982. German translation: Softwarereflexionen: Ideen und
Konzepte für die Praxis, Springer-Verlag, 1986.

2. R.L. Baber. The Spine of Software: Designing Provably Correct Software—Theory and Prac-
tice. John Wiley & Sons, 1987.

3. R.L. Baber. Error Free Software: Know-How and Know-Why of Program Correctness.
John Wiley & Sons, 1991. German original: Fehlerfreie Programmierung für den Software-
Zauberlehrling, R. Oldenbourg Verlag, München, 1990.

4. R.L. Baber. Praktische Anwendbarkeit mathematisch rigoroser Methoden zum Sicherstellen
der Programmkorrektheit. Walter de Gruyter, 1995.

5. Stephen Cook. The P versus NP problem. www.claymath.org/prizeproblems/p vs np.pdf.
6. Robert Floyd. On the nonexistence of a phrase structure grammar for ALGOL 60. Commu-

nications of the ACM, 5(9):483–484, 1962.
7. Michael R. Garey and David S. Johnson. Computers and Intractability. Bell Telephone

Laboratories, 1979.
8. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 2000. We used the 2nd edition, but the 3rd
edition is now available.

9. Canadian Council of Professional Engineers. Accreditation criteria and procedures, 2005.
http://www.ccpe.ca/e/files/report ceab.pdf.

10. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
11. Michael Sipser. Introduction to the Theory of Computation. Thomson, 2006.
12. Michael Soltys. http://www.cas.mcmaster.ca/˜soltys/se4i03-f02/course-outline.txt.



Two courses on VDM++ for Embedded Systems:
Learning by Doing

Peter Gorm Larsen

Engineering College of Aarhus, Dalgas Avenue 2, DK-8000 Århus C, DK
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Abstract. This small paper presents two new courses that aim to improve the
students’ ability to aquire the basic skills underlying formal methods and motivate
them to use principles from here in their subsequent professional life. The two
courses are combined by a project that must be carried out by the students in order
to learn to apply this kind of technology in practice. The project is carried out first
at a high abstraction level and afterwards including concurrency and real-time
aspects. The main rationale behind these two courses is using formal methods in
a light-weight fashion on examples inspired by industrial usage using appropriate
tool support. We believe that such a pragmatic approach using abstract modelling
and test of such models rather than formal verification is a route which is more
likely to succeed from a teaching perspective at university level. We believe that
students with this approach obtain a higher level of appreciation and skills for
thinking abstractly and precisely.

1 Introduction

Having recently returned to academia from a long period in industry we think that it is
paramount to be able to motivate students with realistic examples. This gives the stu-
dents confidence in the ability to apply formal techniques industrially. Seeing a formal
technique applied to trivial examples such as stacks and dictionaries does not provide
the students with an appreciation of the ability to apply the technique for real system
development.

The two 5 ECTS point MSc level courses that is the focus of this short paper are
based on the new VDM++ book [1]. In addition, practical projects are arranged for the
students. Here they need to learn abstraction “by doing” it themselves on their projects.
Note that although the projects carried out by the students are not large they are all
inspired from real systems and thus have more of a flavor of realism. The target for
these courses are primarily students studying the development of embedded software-
based systems. In this context the objective of the courses is to equip the students with
skills regarding abstraction and rigour. Thus the examples used are on purpose selected
as reactive systems.

Each course lasts seven weeks each of which consists of one lesson lecturing the-
ory from the book and one lesson where each group presents the status of their project
(http://kurser.iha.dk/eit/tivdm1/). The division of the material between
the courses is made such that in the first course focus is on teaching the basic modelling
principles using a combination of UML and VDM++. In the second course concurrency
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and real-time aspects are then introduced and more attention is paid to alternative val-
idation techniques. In this way the students are forced to start with abstract modelling
and the subsequently move downwards on the abstraction ladder gradually.

In both courses the students have a substantial project to carry out. The intent is that
in the first course a more abstract model of the project is made. A more elaborate model
of the same project is then made in the second course. The projects form the basis for
an oral examination used to assess the abilities of the students after each of the courses.

2 Structure of the first course

The lessons in the first course are structured as:

1. Introduction and development process (chapter 1+2 from [1])
2. VDMTOOLS and logic (chapter 3 from [1])
3. Defining data and functionality (chapter 4 + 5 from [1])
4. Modeling using unordered collections (chapter 6 from [1])
5. Modeling using ordered collections (chapter 7 from [1])
6. Modeling relationships (chapter 8 from [1])
7. Course evaluation and repetition

All these lectures are presented with a high level of student interaction. Typically,
practical questions are presented on the slides right after a subject has been introduced.
The students know that in effect they take turns in answering these questions. As a
consequence they need to stay alert and active to be able to answer the next question
they get. This has the consequence that the students learn the new concepts over a longer
period than if they just prepare for an oral exam. We believe that learning the topics in
this fashion increase the retention rate. The subsequent evaluation by the students also
showed that they really appreciated this approach (see Section 3).

The suggested projects for the students to work on initially was:

1. SAFER (Simplified Aid For EVA (Extra Vehicular Activity) Rescue) from [2]
2. Production Cell from [3]
3. Cash Dispenser from [4]
4. CyberRail from [5]
5. Conveyor belt from “Automation BSc course”
6. Projects from “Distributed Real-Time Systems” MSc course
7. Projects from “Specification of IT Systems” MSc course
8. Suggest your own project

For some of these projects substantial VDM modelling has already been taking
place whereas for others only ideas were present and/or models are provided in differ-
ent formalisms. However, the students that selected projects where substantial VDM
modelling had already been done, naturally had to read and understand the existing
models first. Afterwards they would suggest what kind of alternations they would like
to make to the model. In this way they have been trained in the ability to comprehend a
model made by someone else. For the students selecting projects without any existing
VDM modelling more freedom was present. On the other hand this meant that their
main challenge was to decide upon the right level of abstraction.

The projects selected by the different groups of students were:
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1. SAFER
2. Production Cell
3. Cash Dispenser
4. CyberRail
5. Car radio navigation system
6. Self navigating vehicle
7. Personal Medical Unit

The three latter projects are all projects suggested by the students themselves. All
groups had to use both VDMTOOLS and Rational Rose for their modelling. No spe-
cific training in the use of these tools where provided, but it turned out that a little more
practical introduction to VDMTOOLS would have been an advantage1. The overall ob-
jective for the projects was to let the students learn to think in terms of abstract models
by doing it themselves. They should all end up with a consistent and abstract VDM++
model that could also be viewed as a UML class diagram. In addition the models should
be validated using traditional test techniques with the VDMTOOLS interpreter.

During the course there was a strict number of milestones with one presentation
about progress made by each group per week. In this way the internal communication
between the different groups was also facilitated because they had to give each other
feedback. Each group of students have handed in a report about their project and these
will be made publically available. Unfortunately some of the reports are in Danish so
it will only be partly useful for international teachers. We will consider in the future to
make it mandatory to all students writing their reports in English.

3 Course Evaluation

After each course a standard course evaluation is carried out at the Engineering College
of Aarhus. The questions used in this questionaire are:

1. What is your judgement of the course relevance in your study?
2. What is your judgement of the difficulty of the course?
3. What is your judgement of the course material used?
4. What is your judgement of the teacher as a whole?
5. How do you like the education form?
6. How has the internal relationship been between the students?

All 15 students attending this course returned the questionaire with the following
results to the different questions (in the same order):

1. 6 major relevance and 9 suitable relevance (none for small or very small)
2. 2 easy, 8 suitable and 5 difficult (none for very difficult)
3. 5 very good and 10 good (none for less good or bad)
4. 12 very good and 3 good (none for less good or bad)

1 Our plans for the next academic year include conduction a few small practical exercises with
VDMTOOLS together with the students during the first week of the course to accomodate for
this.
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5. 4 very good, 10 good and 1 less good (none for bad)
6. 6 very good and 9 good (none for less good or bad).

Thus, although this course was very different from other courses that the students
have had during their studies the overall impression was that this was worthwhile. We
believe that even if not all students use formal methods in their subsequent career at least
they will have obtained a much higher appreciation for performing abstract considera-
tions and will be dedicated to a higher level of professionalism. Certainly the additional
comments made by the students indicated that they now have become motivated to look
more into this direction.

With respect to the projects carried out by the students it turned out that all the
projects were appropriate for the students to be able to acquire the necessary experi-
ence in trying on their own to produce and analyse abstract VDM++ models. However,
projects stemming from a pre-existing VDM model were less challenging for the stu-
dents because an appropriate level of abstraction was already found. Thus, that kind of
projects are most appropriate for the weaker students. On the other hand the projects
where no model exists prior to the students undertaking this job there is potential to
explore and form the project to more easily ensure as much coverage of the curricium
for the course in their models.

4 Performance at the Exam

At the final exam for the course the students had been instructed to prepare an oral
presentation of 10 minutes (maximum) without the use of multimedia support. They
had also been instructed that in order to examine their skills they should not expect to be
allowed to complete the presentation without interruption. Each student was examined
for 15 minutes and 5 additional minutes were used to decide upon the grade with the
external examiner. The interruptions was made harder, the better the report handed in
was judged in advance, and the better the student performed in the oral presentation. The
examination attempted to cover as much of the curriculum as possible both in depth and
in breath.

In Denmark the grading system goes from 0 to 13 and the grade 6 is needed to pass
an exam. The normal average for courses is 8 which is the stable average performance
by a student. In this case the students performed outstandingly well and demonstrated
great insight into the curriculum. An overview of the grades granted is given in Table 1.

Grade number of students
8 1
9 2
10 5
11 6
13 1

Table 1. Exam results from the first VDM++ course
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I have not experienced any exams in the past at the MSc level where the grades
have been this high (an average above 10 where it would normally be around 8). Thus,
there are reasons to believe that the teaching approach chosen in this course actually
has a positive effect on the learning ability of the students and their appreciation of the
subject.

5 Structure of the second course

This course is only planned and it will be starting October 2006 so it is naturally still to
early to evaluate its value. The lectures in this course are structured as:

1. Model Structuring and Combining Views (chapter 9 and 10 from [1])
2. Concurrency in VDM++ (chapter 12 from [1])
3. Real-time modelling in VDM++ over two weeks
4. Distributed systems in VDM++
5. Model Quality (chapter 13 from [1])
6. Course evaluation and repetition

In [1] there is no coverage of real-time or distribution. Thus, the real-time and dis-
tribution subjects will be taught using a combination of [6] and [7]. Both of these pobli-
cations naturally lean on from [1] so the main difference for the students here is the kind
of primitives used to describe models. This will be experimental in the sense that this
is very new research that recently has been published. From a practical point of view
the main risk here is that the tool support for these extensions are under development at
the moment. It will be interesting to see how this develops, since the students will most
likely be the first real users of the new tool support.

6 Concluding Remarks

We believe that a pragmatic approach to introducing light-weight use of formal tech-
niques with lots of hands-on experience for the students is a very efficient way to get
them interested in using this kind of technology once they have graduated and started
working in industry.

We also think that the principles for modelling systems at different abstraction levels
without having to do formal refinement justifications is a sound one, because it is our
experience that if developers are able to master where to put the appropriate level of
abstraction the likelihood of successful development is increased significantly.
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Abstract. This paper describes an undergraduate course taught at the University
of Newcastle upon Tyne titled Understanding Programming Languages. The main
thrust of the course is to understand how language concepts can be modelled and
explored using semantics. Specifically, structural operational semantics (SOS) is
taught as a convenient and light-weight way of recording and experimenting with
features of procedural programming languages. We outline the content, discuss
the contentious issue of tool support and relate experiences.

1 Introduction

The course discussed in this paper1 is entitled “Understanding Programming Languages”.2

(For brevity, the course is referred to below by its number “CSC334”.) It teaches the
modelling of concepts from programming languages. Formally, it covers operational
semantics using parts of VDM for the formal notation (including an unconventional
emphasis on “abstract syntax” (see Section 3)) but tries not to labour the formalism
itself. The teaching objectives are about the student being able to read a formal (opera-
tional) semantics and to experiment with language ideas by sketching a model.

The School of Computing Science at University of Newcastle Upon Tyne offers
several undergraduate “degree programmes” each of which includes CSC334 as an op-
tional final year course. The course is taught to a wide variety of students with varying
degrees of experience with formal methods.

There are no prerequisite courses for the CSC334 course, but students from most
degree programmes take compulsory 2nd year courses that teach VDM as an introduc-
tion to formal methods (the textbook used for this is [2]). Interestingly, the School of
Computing Science does not offer a course on compilers and this has to be taken into
account in the delivery of CSC334.

2 Instructor’s Motivation

There are several reasons for teaching formal semantics at undergraduate level. Prob-
ably the strongest can be motivated from the “half life of knowledge” that can be im-
parted: programming languages come and go — over previous ten year periods, there

1 A longer version of this paper can be found in [1].
2 A book with the same title is being written.
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have been complete changes in the fortunes of one or another language (e.g. Pascal,
Modula-n, Ada, C, C++ and Java just within main line procedural languages). Any lan-
guage that we teach in a university course today might be added to the list of faintly
remembered languages in a decade’s time. It therefore behoves academics to try to
teach something which will last longer and give students a way to look at future lan-
guages. There are of course very good books on comparative languages (a recent ex-
ample is [3]). The fact that so many of the programming languages –even those which
are widely used– exhibit really bad design decisions is also worrying and indicates that
there is a need to give future computer scientists ways to explore ideas more economi-
cally than by building a compiler.

The idea of teaching students a way to model concepts in programming languages
is attractive in itself but it also provides an opportunity to say things about the fun-
damental nature of Informatics. Computing science is not a natural science in which
one is stuck with modelling the universe as it exists; neither is it usefully viewed as
a branch of mathematics as one cannot ignore what can be realized in an engineering
sense. This tension is nowhere more clearly seen than in the design of programming
languages. Language designers must find a compromise between clarity of expression
of programs written in the language and reasonable performance of implementations of
the language. Of course, this list could be extended to include all sorts of issues like the
ability to diagnose programmers’ errors but the essential tension is that indicated above.

To actually model these concepts we use operational semantics. The essence of
operational semantics is that it provides what John McCarthy called an “abstract inter-
preter” for the language under study. Both words are important. An interpreter makes
clear how programs are executed; for an imperative language, it shows how statements
cause changes to the state of the computation. The importance of this being described
“abstractly” cannot be overemphasized: the interpretation can be understood and rea-
soned about because it is presented in terms of abstract objects.

This interpretative framework allows the students to reason about the language in
terms of the overall system. This includes the intermediate configurations generated
during a system’s operations, and is in sharp contrast to semantic definitions that are
defined only in terms of a mapping from inputs to outputs.

The course then explores language definition questions. Concerns about the separa-
tion of syntactic and semantic issues, and the problems inherent in extending a language
with new features are handled; practical coursework is used to illustrate how interac-
tions between language features can have deep structural implications for the language.
The nature of procedural languages is covered followed later in the course by object-
oriented languages, and the two styles are contrasted by examining the roles procedures
and objects play. Typing of values and variables in a language is handled mostly at the
“static-checker” level, unfortunately the scope of the course does not permit a thorough
coverage of the error-handling techniques required for dynamic typing. The topic has,
however, come up during the practical sessions with some frequency. Lastly, the link
between programs and data in the overall system has been covered as time permitted.3

3 Though we do not go into the LISP-like notions of programs as data, some students have made
the connection independently.
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3 Technical material covered

Because the interest is in modelling rather than the meta-theory of semantics, the course
teaches by example. A series of three language definitions are tackled: Base, Blocks, and
COOL.

– Base introduces the basic idea of states and abstract interpretation; after beginning
with a simple deterministic language, concurrency is used to explain the need to
cope with non-determinism; a trivial (and rather dangerous) form of threads with
sequences of unguarded assignments is modeled using “Plotkin rules” (see Section
4)

– Blocks includes Algol-like blocks and procedures; it is used to show how the key
idea of an “environment” can be employed to model sharing and the normal range
of parameter passing mechanisms are discussed

– COOL is a concurrent object-based language; this is where the rule form of descrip-
tion really pays off. The language is rich enough to explore many alternatives.

The natural division of discussing syntax and semantics (and the difficult to place
issue of context dependencies) is used. Before addressing the semantics of a language,
it is necessary to delimit the language to be described. A traditional concrete syntax
defines the strings of a language and suggests a parsing of any valid string. The publica-
tion of ALGOL-60 [4] solved the problem of documenting the syntax of programming
languages: “(E)BNF” offers an adequate notation for defining the set of strings of a lan-
guage. Most texts on semantics are content to write semantic rules in terms of concrete
syntax. Although this is convenient for small definitions, it really does not scale up to
larger languages. We therefore base everything on Abstract Syntax descriptions, and in
particular, we use VDM-style records to define the structure of the language.

Using abstract syntax has the advantage of immediately getting the students to think
about the information content of a program rather than bothering about the marks in-
serted just as parsing aids. There is an additional bonus that pattern matching with
abstract objects gives a nice way of defining functions and rules by separating the defi-
nitions into cases.

The class of Programs defined by any context free syntax (concrete or abstract) is
too large in the sense that things like type constraints are not required to hold. There
are many ways of describing Context Conditions but we prefer to write straightforward
recursive predicates over abstract programs and static environments rather than, for
example, use type theory as in [5].

So, given a class of “well formed” abstract programs, how do we give the semantics?
McCarthy’s formal description of “micro-ALGOL” [6] defines an “abstract interpreter”
which takes a Program and a starting state and delivers the final state. This “abstract
interpreter” is defined in terms of recursive functions over statements and expressions.

We have taught both recursive functions and Plotkin rules in the course as means of
defining the semantics of the language. However, as of this past year we have dropped
them in favour of focusing solely on Plotkin rules.
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4 Plotkin rules

Non-determinism arises in many ways in programming languages. Certainly the most
interesting cause is concurrency but it is also possible to illustrate via non-deterministic
constructs like Dijkstra’s “guarded commands”. Unfortunately, McCarthy’s idea to present
an abstract interpreter by recursive functions does not easily cope with non-determinacy.
Defining the recursive functions so that they produce a set of states is not convenient
because of the bookkeeping requirements.

In 1981, Gordon Plotkin produced the technical report on “Structural Operational
Semantics”4 [9]. This widely photo-copied contribution revived interest in operational
semantics.

The advantage of the move to such a rule presentation is the natural way of pre-
senting non-determinacy. Many features of programming languages give rise to non-
determinacy in the sense that more than one state can result from a given (program and)
starting state. This natural expression extends well to concurrent languages. The advan-
tage of the rule format appears to be that the non-determinacy has been factored out to
a “meta-level” at which the choice of order of rule application has been separated from
the link between text and states. For this reason, the complications of writing a function
which directly defines the set of possible final states are avoided. Here is a case where
the notation used to express the concept of relations (on states) is crucial.

5 Tool support

A key question for teaching CSC334 has been the use of tool support. Tool support has
only been used in the teaching of CSC334 during some of the years it has been offered,
and is actually an addition of the second author. The inclusion of tool support has both
deepened the understanding of some students, as well as increased the confusion for
others. There is the extra burden of learning to use the tool as well as the differences
between the tool’s ASCII syntax and the classroom syntax. Because of this, the tool
has been an optional but fully supported part of the course, and the choice of use was
entirely left to the student.

The tool used is the CSK VDMTools R© [10,11] which many of the CSC334 students
have experience of from other courses. It provides an environment in which a VDM
specification may be syntax- and type-checked and explicit functions may be executed
via an interpreter. The students are provided with language specifications translated into
ASCII VDM-SL, notably with the semantic rules translated into functions so that they
can be executed in the Toolbox interpreter. This translation, in some cases, produces
functions that are significantly different than the original semantic rules that are taught
in class.

Beyond the syntactic differences between the original semantic rules and their en-
coding in the tool, there are often cases where the two versions of a semantic rule or
function are wildly different. This is most evident when translating an implicit defini-
tion: the tool cannot directly encode implicit definitions, so an explicit equivalent must

4 This material, together with a companion note on its origins [7], has finally been published in
a journal [8].
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be created. Unfortunately, the process of doing this often results in a large, ugly and
confusing specification. It is of no practical benefit for the students to study and com-
prehend these explicit definitions; it is important that they focus on the meaning of the
semantics and not the implementation issues. Because of this the students are shielded
from much of the underlying explicit implementation by separating it from the main
language specification through the use of mechanisms made available by the tool.

It is our belief that for some students at least, the benefits of using the tool outweigh
the negatives. Through use of the tool, the students can easily identify bugs in their
VDM syntax; quickly spot type errors in their specifications; and execute test programs
to test and improve their understanding.

The vast majority of mistakes made are errors in the semantic definitions and therein
lies the major benefit of using the tool. The execution of test programs highlights such
semantic slips and allows greater understanding by directly showing students the con-
sequences of their design decisions.

6 Pedagogic experience

This course is evaluated positively by the students who take it. As an optional course,
they obviously tend to self-select and about one quarter of the potential cohort choose
to pursue it. The limited number (approximately 20–40 students) makes it possible to
adopt a reactive learning environment experimenting with ideas from the students.

The practical work of CSC334 is based heavily on problem solving. Threading
through the semester is a large project to make non-trivial extensions to the provided
language definitions, and the lecturer tries to keep things timed so that he is introducing
concepts just before they are needed. The format of the course’s final exam stresses
problem solving: it is an open-book exam, and is based on a language specification
included from the lectures.

One of the course’s final events has evolved over the past few years. As initially run,
a few of the students were chosen to study one of the language specifications used in
the lectures5, and they would have the chance to grill the lecturer on the choices made
in the design of that language. Their role included gathering comments and questions
from their classmates, though the unchosen students also had the opportunity to ask
questions through the session. This walkthrough of the language had the side-effect of
debugging the language design; the design errors found by the were very instructive.

This exercise transformed first into the lecturer redeveloping a portion of one of
the specifications during the lectures, then in the following year, a larger portion of the
specification was redeveloped. These lectures had several aims: eliciting direct student
participation in the writing of the specification6; showing how errors are made during
specification and how to both discover and correct them; and to give a real demonstra-
tion of the kind of thinking that is needed to do this kind of development — teaching
directly by example. While the lecturer did have the language specification to hand, its
use was kept to a minimum: mainly to keep the names of the variables synchronized
with their notes.

5 The same specification that would be used in that year’s exam.
6 Mainly by continually asking the class what else was needed for a given rule.
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There is, of course, much related material that could usefully be taught on seman-
tics. Textbooks such as [12] and [13] provide excellent introductions to the basic notions
of semantics, but –to our taste– do so without a practical context. Their concern with
meta-properties of the language would motivate our students less well than experiments
with modelling a range of programming language issues.

A preliminary analysis of the feedback from the students suggests that they consider
the practical portion of the course to be the most effective in gaining an understanding
of the core course ideas. We would conjecture that this arises from the problem-oriented
nature of the course: the students are warned at the start of the course that the exam is a
problem-based, and to pass the exam they will have to apply the course material.

From both the feedback as well as from discussions with the small groups during
practical sessions it appears that the students agree with the notion that the course con-
tent has a longer “half-life” than language-specific details. Part of this, we believe, is the
realization that design decisions made in languages can be quite arbitrary when there
are several ways to model a given feature.

Tool support for this course is explored in greater depth in [1]; analysis of the related
effects was omitted from this version as the last run of the course did not use the tool.
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Introduction

In the spring of 2006 we offered a graduate seminar designed to introduce graduate stu-
dents to the tools and techniques that are being used to construct dependable systems.
Our target audience was a group of graduate students who are or will be conducting
research in software engineering, particularly in the dependable systems arena. We had
several goals with this course. First, we wanted to familiarize these students with the
state of the art and practice so that they would be better able to make research con-
tributions. Second, we wanted to help the students learn about scientific critique by
asking them to assess the strengths and weaknesses of the tools, both through review
of the literature written about the tools and through hands-on experience. Finally, we
wanted them to compare some of the tools within this class as an initial effort in helping
both researchers and practitioners choose which tools are most suited for the kinds of
problems encountered in our profession.

We chose to focus on two distinct topic areas: model checking and model-based
development. In either area the students had much to learn, and so either could have
been the focus of an entire course. We chose to cover both primarily because these are
both important topic areas and secondarily to determine the feasibility of adequately
covering both areas in one course. We believe this was a good approach to take, be-
cause there is some overlap between the two areas, and because the difference between
them underlines the need to assess the suitability of particular analysis techniques when
solving problems.

We did not intend to make the students expert, or indeed proficient, in the use of
any one model checking or model-based development tool. Rather, we aimed to make
students familiar with the technical concepts behind the tools we covered, the kinds of
problems to which each tool is applicable, and the power, capability, and limitations of
each tool. Each student chose one particular tool to study in more depth than the others,
providing the class with insight into the tool and providing general knowledge about the
motivation behind that tool. Then the class as a whole learned what the student experts
taught, and discussed each student’s tool in isolation and with respect to the others. In
this way, we wanted to provoke thought and discussion about how and when the tools
should be used, the ways in which each tool succeeded or failed, and how the tools
compared to each other.
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Course outline

At the beginning of the course, each student selected a model checker or model-based
development tool. He or she then became solely responsible for presenting it to the
other students throughout the course. Students chose the following tools:

• SLAM A model checker for device drivers developed by Microsoft
[1].

• BLAST A model checker for code-level properties developed at the
University of California, Berkeley [2].

• Kronos A model checker for complex real-time systems developed at
Verimag [3].

• Spin A model checker for concurrent systems originally developed
at Bell Labs [4].

• SCRtool A specification tool developed at the Naval Research Labora-
tory [5].

• Perfect Developer A design-by-contract development tool from Escher Tech-
nologies [6].

• SCADE A model-based development tool produced by Esterel Tech-
nologies [7].

• Simulink A model-based development tool from The MathWorks [8].

We divided the course into three phases: (1) presentations; (2) laboratory exercises;
and (3) comparison discussions. Our course was scheduled for two 75-minute meetings
per week over a 15-week semester: the presentation phase occupied the first 9 weeks;
the laboratory exercise phase occupied the next 4 weeks, and the comparison presenta-
tion phase occupied the final 2 weeks of the course.

In the presentation phase, each student gave a 75-minute presentation in class to
familiarize the other students with his or her chosen tool. These initial presentations
were intended to convey the overall purpose, organization, and capability of each tool.
During each presentation, we encouraged all students to propose questions that would
help to evaluate the purpose, capability, and limitation of the tool being presented. In
order to prepare students in the class for a detailed presentation and to ask probing
questions, the presenting student selected and assigned pre-reading material from the
available literature.

In the laboratory phase, each student prepared and directed a 75-minute laboratory
session designed to give the other students the opportunity to get hands-on experience
with his or her chosen tool. Students were instructed to prepare laboratory exercises that
familiarized other students with the tool’s user interface, the process of using the tool,
and the tool’s merits.

The comparison phase was split into two parts: model checking and model-based
development. For each part, the students who had chosen that type of tool collectively
prepared a presentation comparing and contrasting their tools, which was followed by
general discussion lasting the remainder of the 75-minute course period.

The presentations, laboratory exercises, and comparison discussions did not occupy
all of the scheduled class meetings. In order to fill the remaining meetings, we scheduled
discussions of related papers and guest lectures on related topics. During the presenta-
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tion phase in particular, we used this technique to give students time to acquire and
study their tools.

Students in the course were asked to prepare both a laboratory write-up and a paper
describing and analyzing their chosen tool. The laboratory write-ups included a descrip-
tion of the laboratory and all of the materials used in it. The papers were required to
be at least 7 pages in length and to include: (1) a description of the tool and its devel-
opers; (2) a summary of the problem it was created to address; (3) a discussion of its
capabilities; (4) an analysis of the problems to which it is suited and unsuited; and (5) a
comparison with the other tools studied in class. Course grades were based upon partic-
ipation (5%), the presentation (10%), laboratory draft (10%), final laboratory write-up
(30%), draft project report (10%), and final project report (35%).

Outside of class, each student investigated his or her chosen tool, prepared a presen-
tation on it, read assigned reading, prepared a laboratory session, and wrote a project
report. Of the students responding to a questionnaire distributed at the end of the course,
2 reported spending 1-3 hours per week on these tasks outside of class, 1 reported spend-
ing 4-6 hours, and 2 reported spending 7-9 hours.

Some of the tools we examined were not freely available, but in most cases we were
able to get the tool’s manufacturer to allow us to use the tool in the course without cost.
In the remaining cases we located a similar, freely available tool and asked the student
present that instead.

An example course unit: SCRtool

As an example of the approach that we used, we describe one student’s efforts to present
SCRtool, the prototype tool built by the Naval Research Laboratory (NRL) to support
the Software Cost Reduction (SCR) tabular notation. Note that the preparation of the
material described in this section was part of the class itself. The student who presented
the SCRtool (one of us, Graydon) developed the complete presentation and laboratory,
and participated in the preparation of the discussion.

A product of research at the NRL by Heitmeyer et. al., SCRtool is a prototype
tool intended to allow software engineers to create concise, unambiguous requirements
specifications for embedded systems. The tool is designed around the tabular specifica-
tion notation developed by Heninger and Parnas as part of the SCR efforts.

The presentation

Before the presenting this work, we asked students to read Heitmeyer’s “Managing
Complexity in Software Development with Formally Based Tools” [1] and Heninger’s
“Specifying Software Requirements for Complex Systems: New Techniques and Their
Applications” [10]. We selected the former paper because it provides a short, accessi-
ble description of the SCRtool team’s vision for tools. We chose the latter because it
describes both a forebear of the tabular notation used by SCRtool, and because it illus-
trates the thinking that underlies that tabular notation. There are numerous papers on
the SCRtool and the theorem-proving technology of which it makes use, but we felt
that the papers we selected provided a good introduction to the kinds of problems the
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SCRtool is intended for use with and the overall specification approach advocated by
its authors.

Because the tool’s authors were in the process of preparing a new version of SCR-
tool for release at the time of the presentation and suggested that we wait for this version
rather than use an older one, we elected to focus the presentation on the tabular SCR
notation rather than the tool itself. We were able to obtain the new version after the
presentation.

The laboratory exercise

We wanted to expose each student to the main features of the SCRtool. To accomplish
this, we designed the laboratory activity in which each student would be required to
complete and validate a simple specification using those features. The example speci-
fication was for an embedded controller for an automatic Japanese-style bath tub with
built-in heating and automatic filling and draining. The laboratory handout given to stu-
dents described the system’s purpose and intended behavior, enumerated the system’s
sensors and actuators, and then guided the students through the process of using SCR-
tool to complete and validate the specification. In order to give students examples to
work from and to limit the amount of work needed to complete the activity, the labora-
tory materials included a partially-completed specification.

Monitored and controlled variables. SCR specifications model the world in terms
of monitored variables, which represent input from sensors, and controlled variables,
which represent output to actuators. Software is modeled as a collection of continu-
ous and demand functions that take input from monitored variables and determine the
value of controlled variables. In order to expose students to SCRtool’s specification
editor we asked them to add variable declarations to the partially-completed specifica-
tion as needed to complete it. Since the laboratory handout listed all of the system’s
sensors and actuators, and since we included all of the needed variable types in the
partially-complete specification, students needed only to add variables representing a
small number of actuators.

Modes and mode transition tables. In order to simplify function description, SCR
specifications declare mode classes, each of which divides system state into a number
of modes. As monitored variables change, mode transition tables dictate the resulting
effect upon the system’s modes. The partially-complete specification included a mode
class with all of the modes needed to describe the system and the incomplete mode
transition table shown in Table 1. In the lab handout, we explained that in the SCR
event notation the expression @T(x) specifies the moment when x becomes true, in-
troduced the optional WHEN y guard clause that specifies the conditions under which
the event causes the mode transition, and asked the students to use their knowledge of
the system’s intended functionality to complete the table.

Condition and event tables. SCR specifications model continuous and demand func-
tions using condition and event tables, respectively. Each kind of table specifies the
values taken on by one controlled variable under different modes. Rows in both tables
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represent modes, and columns in both table represent values. In condition tables cells
contain logical tests of monitored variable values such that if a cell in the row repre-
senting the current mode evaluates to true, the controlled variable will have the value
represented by that cell’s column. In event tables cells contain event expressions, so that
when the event in the row representing the current mode occurs, the controlled variable
is assigned the value corresponding to the cell’s column.

In the partially-complete specification, we included an example condition table and
an example event table. Students were directed to examine these and then create tables
defining the value of the remaining controlled variables.

Checking. SCRtool provides built-in checking for disjointness, coverage, and type
correctness. Disjointness and coverage testing ensure that condition and event tables
specify exactly one value for the variables they define under all circumstances. Type
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checking catches syntax errors in table cells, initial conditions that are inconsistent with
function definitions, uses of a variable inconsistent with its type, and the like. These
checks are fully automatic, take only seconds, and can be started by clicking one tool-
bar icon. We wanted to demonstrate the power and simplicity of these checks, so we
asked students to check their specifications after they deemed them complete. We did
not introduce any deliberate errors into the provided specification, but, since students
made mistakes when completing the specification, they were able to see the checker’s
power and error-reporting mechanism in action.

Assertions. SCRtool permits specification developers to declare assertions representing
properties that must hold at all times and provides an automatic theorem prover for
proving these assertions. We asked students to write an assertion representing a safety
property for the system and use the tool’s built-in theorem prover to prove it. Theorem
proving in SCRtool is a deliberately push-button activity, and we wanted to demonstrate
how accessible it is to people unfamiliar with the underlying prover and its strategies.

Unfortunately the standard built-in prover was unable to prove the property we spec-
ified quickly enough for all students to be able to complete this part of the laboratory
exercise. Because the prover took fifteen minutes or more, depending upon the exact
formulation of the property and the speed of the computer, only one out of six groups
managed to prove the property during the 75-minute laboratory period. Although our
example’s illustration of the runtime this prover requires is arguably instructive, were
we to repeat this laboratory activity, we would chose an example safety property that
could be proved by the default prover in seconds so that we could use our limited lab
time to expose the students to as many aspects of the tool as possible.

Simulation. While students were waiting for the theorem prover, we demonstrated
the use of SCRtool’s simulator using an instructor’s machine. Again, we wanted to
demonstrate that the simulator is both automatic and simple. Clicking one tool-bar icon
causes the system to generate and launch a basic simulator that allows the user to input
monitored variable values and changes using standard dialog-box controls and observe
the system’s reactions.

Results of comparison discussion

After the laboratory activities, the two groups of students-those who chose model check-
ers and those who chose model-based development tools-each prepared a short presen-
tation comparing and contrasting the tools. Each presentation was followed by a dis-
cussion involving the whole class. The presentation on model-based development tools
raised the observations summarized below. We include this list of observations to illus-
trate the level of comprehension of the technical area, the tools, and their capabilities
achieved by the students. The details of the observations are not especially significant.

The kind of software the tool is intended for. SCRtool is intended for the specifica-
tion of embedded control systems. Perfect Developer and SCADE deliberately target
safety-related systems with stringent dependability requirements. Simulink focuses on
dynamic systems such as signal processing and communications systems.
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The kind of developer the tool is aimed at. SCRtool is intended for use by software
engineers with no particular discrete math or formal methods skills. Perfect Developer,
in contrast, is aimed at software engineers with strong discrete math skills. Simulink
and SCADE are intended for use by control engineers, not software engineers, and so
describe systems using signal diagrams.

The tool’s limitations. The present-generation SCRtool does not support any collec-
tion type such as an array, list, set, or map, and so cannot be used to specify systems
whose state includes such a collection. (This capability may be added to a future re-
lease.) Perfect Developer requires the developer to write procedural code but offers no
way to express concurrency or synchronization. Simulink lacks both a precisely defined
semantics and theorem-proving capability. SCADE, like Perfect Developer, offers no
way to express concurrency. None of these tools offers the ability to elegantly specify
or analyze real-time behavior.

The guarantees made by the tool. SCRtool can guarantee that specifications are com-
plete (in the sense that all tables are fully specified) and unambiguous, and can prove as-
sertions. Perfect Developer and SCADE can guarantee that the implementation matches
the specification. Simulink offers only simulation capabilities.

The V&V activities supported by the tool. All of the tools we studied support simu-
lation. SCRtool and SCADE also offer proof of assertions. Simulink checks assertions
during simulation.

The tool’s code-generation capabilities. SCRtool generates Java code, but this code is
intended for simulation rather than production use. Perfect Developer can generate C,
Java or Ada code. Simulink can generate C or Ada. SCADE can generate C, Ada, and
SPARK Ada.

The tool’s usability. SCRtool’s GUI needs refinement, but the specification model is
simple. Perfect Developer has a much steeper learning curve and its documentation
could be enhanced by a context-sensitive lookup feature. Simulink has an intuitive in-
terface, good documentation, and the solid support of its makers. SCADE likewise has
an intuitive user, although some students complained that the GUI was so cluttered as to
leave little room for diagrams and that the program did not draw and flow wires cleanly.

The tool’s scalability. Citing literature, students pointed out that SCR has been used on
sizeable projects including thousands of tables. Perfect Developer can handle as much
code as developers are willing to write. Simulink and SCADE allow functional blocks
to be composed so that the size of a project is limited only by the system’s available
memory.

Conclusion

We have presented details of a course taught at the University of Virginia designed
to introduce students to a variety of elements of formal methods by examination of
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state-of-the-art tools. The approach used was to have each student in the class study a
single tool, and for that student to: (1) present a lecture on the tool; (2) to conduct a
laboratory exercise in the use of the tool; and (3) to create a final report analyzing the
tool’s strengths and weaknesses. The goal was to familiarize the students in the class
with a variety of tools and to encourage them in critical thinking in the application of
formal methods by asking them to assess the suitability of particular techniques.

While we have no sure way of telling to what extent the course met its goals, we
feel that it was a success. The comments and course reviews from the members of the
class were positive. The final reports were overall very high quality, and the compar-
isons of the different tools were particularly impressive. The classification scheme for
dimensions of applicability of model-based development tools are described above; the
classification scheme for the model checking tools was equally impressive. All of the
courseware that was developed (presentations, laboratories, summary discussions, tool
reports) are available from the authors.

Finally, we were pleased with the interest the students showed in teaching others.
We presented the option to emphasize the laboratory activities to the students as a choice
that they could make, telling them that we would reduce the work required for the
final report somewhat if they chose to put effort into developing laboratory exercises.
The feedback for this option was very strong, with no one objecting to it (other than
expressing concerns about workload) and several students enthusiastically supporting
it. We feel that there is significant potential for combining results from future similar
courses, at the University of Virginia and perhaps at other universities, to start to develop
a more comprehensive body of knowledge on how to teach the state of the art to senior
undergraduates as an overall technology transfer initiative.

Acknowledgements

We thank Ralph Jeffords of the Naval Research Laboratory for his assistance in obtain-
ing and installing SCRtool at the University of Virginia; and the other tool vendors—
Escher Technologies, Esterel Technologies, iLogix, and the MathWorks—for allowing
us to use their tools. We also thank all of the students who took this class for their ef-
forts and support for the idea of trying this approach to introducing formal methods.
We thank Kendra Schmid, Michael Spiegel, and Benjamin Taitelbaum in particular for
their comments on SCADE, Perfect Developer, and Simulink, respectively.

References

1. “SLAM Project.” Internet: http://research.microsoft.com/slam, [21 July 2006].
2. “BLAST.” Internet: http://embedded.eecs.berkeley.edu/blast, [21 July 2006].
3. “Kronos Home Page.” Internet: http://www-verimag.imag.fr/TEMPORISE/kronos, [21 July

2006].
4. “Spin - Formal Verification.” Internet: http://spinroot.com/spin/whatispin.html, [14 July

2006].
5. “Automatic Construction of High Assurance Systems from Requirements Specifications.” In-

ternet: http://chacs.nrl.navy.mil/personnel/heitmeyer.html, [21 July 2006].



A Graduate Seminar in Tools and Techniques 43

6. “Escher Technologies - Products.” Internet: http://www.eschertech.com/products/ index.php,
[21 July 2006].

7. “SCADE Suite :: Products.” Internet: http://www.esterel-technologies.com/products/scade-
suite/overview.html, [21 July 2006].

8. “The MathWorks - Simulink R© - Simulation and Model-Based Design.” Internet:
http://www.mathworks.com/products/simulink, [21 July 2006].

9. C. Heitmeyer. “Managing Complexity in Software Development with Formally Based Tools.”
Electronic Notes in Theoretical Computer Science, vol. 108, 2004.

10. K. Heninger. “Specifying Software Requirements for Complex Systems: New Techniques
and Their Application.” IEEE Transactions on Software Engineering, vol. SE-6, no. 1, January
1980.



44 P.J. Graydon et al.



A Playful Approach to Formal Models — A field report
on teaching modeling fundamentals at middle school

Katharina Spies, Bernhard Schätz

Technical University Munich
Department of Computer Science IV

Boltzmannstr.3, D-85748 Garching (Munich)
Tel. +49/89 289-17800/17826

Fax +49/89 289-17307
spiesk | schaetz@in.tum.de

Abstract. Formal methods – besides supplying a set of generally mathematics-
oriented formalisms – provide a collection of elementary concepts capturing the
essential aspects of (software) systems independent of the chosen formalism. Get-
ting a good intuition of these elementary concepts (e.g., variable, value, state,
event) is a prime requisite to education in formal methods. The introduction of
Informatics in German middle schools offers an opportunity to introduce these
modeling concepts in a non-mathematical fashion to foster their early and intu-
itive understanding as a basis for further education.
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1 Teaching CS Fundamentals at Middle School

Models have always been the prime tools of computer science. Traditionally, there have
been two fractions in computer science dealing with them. On the one hand, software
engineers have applied them due to their possibility to extract essential aspects from
otherwise too complex systems. Modern modeling techniques cover these points in dif-
ferent flavours, especially with the UML in combination with colloquial descriptions;
the fast adoption of these approaches is most likely due to their (assumed) understand-
ability, often achieved at the price of impreciseness and informality. On the other hand,
formal methods have traditionally applied models to obtain precise, analyzable and even
verifiable descriptions of a system. Approaches like Z, CSP, or ASM address these as-
pects, together with increasing tool support for analysis; the reluctance to use these
approaches is most likely due to a lacking familiarity of typical computer scientist with
the underlying base concepts combined with the – nowadays decreasing – lack of con-
venient notations or editors.

To further acceptance of formal/precise models and make them accessible – in what-
ever lightweight form – the basic concepts of these models must be commonplace to
computer scientists; understanding their advantages must be second nature to them. In
the following we show how some basic concepts common to formal models can be
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taught in middle school, establishing an early and intuitive understanding of these con-
cepts prior to learning a mathematical apparatus to formalize these concepts. We also
address illustrating the benefits of using these modeling concepts to 7th graders.

To ensure sustainability, basic CS courses taught at schools should provide the
pupils with universally valid as well as applicable CS knowledge. Pupils/students must
rather acquire knowledge of typical CS models and methods than of specific tools,
languages, or notations. Applied tools and software should be only used as means of
demonstration; especially in middle school context, they should be used in a playful
manner. Teaching typical concepts of a research field enables the children to transfer
the acquired concepts and detect their counterparts in possible fields of application.

We present a field report on two half-year elective courses with 13-years old chil-
dren held by the authors at the Werner-Heisenberg-Gymnasium (see [9] and [11]) at
Garching (Munich, Germany). The approach was applied in four different groups of
about 15 pupils (both male and female), over a course of two years. Classes were held
over a period of half a year with about 12 sessions of 2 hours each. Classes were focused
on immediate experience of the pupils, thus with more than 50% of the time spent on
practicing the introduced concepts.

Although no formal evaluation and assessment of the effect of the taught classes
was performed, some observations seem to be plausible and hold for all the classes
performed: The principle of playful discovery of the introduced concepts, immediate
feedback loops, and as little as possible up-front teaching proved a fruitful method of
knowledge transfer, leading to a maximum of participation by the pupils (seemingly
independent of the academic background of their parents) with little variation of the
performed classes. Up to out experience, no significant difference could be found con-
cerning speed of learning and depth of understanding between female and male pupils.

The construction of models proved to be a good method to let children experience
typical basic concepts of CS. The curriculum was based on fundamental concepts like
objects, states, events, or actions. In the following these concepts and their application
in the class material is demonstrated. Modeling –combined with basic algorithmic con-
cepts – helps setting a good foundation of CS methodology. Modeling was learned like
a child’s play.

The paper is organized as follows: first, we discuss the importance of modeling
as core technique of CS and the possible advantages of understanding the basics of
modeling in CS. Based on this, we use three examples based on the course material to
explain the objective of the curriculum: learning fundamental modeling concepts, un-
derstanding the impact of using models as abstraction and generalisation, and learning
to appraise advantage of working with precise descriptions. By applying these concepts
in the context of object-oriented models, behavioural models, and algorithmic models,
the exercises establish the children’s ability to intuitively apply these concepts without
requiring the mathematical apparatus to precisely define these concepts.

2 Models as the Language of Computer Science

On the one hand models form the product and the result of CS typical system devel-
opment. On the other hand, applying models for the representation and construction of
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systems and considers the activities, all transactions and the process of system develop-
ment. By achieving a playful approach to (formal) models, an intuitive understanding
of the possibilities of these models can be supplied at an early age:

1. Software development to a large extent is about the use of models. Each step is
based on working with explicit or implicit models of the system under development
or its environment. Learning to apply models on an intuitive level independently of
more or less formal techniques supplies the necessary basics for a ‘toolbox’ of
concepts needed in software engineering, which are often experienced to be quite
challenging in a formal setting.

2. Even without supplying a formal definition, models are easily understood as having
a precise meaning, allowing to assess whether a specification is valid. Furthermore,
the formality of the language encourages greater rigor in the system specification. If
7th grade CS education gets across the understanding that exact and precise work-
ing leads to better results, an important step is done towards better CS products and
processes, see e.g. [2] or [6].

3. Using models trains thinking in structures and hierarchies as well as understanding
modularisation and the composition of systems, thus supporting the stepwise de-
scription of a complex system starting with a simplified model, going via several
enhanced and more detailed models to the final models. By learning that models
support a view-based description of a system ( [6], [7] and [8]), children can ex-
perience the use of (formal) models to support the purpose-oriented definition of
correct abstractions and descriptions of a system, allowing to focus on the necessary
aspects rather than an formalism.

Therefore, the central objective of the approach presented here is:

1. The development of products and/or applications requires appropriate concepts de-
pending on the intended purpose, covering all details and criteria relevant to the
problem. (Abstraction)

2. Based on such models supply suitable and unambiguous descriptions. (Specification)
3. Descriptions and presentations created using those concepts support a systematic

development process. (Application).

3 Course material: Some concrete exercises

The main topic of the course is teaching modeling approaches in general, and espe-
cially core concepts like object-orientation, behavioural modeling, and the description
of algorithms. Based on simple but not over-simplified exercises children achieve an
intuitive approach of thinking in models, using standard tools and techniques to present
and describe their own ideas.

Office software suites are generally available at schools equipped with computers,
supplying a simple tool set for constructing system descriptions. As a second advantage,
children nowadays already generally are experienced with the use of office tools. Other
similar programs can also be used for the following examples if they support graphical
descriptions.
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3.1 Specification by classes and objects

Using the geometric auto forms provided by office applications, the concept of spec-
ifications (and their models) as abstractions is introduced, as well as the concept of
an attribute (or property) of a model. By introducing graphical models composed of
geometrical modules (like triangle, rectangle or circle with attributes for each module
(like fill or line color, position), the usefulness of specifications to precisely describe a
specific model as well as a range of models is demonstrated.

By constructing graphical models (e.g., a TV set or a telephone) from those basic
shapes, the pupils intuitively experience the concept of underspecified descriptions –
corresponding to those basic shapes – defining classes allowing to generate possible
instances – with specific colour, position, etc. – in a stereotypic fashion by fixing the at-
tributes of those instances. By using a textual language representing classes, objects and
attributes to describe instances of these basic shapes, and letting the pupils reconstructs
a complex model according to a given textual description, the children experience the
use of specifications to describe a specific model.

The acquired knowledge of structured/formalized specifications is used in a second
step to clarify the benefit of precise and clear descriptions. This is done by playing a
group game with switched roles of specifier and implementer. After designing a graph-
ical model and specifying the model using the textual syntax in each group, the specifi-
cations are swapped between groups, and group is requested to redesign the picture by
using the given specification. As in most cases, the original and the redesigned model
do not complete correspond, this makes the pupils realize the impact of precise and
clear. Having experienced the discrepancies with their own specification – without any
influence of the instructor – the pupils gat a good understanding of the consequences of
underspecified models.

3.2 Automata to describe components behavior

All kind of graphical models designed until this point give a good background to discuss
several main aspects in modeling and specification like detecting and construction an
abstraction of an actual system, the impact of precise descriptions, the use of given tools
and modules, the structuring of systems, and the implications of using standard (CASE)
tools. But the presented models focus primarily on static aspects and properties of the
systems, like the arrangement of the components. This is certainly an important aspect
in CS modeling because of the necessity to describe and specify e.g. the architecture of
a system.

Obviously, however, the dynamic aspects like the behaviour are not covered by these
means and must be modeled, described and specified otherwise. The limitations of the
techniques introduced so far in the curriculum concerning the description of additional
aspects a system can be experienced when discussing the functionality of a system
specified only in terms of its (static) interface. The pupils are able to design the layout
of the mobile phone with auto forms supplied by the office suite. But the question if this
picture models a mobile phone or only the receiver of a conventional telephone can’t be
answered. The children learn that the picture is enough to represent a telephone but not
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Fig. 1. A “Formal” Model of Behavior
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enough to model the main characteristics of a mobile phone that is in fact given by its
behavior.

To deepen the dichotomy of structural and behavioural description of a system, a
second exercise is given by modeling a TV with 3 main stations, a standby and the out
functionality, as shown in Figure 1. At first children are able to model the layout of
the TV. Using this picture, the next step is designing five different TV to show its five
states. Only some instructions allow the design of an automaton with five different TV
pictures as states, connected via arrows, if there it’s possible to reach that state from
the other. The knowledge of the remote control and the appropriate switches the design
with labelled edges is simple.

3.3 Algorithmic thinking

After working with the above topics, children are able to use objects and classes to
model architectural structures and to give precise descriptions of systems, including its
interactions performed via its interface. However, to describe behaviour on a detailed
level, algorithmic description must be introduced as a third aspect. Although the topic
in this course is modeling, the presented concepts allow the teacher to play a game that
gives a first impression in giving instructions in a regular and goal-oriented way: jig-
saw reading with a mouse that runs through a labyrinth. The children put characters in
a wrong order into the given path. The mouse is able to run over the path in separate
steps that are given by e.g. by the small boxes of the picture. The mouse is only able
to run straightforward. If she should turn around or run the right or left way, the mouse
must make a right or left 90◦ turn. If the mouse trespasses a character the character is
read and no longer written at the path. As a first program children are now asked to
describe mouse’s run through the labyrinth to read the sentence or word and to give the
teacher the task to recognize the intended word using children’s algorithm. As an addi-
tional level of complexity, control structures – like conditional commands or repetitive
execution – can be introduced to demonstrate the possibilities of parametric behaviour.

4 Experiences

Modeling enforces the ability to goal-oriented design, to find adequate structures, to
work with formal and precise descriptions and to communicate by the use of models
(to understand the background and more school environment, see e.g. [1], [3], [4], [5]
or [10]). Children easily pick up the main activities involved in modeling: real objects
must be represented by virtual objects, requiring to abstract from unnecessary details
and finding suitable “formal” concepts to express the intended properties. Simulating
the application of the real world problem means working with the model by an engine.
Precise description of a model allows to examine properties of the model and to validate
its usefulness.

In addition to the challenge to teach a common approved topic – CS – all facts and
learned concepts should be recognized later on in further courses or even a CS study.
All contents must be presented

– in a simple and comprehensible but not simplified way;
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Fig. 2. Algorithms as a Game

– to obtain correctness based on typical CS concepts in general and to avoid falsifi-
cation;

– to cover main aspects of the learned concepts and to understand their value based
on CS;

– to help children discover the fundamental concepts found in formal approaches in
a playful manner.

The presented course was taught in two half-year elective courses in the 7th grade,
without 15 pupils (both male and female, ages 12 to 13) per course. The experiences
have shown that children in this age group easily understand the basic concepts pre-
sented in the sections above. With little training by smaller examples, they generally
manage to apply the introduced techniques (e.g., specification by automaton-like nota-
tions) to new problems (e.g., the TV-control) within a session. Furthermore, by supply-
ing simulation for the generated “specifications”, they quickly embrace the possibility to
use those concepts using a non-code oriented modeling paradigm. Finally, by exchang-
ing “specifications” between different teams, children have a first-hand experience of
the need to precise specifications during the validation of second-hand models.

While in this field-study office tools have been used as the means to convey the con-
cepts, special open-source tools like LTSA [12] may even prove more useful if applied
in the direction of putting the intuition above the formalization. In future classes, the
use of such tools will be investigated more closely. Currently, additionally some simple
tools are developed supporting specific aspects like the specification and simulation of
simple programs (e.g., controlling a mouse like in Section 3.3).

Currently, in German curricula for middle schools computer science education is
optional and therefore there is little tendency to install state-wide class material. There-
fore, the class material presented here – including special adaptations of the applied
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tools – is only updated and extended on a on-demand basis when holding those op-
tional classes.
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Abstract. This note summarizes the experience and philosophy of teaching two
one-semester courses, Software Design 1, a second year course, and Software
Design 2, a third year course, repeatedly in the period from 1999/2000 to 2005/06.
These courses had a peak enrollment of 190 students. Many students perceive
these two courses as the core courses for their career in software development.
The same material was presented in a condensed form in a graduate course in
2005/06. The courses taught students the mathematics of software design, rather
than a particular “formal method” tool or language.

1 The Need for Software Design

Whereas in the design of a mechanical device breaking design rules would quickly lead
to recognizable failure, one can very well break the rules of software design and still
get a “sufficiently functional” and marketable product. Qualities of software are not as
evident as qualities of physical products; design qualities are even harder to judge than
the qualities evident from using a product. Students follow the rules of software design
because they are told so and not because they would experience the consequences of
not doing so. Students grow up with unreliable software to the extent that they consider
such poorly working software to be normal or unavoidable. There is a widespread belief
that programming skills are sufficient to write software. All this makes is difficult to
convince students that software can be better designed, that it is worth doing so, and
that it is worth learning the mathematics for doing so. We report on our experience
teaching software design with its mathematical foundation.

2 Uniform Design Notation and Uniform Mathematical Basis

Our approach is to integrate mathematics in the presentation of software design, rather
than to contrast formal and informal approaches; to teach all core topics in software
design rather than a specific topic for which a dedicated formalism or tool exist; and to
present the material with minimal notational burden.

A uniform textual design notation is used, in order to emphasize the similarities
among the concepts and help students interconnect these concepts, rather than making
students switch to a new mindset due to the notational differences. Graphical notations
like flowcharts, class diagrams, and statecharts are presented as appropriate and defined
by translation to the textual notation.

A mathematical basis for all design constructs is given. A typed logic using the
same type system as a programming language is used. Equational reasoning is used for
all proofs because of the familiarity from calculus.
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10

Program Annotations

• We can subdivide the task of checking correctness assertions by
adding intermediate annotations:

{x ≥ 0}
z, u := 0, x ;
{invariant: (z + u · y = x · y) ∧ (u ≥ 0)}
while u > 0 do

z, u := z + y, u – 1
{z = x · y}

z := 0
u := x

u > 0

z := z + y
u := u – 1

(z + u · y = x · y) ∧
(u ≥ 0)

x ≥ 0

z = x · y

+

–

Abstract Programs-21

Algorithmic Abstraction vs. Data Abstraction

• Multiple assignments, guarded commands, and specification statements
provide algorithmic abstraction: they abstract from possible algorithms
implementing them, but are expressed in terms of the data structures
(variables) of the program.

• Data abstraction additionally abstracts from possible data structures of
the implementation by using abstract data structures.

• Example: Counting the  number of distinct elements in array a : array N
of T.

var i : integer; s : set of T;
begin i, s := 0, {} ;

do i < N → s := s U {a(i)} ; i := i + 1 od ;
num := #s

end

Here we abstract how elements of the set s are stored: they could be
stored in an array, linked list, hash table, trees, etc.

Fig. 1. Excerpts from Elements of Programming and Abstract Programs

3 Middle-out Sequencing of Topics

Courses on software design, or software engineering as they are called elsewhere, are
typically structured according to the phases in which software is developed. However,
students who have only written small programs so far, do not see the need for, say, elab-
orate requirements. Instead, we have started with writing and analyzing small programs
and gradually moving to topics to which students become motivated, approximately in
middle-out order of a normal software development, spread over two semesters:

1. Elements of Programming The course starts with an introduction to basic control
structures in both textual and graphical notation, a formalization of syntax and typ-
ing, annotations, proofs of correctness using wp, machine limitations and partial ex-
pressions, principle of stepwise refinement, and further control structures. Search-
ing and sorting examples are used throughout. Stepwise refinement is illustrated
with the example of printing images [1]. The exercises are with paper-and-pencil
only and force students to argue about programs without running and testing them.

2. Program Modularization The goals and principles of modularization are discussed
and modules are introduced as a language construct. Module invariants and depen-
dencies between modules are discussed formally. The KWIC example is used for
illustrating the difference in qualities that arise from different modularizations [4].
The need for robustness of modules is discussed and defined formally. Exercises
continue to practice formally reasoning about programs, but also show how to map
modules to the constructs found in programming languages, in particular how en-
capsulation is enforced in common languages.

3. Abstract Programs Four means of abstraction are presented: multiple assignments,
guarded commands, specification statements, and abstract data types. Guarded com-
mands and specification statements are illustrated with common algorithms. The
use of abstract data types is illustrated with algorithms familiar from other courses
and with modeling information systems. The techniques are then used for the speci-
fication of modules. Assignments help to enforce the understanding of the concepts
and practice the use of abstract data types.
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Testing-17

Path Coverage – 1

• We can alternatively derive a set of test cases such that all full paths
are covered. In the example, we have to derive test cases for
executing paths with the statements A-C, A-D, B-C, B-D.

• For this, we annotate the point at which execution should pass with
true, exclude all alternatives, and calculate the weakest precondition.
For example, for testing the path A-C we start with:

{P}
if  a(0) ≤ a(1)  then

{Q} l := 1 A
else

{false} l := 0 ; B
{R}
if  a(l) ≤ a(2)  then

{true} l := 2 C
else

{false} skip D
Exceptions-19

Weakest Exceptional Precondition of Conditionals

• wp(if B then S, Q, R) =  (!B ∧ B ∧ wp(S, Q, R)) ∨
    (!B ∧ ¬B ∧ Q) ∨ (¬!B ∧ R)

wp(if B then S else T, Q, R) =  (!B ∧ B ∧ wp(S, Q, R)) ∨
    (!B ∧ ¬B ∧ wp(T, Q, R)) ∨
    (¬!B ∧ R)

• Example: Assume a : array N of T, i : integer, m : T.

wp(if a(i) > m then m := a(i), (∀ j ∈ [0 .. i] • a(j) ≤ m), false)
=

(0 ≤ i < N) ∧ (∀ j ∈ [0 .. i) • a(j) ≤ m)

Fig. 2. Excerpts from Testing and Exception Handling

4. Testing The role and need for testing is discussed. Testing the internal consistency of
modules is illustrated with checking module invariants. Specification based testing
is used for both black box and white box testing. The wp calculus is used for de-
riving test cases to achieve various types of coverage. Test strategies are discussed.
The assignments practice writing both implementations of modules and test suites
according to formal specifications; in one assignment both implementations and
test suites are run against (faulty) ones from other students: students experience the
need for precise specifications.

5. Exception Handling Failures, the need for exception handling, and ways of reacting
to exceptions are discussed. The raise and the try-catch statements, as the dominant
exception mechanism, are introduced textually and graphically, and then defined
formally through wp. Correct design of exception handlers is discussed and prac-
ticed with small examples.

6. Functional Specifications A formal model of programs in terms of relations is given
and connected to wp. An alternative way of specifying programs by tabular rela-
tions is used to discuss the concepts of completeness of consistency of specifica-
tions [5]. Algorithmic refinement and data refinement are formally introduced.

7. Object-Oriented Programs Classes and inheritance are introduced textually and graph-
ically. The object-oriented style is contrasted with the traditional style. A formal
model is given in which class invariants and class refinement are studied. Class
refinement is then used to discuss “good” and “bad” used of inheritance. Small ex-
ercises enforce the understanding of the formalism. Programming assignments then
practice class design without formal proofs.

8. Object-Oriented Modeling Object-oriented models are presented as an alternative,
graphical way of specifying data structures. Constraints like the multiplicity of
associations are defined graphically and textually. The transition from an object-
oriented model to an object-oriented implementation is illustrated.

9. Requirements Analysis The need for formulating requirements in the “user’s world”
is discussed. The step of delineating the context of a software system is discussed
with use cases and use case diagrams. The notion of the interaction of a software
system with its environment is motivated with sequence diagrams. Proving the con-
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Object-Oriented Modelling-17

A Formal Model of Associations – 2

• The multiplicity is expressed through additional constraints in the
invariant. For exactly-one:

 ran A = D ∧ injective(A)

 dom A = C ∧ functional(A)

• For zero-or-one:

 injective(A)

functional(A)

C
A

C
A

D
A

D
A

Requirements Analysis-17

… Checking Interaction Requirements

• Description:
Setting an extension a second time overwrites the extension set
the first time

Formalization: If p ∈ staff initially, the sequence
setExtension(p, n1) ;
setExtension(p, n2) ;
queryExtension(p, n, found)

must lead to found ∧ (n = n2).

• From these scenarios, we can
– derive test cases
– check whether the specifications allows these scenarios.

Derive some
test cases!

Derive some
test cases!

Fig. 3. Excerpts from Object-Oriented Modeling and Requirements Analysis

sistency of a specification with respect to sequence diagrams is discussed using wp,
together with techniques for deriving test cases from sequence diagrams.

10. Object-Oriented Design Object-oriented techniques (idioms), design patterns, and
frameworks are discussed, referring to class invariants and class refinement. Ten of
the common 24 design patterns are selected. Assignments use the java.util frame-
work for illustrating the use of design patterns and frameworks.

11. Reactive Programs The characteristics of reactive programs are contrasted with
those of transformational programs. Statecharts are introduced as a dedicated for-
malism for reactive programs. A definition of statecharts in terms of guarded com-
mands is given. Assignments practice the use of statecharts with a tool that allows
statecharts to be animated and executed.

12. Software Development Process Different software development processes are men-
tioned, without going into detail (for time).

Additionally, the topic of Configuration Management was included at the beginning
of Software Design 2 and subversion was used from that point on for all assignment
submissions. Except for the topics of Configuration Management and Software De-
velopment Process, all other topics used a coherent notation and coherent mathematical
basis. The assignments used Pascal, Java, jUnit (for testing), and iState (for statecharts);
introduction to these was provided in optional tutorials.

4 Evaluation

We did not observe that students are in any sense math-phobic: they are sceptic towards
the use of logic in software design as much as they are sceptic toward design patterns
and configuration management systems; they haven’t seen the need for any of these. In
a series of assignments, the use of each concept of the course is practiced. At the end
of the second course, students take the use of logic for granted. The topic that caused
the most difficulties was object-oriented modeling; it was dropped in later editions of
Software Design 2.
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Requiring students to take a course in logic and discrete math before Software De-
sign 1 had only a moderate effect on their ability to use logic and abstract data types
for the description of problems. Our explanation is that logic and discrete math courses
traditionally teach a body of knowledge, and do not practice the use for description and
do not practice proving. Additionally, the difference in notation, as for implication and
for quantification, prevents students from seeing the connection even if there is an obvi-
ous one; many operators, like relational overwrite, that are useful in software design are
not taught in discrete math courses; usually (untyped) first-order logic is taught, rarely
equational proofs. A good portion of Software Design 1 is spent—or rather wasted—
with introducing notation for typed logic, data types, and equational proofs. One would
wish that the field would have matured by now to standardize them.

Students are required to complete a two-semester design project in their fourth year.
Software Design 2 was consistently ranked as the most useful course in a question-
naire at the end of the project, and Software Design 1 as the third most useful course.
While that may sound encouraging, the projects rarely show a sufficiently systematic
application of the techniques. That may be partly due to the explorative nature of these
projects. However, the author believes that this is mainly due to these concepts not
being repeated and practiced elsewhere. In courses on databases, operating systems,
compilers, user interfaces, networks, real-time and algorithms terms like invariants and
robustness are not used, giving the impression that these notions are not universally rel-
evant. To give evidence to this claim, we refer to the analysis of the five most popular
algorithm textbooks in [7]: four books, with 550 to 770 pages, devote zero pages on
correctness and one book with 790 pages devotes eight on correctness. One would wish
that textbooks and instructors would acknowledge the usefulness of these notions more
widely.

Over the years, in the course evaluations 30%–65% of the students report that 81%–
100% of the course material seems valuable and 35%–50% report that 61%–80% seems
valuable. The numbers were on the higher end in later years and for Software Design 2
(not all students continue with Software Design 2). The use of independent critical
judgement was rated high, particularly in later years. The overall delivery of the course
received mixed evaluations, because the material was not fully developed in earlier
years, the material was not motivated well in earlier years, most teaching assistants
were of little help to the students, and because students felt overloaded. Except in the
first year, there were no complaints that the contents is overly mathematical.

5 Discussion

We believe that we have successfully integrated the mathematics of software design
into a two-semester courses in software design. The material is covered in 710 pages of
lectures notes by the author plus a couple of original articles and book chapters (a course
pack with the material is printed for students on demand). The mixture of mathematical
and less mathematical topics gives students confidence that the use of mathematics is
justified. We could not have done this with a single one-semester course.

If teaching the mathematics of software design is to be useful, it has to be taught as
early as possible, before students acquire “bad habits,” a point that has been repeatedly



58 E. Sekerinski

made; we wish we could have started even earlier in the curriculum. We have delib-
erately not used a specific formal tool; we find those more appropriate for upper level
courses. Gordon [3] also offers a two-semester course, also using higher order logic
as a unifying framework, but covers the logical aspects in more detail, and includes
hardware verification. We have not tried to use any “light” method that makes formal
techniques “invisible”; in our experience students appreciate being taught the theory in
an isolated, minimal way, before seeing it applied with constraints.

Compared to the inverted curriculum, or outside-in order by Pedroni and Meyer [6],
we do not teach class design before control structures, but we do teach programming
before requirements analysis. Our way of introducing formal techniques is less gentle
than theirs, but our reason is the same as for their outside-in order: to put all students on
the same level and keep them motivated. We have succeeded with the first one, even if
it comes by shocking the students in the first classes with mathematics, for which they
were not prepared; we were less successful in keeping them motivated during Software
Design 1.

While we believe that the courses influenced the way how students think about
programs, the main obstacle for having a profound influence on their practice of pro-
gramming is that concepts are not being repeated and practiced in other courses. We
agree with Dijkstra’s observation on computing science [2]:

... providing symbolic calculation as an alternative to human reasoning ... is
sometimes met with opposition from all sorts of directions: ... 6. the educational
business that feels that if it has to teach formal mathematics to CS students, it
may as well close its schools.

If anything, with low enrollment numbers after the dot-com bubble burst, the pressure
to eliminate mathematics has increased.

Acknowledgement. The author would like to thank David Parnas, Michael Soltys, and
the two reviewers for their careful reading and thoughtful suggestions.
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Abstract. In the world of computer science, formal methods play a primary role
in the development of student minds and ability of abstract problem solving. For-
mal methods form the foremost technique that enables students to be trained in
breaking complex questions up into abstract, manageable, pieces and to solve
them using models that they themselves constructed. While the advantages of for-
mal methods seem clear, students en masse tend not to attend the courses. This
short paper analyses the core problems underlying this phenomenon and shows
by example why the practical assignment that has been carried out by the five of
us during a course in embedded systems, has contributed to the goal of formal
method teaching.

1 Educational aspects

There is considerable evidence that the teaching of formal methods contributes largely
to the student’s understanding of problems, abstract reasoning skills, and their ability of
elegant problem solving. However, these skills are not taught at once, but are part of a
large educational programme, much like how reasoning skills are taught in high school.
The consequence is that the yield of this kind of teaching is settled in the long term.

Students on the other hand, tend to have a more narrow focus, valuing their study
progress by looking at short term efforts and results. Important roles in their course
selection are the so called “fun-factor” and the amount of (applicable) skills or knowl-
edge that will be gained by following the course. As a typical example, a student would
preferrably follow a web programming course than a course in formal methods.

Among the problems that formal method teaching faces currently, we may distinguish
the following:

“What’s the use?” Students simply do not see the practical use of “all this math”. This
is the main problem for formal method teachers to face. This problem incorporates a
few consequences.

First and foremost, motivation for students drops significantly if they must do things
when they have no clue about what they will gain from doing it. Telling them that they
will learn “abstract reasoning skills” will not work either, because that sounds much
too vague. There is a big necessity for rolling out a clear roadmap with targets in the
student’s curriculum and sticking with that map in order to keep them motivated.
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Furthermore, there is competition from other fields of science. Especially nowadays,
with the computer and IT-business luring people from universities, students foresee a
better future by pursuing a practical master degree. If universities do not succeed in
waking up the interest in formal methods, computer science may start getting loose
from its (mathematical) roots.

Lack of visualization Considering the problems within the formal method courses, lack
of visualization is the first one. Teaching plain dry mathematics is not only dull, it also is
not the most effective route to the mind of the students. The human brain learns through
association. Cognitive research has already shown that education through visualization
enables a better understanding of matter, because mental models are constructed intu-
itively and more solid.

This would also explain the apparent resistance to these courses. An aura of complexity,
mathematical sophistication and unfamiliarity surrounds formal methods courses. This
aura is kept alive by the thought that insights are something that someone has from
birth, and cannot be learned to a high degree. However, insights can be enabled, not
only gained. Repetitively letting students “solve equations” narrows their focus and
does not connect to the goal of what they are doing it for. Illustrative material will help
their brains to enable insights through visualization, much like how a picture says more
than a thousand words.

Application of knowledge The last problem is a generally known one, which occurs
at the moment the students have gained the desired knowledge on formal methods.
Since generalization is one of the most important focusses of scientific teaching, the
connection to real world problems might be lost. A dedicated task of formal method
teaching should be the establishment of a link between theory and practice, not the
practice itself.

When enabling insights, teachers must beware that these insights are not isolated in the
minds of their students, but are made accessible. One way of doing this, is to make sure
that visualized concepts are being linked to situations where that type of knowledge
is applicable, if possible. This effort would especially avoid freshmen developing an
anxiety for mathematics and would also contribute to help students see the use of formal
methods.

2 Solution

The solution outline we propose and which we can recommend through experience is
the following:

Take a real-life problem and a known solution to this, or a sub solution of it. Examples
are known network protocols such as Ethernet or as in our case Bluetooth. Let the
students make an abstract model of this, that can be used as input to a known model
checker. The next obvious step is then to let them use this model checker to verify
properties of the model, that together prove the correctness of the protocol.
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We will now look into our project more specifically, which will follow the outline pre-
sented above.

The purpose of our project was to do a formal verification of part of the Bluetooth
protocol. This wireless network protocol consists of several relatively separate phases,
which gave us the possibility to examine part of it and still be able to draw very useful
conclusions. We have examined the inquiry part. This is usually the first phase in a
Bluetooth communication. The purpose of this phase is to discover other devices and
find out some basic facts about them.

How we would tackle the problem was mainly up to us. We have decided to alternate
individual study with discussions of the problems we had encountered. In case there
was a problem we were not able to solve ourselves, we could always ask for assistance.
But in practice, because of the setup we have used, we appeared to be able to solve most
issues ourselves.

We have split up the content of the project in three parts: investigation of the protocol,
modeling the protocol and finally using our model to prove several theorems about
Bluetooth communication.

Investigating a protocol description does not appear to be something one does for fun.
At first hand, we shared this opinion. However the crucial issue appeared to be in how
to investigate the protocol. Doing a broad and superficial survey can be hard and will
usually result in forgetting it some days later. In contrast to this, we have investigated
part of the protocol in very much detail and made a very narrow survey. This did not
only limit the number of pages we had to read, but it also gave us the possibility to
understand and check most of the details of the protocol.

We had divided the Inquiry phase among the five of us, discussing all parts one of us
might not have understood. Obviously, this resulted in a good understanding of the pro-
tocol, but it also resulted in finding some unclarities and some possible inconsistencies
in the protocol document. Which makes investigating it quite satisfactory.

Having gained enough knowledge of the protocol, we could move on to the next phase
of our project: modeling Bluetooth. The model checker of our choice was UPPAAL.
UPPAAL was able to give us a good interface and a useful model checker. But in con-
trast to many of the other tools we have seen so far, UPPAAL also provided us with
a very useful simulator in which one can view and understand traces and use these to
further correct the model, or to draw conclusions.

Now, understanding the protocol was one thing, modeling, an entire other. Some of the
problems we had heard in theory appeared to be obstructing the design of our model
more than we had expected. And especially many of the idealistically stated solutions
appeared to have some unforeseen drawbacks. Nevertheless, given some time, we were
able to find the solutions to most of these problems, learning many ins and outs of the
used theories on our way. Mainly the fact that we have solved the issues ourselves gave
us great insights in what the ’idealistically stated solutions’ were really about.
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The last part of the project consisted of using our model to verify correctness proper-
ties of the Bluetooth protocol. Unfortunately this took UPPAAL a lot more time than
we had accounted for. The only solution was to abstract our model from some of the
hardware details, to make its complexity suitable enough to do verifications of some of
the properties we had come up with. But the difficulty was to keep it realistic enough
to still be able to draw conclusions about Bluetooth in real-life. Our effort in trying to
reduce the complexity eventually resulted in a model that was only slightly simplified,
but well suitable to verify our properties. At this point we were able to verify our cor-
rectness properties of this part of the Bluetooth protocol. Which we consider to be a
very satisfactory result of the project. It is not something that has not been done before
in this way and yet proved to be very useful.

3 Project report

To give a more illustrative explanation of what we have done, we have included three
(slightly altered) sections of our report that resulted from the project. These will give an
introduction to the topic, an informal description of part of Bluetooth we have modeled
and the conclusions we have drawn using our model. A more detailed description can
be found in this report, which can be found on our webpage [3].

3.1 Introduction to the topic

Bluetooth is a widely used communication protocol these days. It is used in the commu-
nication between phones, computers, headsets and many more devices. In the year 1994
the Ericsson company decided it wanted a protocol that could be used to connect mobile
phones to other devices. Jaap Haartsen, working for Ericsson, developed the protocol.
The techniques were further developed by the Bluetooth Special Interest Group.

One of the things described in the protocol is the way in which two devices that are
neither connected nor synchronized can try to find each other. This is called the Inquiry
Response Phase, the first phase in the protocol, which should provide a way for the
devices to synchronize in order to allow further communication.

We have looked closer at the specification of this phase as described in [2] and created
an UPPAAL model to formally verify that after the Inquiry Response Phase indeed the
devices will be synchronized.

3.2 Informal description

When two Bluetooth devices want to start communicating they do that using the Inquiry
Phases. In these phases one of the devices is assumed to be in master mode querying
for other devices. The other device is assumed to be in slave mode. The master keeps
sending packages and listening for responses. The slave will listen for a package from
the master and respond to the master by sending a return package.

The devices do, however, change frequency during every phase. The frequencies used
in Bluetooth are very common frequencies used in wireless phones, remote controls,
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garage doors and more. Therefore the devices change (“hop”) their frequencies a lot.
The devices are unlikely to use the same frequency the first time and the communication
attempt will fail. However, the hopping should be done in a way that at a certain point
in time the devices will use the same frequency in the same time interval and further
synchronization can be achieved using that.

There are quite a few tricks involved in order to get this to work properly. There is
the hopping of frequencies, timing issues in sending, receiving and listening and some
more.

We want to verify that indeed the devices will eventually synchronize in all cases if
we follow the specification. To do this we have constructed a UPPAAL model that
represents the relevant bluetooth phases. As illustration we have added the part of this
model that is responsible for the device execution. This can be found in figure 1.

3.3 Results and conclusions

We have created a model of which we think is sufficiently close to reality to be used in
the verification of some properties of the Inquiry Response Phase.

Modeling the Inquiry Response Phase in UPPAAL worked rather well. It gave us good
insight in the phase and some questions surfaced that we could not answer easily. We
have even found a strange remark in the specification that to our opinion is incorrect.

Although it is arguable whether the specification is well written, at least we could, with
some effort, all agree on what we think the specification specifies.

We verified that always eventually the master device will receive a return packet from
the slave for a lot of initial values. This means we have a strong belief that two Bluetooth
devices will eventually synchronize.

The UPPAAL model we have created can be downloaded from
www.cs.ru.nl/ita/publications/papers/fvaan/bluetooth/ The web-
site of the UPPAAL project is
http://www.uppaal.com

Verification Results In total, we have tried to prove two properties of the system,
representing system liveness and safety. These are:

– A3 Master.Finished ∧ Slave.Finished
This property actually expresses that the system always eventually will reach the
“finished” state for both devices, i.e. it expresses that always eventually the mas-
ter device will receive a return packet from the slave. Actually, this property is the
desired property the developers of Bluetooth would want to satisfy under all condi-
tions. We have validated this important property for a whole variety of initial clock
values. Besides that, we have been able to verify these properties, too, for both ideal
Bluetooth clocks as well as clocks that were subject to drift and jitter.
Some of the validated configurations:
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maxwaitbit deviation time
(UPPAAL time units) (min)

4 1 1
7 1 3
7 3 8

The maxwaitbit indicates that when bit number maxwaitbit of the Bluetooth
clock is or becomes 1 the devices must enter the Bluetooth phase instead of waiting
at the initial state. This way we can check a range of initial clock values. Ideally
we should verify this for maxwaitbit being the maximum clock bit. But that simply
takes too long.
The deviation indicates that, for each period of 625 UPPAAL time units, the
clock tick may differ this amount of UPPAAL time units. A deviation of 3 indicates
therefore a deviation of 3

625 UPPAAL time units, indicating a maximum deviation
of about 7 minutes a day. In practice the clocks used will not be that bad, therefore
this means in practice that synchronization is accomplished. We could have used a
tighter interval but apart from resources required for the verification this would not
affect the result.

– A2 not deadlock
This property actually expresses a system invariant, stating that the system as a
whole will never deadlock. This property is very important in getting a confidence
that the specification is correctly modeled. Of course if the system can always reach
the state Finished for all devices, it cannot have deadlocked.
Some of the validated configurations:

maxwaitbit deviation time
(UPPAAL time units) (min)

0 0 1
2 0 1
4 0 1
7 0 1

With these properties satisfied and no counter examples found we have a strong belief
that in our model these properties actually hold for all initial values. Therefore we think
in the Bluetooth protocol the devices will also find each other eventually.

4 Results

4.1 How our approach solved the problem

The idea of verifying a real world standard protocol instead of a textbook example is a
motivation and an opportunity in the sense that it helps students recognise the values of
the teaching in an applied system.

Graphical visualisation, modelling and simulation of a problem, help to understand
formal methods through giving different dimensions of the formal methods other than
the theoretical formulae.
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The almost social atmosphere created by working in relatively small groups when deal-
ing with a problem, enhances the learning process by creating an environment that
allows the weak students to learn from the stronger ones. Sometimes a student may not
feel free to participate actively in class but when in a small group he/she will feel more
at ease to ask even the dumbest question.

A tool like UPPAAL that supports a versatile range of programming language formats,
also is a solution in a way because as students try to reflect on their understanding of
the formal methods in a piece of code in a less restricted environment, they achieve a
deeper understanding of the methods and probably begin to like the exercise. Besides
being a rich tool, UPPAAL also reduces the limitions that in many tools are enforced
due to poor representation of automata states or boolean conditions.

Further Research and related work Probably we could verify more situations than
the ones we did verify thus far. So another group could work on that.

One of the things we didn’t pay much attention to is the duration of a transmission in
the Inquiry Response Phase. Currently we assume that a transmission, if the receiver
listens in time, will arrive completely and without errors or not arrive at all. Time does
not elapse while sending or receiving. In reality this is not the case and it might be
something to take a closer look at.

Something else we did not look at, but probably will be relatively easy to do using
the model is verify properties for more than two instances (master, slave, slave for
example).

Our research focused on the Inquiry Response Phase, leaving out other phases. Obvi-
ously these could be interesting.

Closely related work can be found in the paper [4] where the probabilistic tool PRISM
was used to analyze the Inquiry Phase. [4] focuses on the probabilistic behavior of the
Bluetooth communication. Where this paper mainly looks at the expected and worst and
best case timing issues, our research mainly focuses on whether the communication will
actually be succesful or not.

5 Knowledge and Skills

5.1 Required knowledge and skills

Team work skills Most real world problems (protocols) are systems enormous in size.
For students to profitably work on such systems there is a need for teams/groups thus
calling for team work skills as an essential tool for this approach.

Mathematical background It requires a relatively good background of mathematics to
a certain detail, to visualise and understand formal methods, and in relation to this,
students may also need to be familiar with transition systems. And most importantly
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they should have a good knowledge of the tool being used for the simulation and mod-
elling. All of this also requires basic programming/modelling skills/knowledge for the
students to be able to reflect their understanding of the formal methods into modal code
that leads the simulations.

5.2 Desired skills and knowledge outcomes

From the objectives of the course [1] we can select the objectives relevant for this as-
signment, which will be:

1. Being able to recognize situations in which the applications of formal methods for
specification and verification may be useful.

2. Being able to model distributed algorithms and protocols (or more generally: reac-
tive systems) as networks of automata.

3. Being able to formalize desired properties of these algorithms and protocols in
terms of automata or temporal logic.

4. Being able to use state-of-the-art proof techniques and computer tools for the anal-
ysis of embedded systems and protocols of ”average” complexity.

5.3 Outcome skills and knowledge

Let us finally check whether each objective in section 5.2 is met:

1. We are able to recognize some situations in which the applications of formal meth-
ods for specification and verification may be useful.

2. We are able to model a part of the Bluetooth protocol as networks of automata.
3. We are able to formalize desired properties of the Bluetooth protocol in terms of

automata or temporal logic.
4. We are able to use UPPAAL for the analysis of a part of the Bluetooth protocol.

So we well meet the objectives for this assignment for the bluetooth protocol, which
wasn’t a very specific one. So we are probably well able to do the same project for
other protocols.
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Fig. 1. The full Device template as modeled in UPPAAL
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Abstract. We describe an approach to teach students program correctness as an
activity interleaved with the programming process. This approach is based on
teaching design by contract followed by Hoare Logic supported by the ICS lit-
tle engine of proof software. It implies covering redundantly the same examples
to enforce the understanding, differences and advantages of both methodologies.
Reactions of the students are presented. We also briefly discuss the need of inte-
grated, supported, documented, scalable and usable program correctness tools to
spread their use in education and industry.

1 Introduction

Tony Hoare defined the concept of program correctness in the sixties and encouraged
developers to think about programs as mathematical objects that can be understood
through logic [1,2]. In the seventies, Leslie Lamport wrote a short note entitled ”How
to tell a Program from an Automobile”, where he advocated a lightweight approach
to correctness [9]. Programmers should be able to answer two fundamental questions
about their program: (a) What is the meaning of the program they developed? (b) Can
it be proved that it has the correct meaning? Programmers are not required to write
the proofs but should be provided with tools that would help them guarantee that their
programs meet given specifications.

Program correctness is generally described with Hoare logic [1,2], a formal system
that ”provides a set of logical rules in order to reason about the correctness of com-
puter programs with the rigour of mathematical logic” [3]. The central feature of Hoare
logic is the Hoare triple {P} C {Q}. P is a pre-condition, and Q is a post-condition. P
and Q are assertions, which are formulae written in predicate logic and claimed to be
true during program runtime execution. C is a sequence of statements of the program.
{P} C {Q} describes how the execution of a piece of code changes the state of the
computation. Hoare logic has axioms and inference rules for all the common constructs
of modern programming languages (e.g. sequence, assignment, conditional and loop
statements).

? This work is supported by the National Science Foundation under grant ITR-0326540.
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Design by contract [11] was developed by Bertrand Meyer in the nineties and is
built on Hoare Logic; contracts (functional specifications) annotate the program and
are checked during program execution. It was first implemented in the Eiffel program-
ming language [12] and is now a common feature in modern programming languages
including Java 1.5 through an assertion facility. Agile Java [10] focuses on test-driven
development and emphasizes writing assertions, as testing artifacts, before writing code.

As a programming practice, design by contract is accepted in the industry and is
more accessible to students. The concept of program correctness is generally taught as
an activity independent of the programming process [5]. In this paper, we describe
an approach focusing on teaching design by contract followed by program correct-
ness of Java programs using Hoare Logic and ICS (Integrated Canonizer and Solver)
[http://www.icansolve.com] [4], a little engine of proof [13] deciding formulae in com-
binations of theories (including linear arithmetics and arrays). The formal static anal-
ysis process is not automated but taught in combination with programming; it im-
plies working directly on the code. This approach implies covering redundantly the
same examples to foster the understanding, differences and advantages of both method-
ologies, and the development of a repository of examples that will be available at:
http://www.csis.pace.edu/∼scharff/LEP. We tested our approach in a programming lan-
guages and implementation course in fall 2005 at Pace University.

This paper is organized in the following way. We describe our teaching approach in
section 2 with an example in section 3. We present students’ reactions in section 4. In
section 5 we discuss the need of integrated, supported, documented, scalable and usable
program correctness tools to widespread their use in education and industry.

2 Approach

Our light-weight approach to teaching program correctness is based on teaching de-
sign by contract, followed by Hoare Logic supported by the ICS little engine of proof
software. The same illustrating examples are covered redundantly when talking about
run-time and formal static analysis of programs.

When tackling a particular programming problem, students are encouraged to think
about the normal courses, alternative courses, exceptions, error cases and boundary
conditions of the code they have to develop. They have to determine conditions on the
parameters and returned result (if applicable). For example, the factorial function takes
an integer greater than 0 as a parameter, and returns an integer only if its parameter is
smaller than 13.

Students determine the pre-conditions, post-conditions, and loop (and class) invari-
ants. They also establish diverse properties on the program fragments they have to write.
The discovery of the assertions is a very difficult activity.

Following the design by contract approach, students write the corresponding code
and assertions in Java 1.5 in the Eclipse integrated development environment [http://www.eclipse.org].
Pre-conditions are written by throwing exceptions in cases they are not verified. Post-
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conditions and loop invariants are written by annotating the code with Java assert state-
ments3.

Once familiar with design by contract, students are initiated to static analysis of
Java code as it is implemented in Eclipse; Eclipse detects (statically) some common
errors in code (e.g. assignment with no effect, unused variables and methods, non static
access to a static member). The goal of this phase is to enforce students’ understanding
of what static code analysis is and its scope.

Students are then introduced to correctness with Hoare Logic, its differences and ad-
vantages (e.g. for critical applications and long-compilation/execution time programs)
with respect to design by contract. Writing pre-conditions, post-conditions and invari-
ants requires the students to be familiar with predicate logic. The syntax to write the
assertions also depends on the tool that is used to check their validity. For each code
fragment with a pre-condition and post-condition, the post-condition is propagated up-
ward through the fragment and newly generated assertions annotate the code. In partic-
ular there is a generated pre-condition. This phase is currently not assisted by a tool;
students are doing the work on the Java code by hand.

We choose to check the validity of the assertions using the ICS little engine of proof
software. ICS [4] is a software developed by Harald Ruess at Stanford Research Institute
that efficiently decides quantifier-free formulae in combinations of theories (uninter-
preted functions, linear arithmetic, non-linear arithmetic, products, co-products, arrays,
fixed-sized bitvectors, propositional sets, and functional abstraction and application).
ICS is a Linux command line tool that can be used interactively, in batch mode, or can
be accessed in server mode through APIs in C, Lisp, Ocaml and Fortran. ICS has the
ability to provide a model or counter-example. For example, in ICS, x > 1 & x > 3 has
x > 3 as a model and x <= 3 as a counter-example. i = j & k = l & a[i] = b[k] & j =
a[ j] & m = b[l] & ∼ a[m] = b[k] is evaluated to unsatisfiable4.

In this framework, proving the correctness of a program or program fragment corre-
sponds to proving that if the pre-condition stands before the execution of the code, then
the post-condition stands after the execution of the code. This is equivalent to prov-
ing that the initial pre-condition implies the generated pre-condition [6]. Proving that
p → q is valid using ICS is done by (refutationally) proving that ∼ p → q (or equiva-
lently p &∼ q) is unsatisfiable.

3 Example

In this section we consider a ”toy” example to illustrate our approach. We want to prove
P: if we start with x equals to y and execute x = x + 1 followed by y = y + 1, then x is
still equal to y.

The annotated Java code we consider is the following:

3 Please note that Java 1.5 does not support class invariant. JMSAssert
[htpp://www.mmsindia.com/DBCForJava.html] is a tool that brings the class invariant
benefits to Java.

4 In ICS, & represents the conjunction operator and ∼ is the negation operator.
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// Pre-condition
if (x != y){

throw new illegalArgumentException("x must be equal to y")
}
x = x + 1;
y = y + 1;
// Post-condition
assert (x == y): "After execution of the program X = "
+ x + " must be equal to Y = " + y + ".";

When propagating the post-condition upward, we obtain the following annotated
code5:

[x = y] (Pre-condition)
[x + 1 = y + 1] (Generated pre-condition)
x = x + 1;
[x = y + 1] (Generated assertion)
y = y + 1;
[x = y] (Post-condition)

In order to prove P, we must prove that: x = y→ x+1 = y+1. According to the ICS
syntax, this is done by proving that: ∼ (x = y→ x +1 = y+1) i.e. x = y & ∼ x +1 =
y+1 is unsatisfiable:

ics> sat x=y & ˜x+1 =y+1.
:unsat

4 Discussion

We used the approach described in section 2 in a junior course of Programming Lan-
guages and Implementation of fifteen students in fall 2005 at Pace University. This
course covers the functional, logical, imperative and object-oriented programming pa-
radigm varieties, program correctness and the compilation process emphasized by the
implementation of a scanner and parser. Program correctness was covered in class dur-
ing four sessions of two hours. Prior to this course students took Programming I & II,
Data Structures I & II and Discrete Mathematics. At the end of the semester, students
were assessed on their perception and understanding of run-time and formal static anal-
ysis through a homework assignment that asked them to apply both methodologies on
a specific example (e.g. stack or sorting) and included the following essay questions:

– As a developer, what do you think are the difficulties with annotating programs
with assertions that are checked at run-time?

– As a developer, what do you think are the difficulties of formal static analysis of
programs?

5 Annotations are represented between brackets.
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– What would you be more willing to use as a developer: design by contract or formal
static analysis? Why?

– In formal static analysis of programs, what do you think are the phases that are the
responsibility of the developer and what should be automated?

The first obvious difficulty for the students was to come up with the (right) pre-
conditions, post-conditions and, in particular, (loop) invariants. However, students be-
lieved that considering pre-conditions, post-conditions and invariants permitted them to
”think” more about the behavior of their code and improve its quality.

All students thought that using Java assert statements in the code was easier than
the formal static analysis process that required fluency in logic. Their perception was
motivated by the fact that design by contract was closer to programming. Assertions
were perceived as a means of code documentation and testing. When getting a failed
assertion, students examined if the problem had occurred in the program itself or in the
assertions, but found the task cumbersome. They mentioned the lack of automation of
the static analysis process (especially for the propagation of the post-conditions) and the
lack of integration of the process in one tool as a drawback to its wide use by developers.
Students could not envision how the static analysis process would scale to prove large
programs.

Students had to practice with the ICS research tool and learn its specification and
proof language. They felt that the tool would have been more accessible with a dedi-
cated graphical user interface and documentation at their level of understanding. It was
difficult for the students to understand the scope of ICS - what it can prove, what it
cannot prove and how to express statements to be proved in the ICS-specific language.
Tools are crucial for the use of formal static analysis in education and industry.

5 Further Work

In the 2005 IFIP Working Conference on Verified Software: Theories, Tools, Exper-
iments, researchers identified tools as an important enabler to making verified soft-
ware a reality in the next fifteen to twenty years [7]. In the April 2006 IEEE Computer
Magazine article ”Verified Software: A Grand Challenge”, C. Jones, P. O’Hearn and J.
Woodcock stated that ”Given the right tools, the use of formal methods could become
widespread and transform software engineering” [8]. Such an endeavor would require
the community that builds software verification tools to first apply the tool on the tool
itself and produce integrated, supported, documented, scalable, usable, and multi-user
verification tools. Some popular tools are : ESC/Java2 (Extended Static Checker for
Java)[ http://www.cs.virginia.edu/cs201j/plugin, http://secure.ucd.ie/products
/opensource/ESCJava2] based on JML (Java Modeling Language) [http://www.
cs. iastate.edu/ leavens/JML], a language to specify modules behavior, and Daikon
[http://pag.csail.mit.edu/daikon], a dynamic invariant detector that reports likely pro-
gram invariants.

We believe that the same tools should be used in education and industry. There is
revived interest in the theorem proving community concerning tools as demonstrated
by the UITP (User Interface for Theorem Provers) conference gathering people from
the theorem proving and human computer interaction communities.
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To support our approach, we are currently developing an Eclipse plug-in for ICS. We
envision that this plug-in will provide a rich editor for inputting specification and proof
commands following the tool syntax and a series of views for results (satisfiable, un-
satisfiable, counter-examples), problems (syntax errors with feedback), proof elements
(states, proofs, redo/undo of proof steps) and documentation (tool-related, syntax, se-
mantics, proof). Our long-term goal is to develop an Eclipse plug-in for formal static
analysis of Java programs based on Hoare Logic and ICS. We believe that using Eclipse
as an environment to support the static analysis process would benefit education and
industry. We are also developing a repository of examples based on our approach that
will be available at: http://www.csis.pace.edu/∼scharff/LEP.
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Abstract. Automata and logics are intimately related, and understanding their
relation is instrumental in discovering algorithmic solutions to formal reasoning
problems or simply in using those solutions. This applies to Büchi automata and
linear temporal logic, which have become fundamental components of the model-
checking approach to formal verification of concurrent systems. Translation of a
propositional temporal formula into an equivalent Büchi automaton is routinely
performed in many model-checking algorithms and tools. Albeit the possibility of
mechanical translation, a temporal formula and its equivalent automaton appear
to be two very different artifacts and their correspondence is not easy to grasp.
In this paper, we introduce a graphical interactive tool, named GOAL, that can
assist the user in understanding the relation between Büchi automata and linear
temporal logic, and suggest possible usages and benefits of the tool in courses
where model-checking techniques are covered. GOAL builds on the successful
JFLAP tool for classic theory of automata and formal languages. One main func-
tion of GOAL is translation of a propositional temporal formula into an equiva-
lent Büchi automaton that can be visually manipulated, for example, running the
automaton on some input. GOAL also supports various standard operations and
tests, including equivalence test, on Büchi automata. We believe that, with an easy
access to temporal formulae and their graphically presented equivalent Büchi au-
tomata, the student’s understanding of the two formalisms and their relation will
be greatly enhanced.

1 Introduction

The model-checking approach to formal verification of concurrent systems seeks to
automatically verify if the given system represented by an abstract model satisfies its
specification. Because of its proven effectiveness and ease of use, model checking has
become a viable alternative to simulation and testing in industry. Model checkers are
also increasingly exploited by verification tools based on deductive (theorem proving)
methods, as the work horses for decidable verification subtasks.

In one school of model checking, a concurrent system is equated semantically with
a set of infinite computations and its desired behavioral properties are then specified
in terms of those computations. The specification of a behavioral property typically
asserts temporal dependency between occurrences of certain events (represented by
propositions) and linear temporal logic has thus become a particularly popular class

? This work was supported in part by the National Science Council of Taiwan (R.O.C.) under
grant NSC 94-2213-E-002-089.
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of languages for specification. Temporal dependency between events may also be ex-
pressed with Büchi automata, which are finite automata operating on infinite words.

Indeed, automata and logics are intimately related, as we all have learned from clas-
sic theory of computation. Understanding their relation is instrumental in discovering
algorithmic solutions to formal reasoning problems or simply in using those solutions.
This applies to Büchi automata and linear temporal logic. It has been shown that Büchi
automata and a variant of linear temporal logic called quantified propositional temporal
logic are expressively equivalent. For the pure propositional temporal logic (PTL), prac-
tically feasible algorithms exist for translating a PTL formula (which is usually short as
a specification) into an equivalent Büchi automaton.

As Büchi automata are also suitable as abstract system models, many researchers
have advocated a unified model-checking approach based on automata. In this ap-
proach, the negation of the specification formula is translated into an automaton, repre-
senting the bad behaviors. The intersection of the system automaton and the negated-
specification automaton is then constructed and checked for emptiness. If the intersec-
tion automaton accepts no input (i.e., the system and the negated specification do not
have any common behavior), then the system is correct with respect to the original
specification formula.

Translation of a PTL formula into an equivalent Büchi automaton is now routinely
performed in many model-checking algorithms and tools. Albeit the possibility of me-
chanical translation, a temporal formula and its equivalent Büchi automaton are two
very different artifacts and their correspondence is not easy to grasp. Temporal formu-
lae describe temporal dependency without explicit references to time points and are
in general more abstract, while Büchi automata “localize” temporal dependency to re-
lations between states and tend to be of lower level. Nonetheless, their relation can
be better understood by going through some translation algorithm with different input
temporal formulae or simply by examining more examples of temporal formulae and
their equivalent Büchi automata. This learning process, however, is tedious and prone
to mistakes for the students, while preparing the material is very time-consuming for
the instructor. Tool support is needed.

In this paper, we introduce a graphical interactive tool, named GOAL (Graphical In-
teractive Tool for Omega-Automata and Temporal Logic), that has been designed and
implemented for this purpose, and suggest possible usages and benefits of the tool in
courses where model-checking techniques are covered. GOAL builds on the successful
JFLAP tool for classic theory of automata and formal languages. One main function of
GOAL is translation of a PTL formula into an equivalent Büchi automaton that can be
visually manipulated, for example, running the automaton on some input. The user has
an option of viewing the intermediate steps that the translation goes through, in particu-
lar, which states of the automaton come from which parts of the input temporal formula.
GOAL also supports various standard operations and tests, including equivalence test,
on Büchi automata. We believe that, with an easy access to temporal formulae and their
graphically presented equivalent Büchi automata, the student’s understanding of the two
formalisms and their relation will be greatly enhanced.

To the best of our knowledge, GOAL is the first graphical interactive tool designed
mainly for teaching and learning Büchi automata and linear temporal logic. It supports
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the full range of temporal operators, including all past and future temporal operators
defined in Manna and Pnueli’s book [11]. There are other tools that provide translation
of PTL formulae into Büchi automata, e.g., SPIN [8] and LTL2BA [5]. However, none
of them provide facilities for visually manipulating automata and few support past tem-
poral operators. The operations and tests on Büchi automata provided by GOAL are
also more comprehensive than those by other tools.

2 Büchi Automata, Linear Temporal Logic, and Model Checking

Büchi Automata. Büchi automata are a variant of ω-automata, namely finite automata
operating on infinite words. A Büchi automaton accepts those inputs that can drive
it through some accepting state infinitely many times. Büchi automata are closed un-
der intersection and complementation [1,7]. Complementation, unlike in the case of
finite words, is highly complex [16,14,9,10,4] and known to have an exponential lower
bound [12]. Minimizing the number of states is also a hard problem [3,17]. Generalized
Büchi automata have multiple sets of accepting states. A generalized Büchi automa-
ton accepts those inputs that can drive it through each of the accepting sets infinitely
many times. Generalized Büchi automata and many other variants of ω-automata are
equivalent to Büchi automata in expressive power.

Linear Temporal Logic. Linear temporal logic (LTL) has as semantic models infinite
sequences of states, which can also be seen as infinite words over a suitable alphabet.
We use Propositional Temporal Logic (PTL) to refer to the pure propositional version
of LTL, for which a state is simply a subset of atomic propositions holding in that state.
PTL formulae are constructed by applying boolean connectives and temporal operators
to atomic propositions drawn from a predefined universe. For instance, the formula
2(p → −3q) combines two temporal operators, 2 (always) and −3 (once), to say that
“every p is preceded by q” or equivalently “the first p does not occur before the first
q”. The formula 2(p → p U q) says that “once p becomes true, it will remain true
continuously until q becomes true, which must eventually occur”.

~pq ~pq

pq ~p~q

~p~q

pq

p~qq0 q1

p~q

~pq
pq

~pq
pq

~p~q

p~q
q0 q1

(a) 2(p→ −3q) (b) 2(p→ p U q)

Fig. 1. Two PTL formulae and their respective equivalent Büchi automata, where the
darker states are accepting states.

A PTL formula can be translated into an equivalent Büchi automaton (but not vice
versa) in the sense that every infinite sequence satisfying the formula corresponds to
an infinite word accepted by the automaton [19,5,6]. As an illustration, we exam the
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Büchi automata equivalent to the two example temporal formulae. The alphabet for both
automata is {pq,p˜q,˜pq,˜p˜q}. The Büchi automaton in Figure 1(a) is equivalent
to the formula 2(p→ −3q). From state q0, there is no transition for p˜q, ensuring that
“the first p does not occur before the first q”. The Büchi automaton in Figure 1(b) is
equivalent to the formula 2(p→ p U q). An occurrence of p˜q brings the automaton
from q0 to q1, where no transition is possible for ˜p˜q. So, once p becomes true, it has
to remain true until q becomes true. In addition, as q1 is not an accepting state, either
pq or ˜pq must occur, bringing the automaton to the accepting state q0.

Another variant of LTL called Quantified Propositional Temporal Logic (QPTL) [15]
additionally allows quantification over atomic propositions. QPTL are equivalent to
Büchi automata in expressive power, though the translation from formula to automaton
involves a non-elementary blow-up of number of states [16].

Model Checking. Model checking seeks to automatically verify if a given system satis-
fies its specification [2]. The system is typically modeled as a Kripke structure, which
is essentially a state-transition graph where each state is labeled with those propositions
that hold in that state; fairness may be imposed on how the transitions should be taken.
When the specification is given by a PTL formula, the model checker determines if ev-
ery computation (sequence of states) generated by the system satisfies (or is a model
of) the formula.

The system may also be modeled as a Büchi automaton; in fact, every Kripke struc-
ture (with or without the usual fairness conditions) corresponds to some Büchi automa-
ton. As the PTL formula can also be translated into a Büchi automaton, this results in
a uniform treatment of both the system and its specification [18]. Suppose A is the au-
tomaton modeling the system and Bϕ the automaton representing the specification ϕ .
Let L(A) and L(Bϕ) denote respectively the languages of the two automata. The prob-
lem of model checking translates into that of language containment L(A)⊆ L(Bϕ). Let
L(Bϕ) denote the complement of L(Bϕ). The problem is then equivalent to checking if
L(A)∩L(Bϕ) = ø. As Büchi automata are closed under intersection and complementa-
tion, this reduces to the emptiness problem of Büchi automata.

However, complementation of a Büchi automaton is expensive. A better alternative
is to first negate the given PTL formula ϕ and obtain the equivalent automaton B¬ϕ such
that L(B¬ϕ) = L(Bϕ). Now, to check if L(A)∩L(B¬ϕ) = ø, one only needs to construct
the intersection of A and B¬ϕ and complementation is avoided.

3 The GOAL Tool

In this section, we describe the functions of GOAL (Graphical Interactive Tool for
Omega-Automata and Temporal Logic) and their implementation. The current version
of GOAL provides the following functions:

– Drawing and Running Büchi Automata: The user can easily point-and-click and
drag-and-drop to create a Büchi automaton; the automata in Figure 1 were drawn
using GOAL. After an automaton is created, the user can run it through some input
to get a feel of what kind of inputs the automaton accepts, as shown in Figure 2.
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(a) A Büchi automaton drawn by the user

(b) Running the Büchi automaton through an input

Fig. 2. Screen shots of the GOAL tool. The inset window in each screen shot shows
the set of accepting states. In Part (b), the pair of “{” and “}” in the input indicates an
infinite repetition.



80 Tsay et al.

(a) A Büchi automaton translated from GFp (or 23p)

(b) The intermediate generalized Büchi automaton

Fig. 3. More screen shots of the GOAL tool. The PTL formula GFp is translated into
an equivalent Büchi Automaton. If the translation is followed step by step, the user can
also see the intermediate generalized Büchi automaton.
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– From PTL Formulae to Büchi Automata: After the user has typed in a PTL
formula and chosen a suitable translation option, the system responds by displaying
an equivalent Büchi automaton, as shown in Figure 3(a) with “GFp” or equivalently
“23p” as input. With another option, the system first displays a generalized Büchi
automaton and then, upon the user’s request, will convert it into a Büchi automaton;
Figure 3(b) shows such an intermediate result. The supported temporal operators
and their input formats are as follows:

Operator © 2 3 U W R −© ∼© −2 −3 S B

Format 1 () [] <> U W R (-) (˜) [-] <-> S B
Format 2 X G F U W R Y Z H O S B

– The PTL Repository: The repository stores a collection of commonly seen pat-
terns of PTL formulae and their respective equivalent Büchi automata, which were
drawn by human using GOAL itself and are smaller than machine-translated ones.

– Boolean Operations on Büchi Automata: The three standard boolean operations—
union, intersection, and complementation are supported.

– Tests on Büchi Automata: Emptiness, (language) containment, and equivalence
tests are supported. In the emptiness test, if the given Büchi Automaton is non-
empty, the system highlights the path that corresponds to an accepted input. The
equivalence test of two Büchi Automata is built on top of the containment test
which in turns relies on the intersection and complementation operations and the
emptiness test.

The automata and the graph modules of GOAL were adapted from those of JFLAP [13].
The most complicated algorithms in GOAL are those for translating temporal formulae
to automata and for complementing automata. Our translation algorithm is an adapta-
tion of the tableau construction described in Chapter 5 of Manna and Pnueli’s book [11].
For automata complementation, we adopted the algorithm by Safra [14]. Even with in-
puts of a moderate size, these algorithms may produce very large automata, which are
difficult to display and usually impossible to understand intuitively. However, this is
not a very serious problem. As GOAL is positioned mainly as an instructional tool, we
assume that it will be used with inputs of short temporal formulae or small automata.

A few words are in order about our translation algorithm. Though it generates more
states than others do, the algorithm has two advantages: it handles past temporal opera-
tors and is relatively simple (which is good for educational purposes). The steps can be
easily divided and their intentions clearly illustrated. Some published translation algo-
rithms are indirect, e.g., the translation in [5] used a very weak alternating automaton as
the intermediary, while some combine multiple steps into one, e.g., the translation in [6]
constructed states and established transitions in the same step. To reduce the number of
states, we implemented several methods for state reduction, for example, removing re-
dundant states detected by simulation [3].

4 GOAL in Classroom and More

As the implementation of its main functions has just recently been completed, we have
yet to use the GOAL tool in an actual classroom setting. However, an analogy can be
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drawn from the use of JFLAP [13], a visual interactive tool for teaching and learning
classic theory of automata and formal languages that inspired GOAL. The first author
has used JFLAP for several years in his Theory of Computation course for junior and
senior undergraduate students. Both the students and the instructor have enjoyed the
illuminating visualization that the tool provides. It helps to be able to see how an au-
tomaton, particularly a nondeterministic one, runs on an input. A convenient tool for
drawing automata also encourages the students to do more exercises. It was a delight to
find that a visual tool has breathed life into an important foundational computer science
course that would otherwise be dull to most students. Moreover, as the diagrams can
be exported with a PDF printing support, the tool has also saved the instructor’s time
when preparing handout material and the students’ when writing up their homework.
We believe the same will apply for GOAL.

The GOAL tool should be useful as teaching and learning support for courses
on model checking, formal verification, or even advanced automata theory where ω-
automata and temporal logic are essential topics. Our immediate plan is to use GOAL
in a course of this Fall titled Software Development Methods, which aims at improving
students’ ability in designing quality software. The course covers three topics: software
modeling, design patterns, and formal verification. In the verification part, we will cover
model checking techniques and tools where GOAL can help. Though the emphasis is
not on translation algorithms, the student will be asked to write the same specifications
with Büchi automata and temporal formulae. With the help of GOAL (particularly the
equivalence test), they will be able to quickly validate their answers. They can try out a
few inputs on a Büchi automaton to get a better understanding of what its language is.
For the more aspiring students, GOAL can provide them with guidance on how a Büchi
automaton is obtained systematically from a PTL formula (though not necessarily in an
optimal way).

Lastly, we would like to mention that the authors and other members in their group
have already started to benefit from developing and using GOAL. Among other things,
we learned to appreciate the difficulty and importance of minimizing the number of
states of a Büchi automaton during the implementation. No known algorithms guarantee
minimality on the number of states. Still any heuristics that help reduce the number of
states are valuable, as automata with a smaller number of states are usually easier to
understand intuitively (and to verify automatically). Indeed, research and teaching do
go hand in hand.

Acknowledgment. We thank Susan H. Rodger, the creator of JFLAP, at Duke University
for granting us the permission to use and modify the JFLAP source code. Without the
automata and the graph modules of JFLAP (which we had to tweak a little bit), the
GOAL tool would not be possible in a relatively short time. We also thank Wen-Chin
Chan who helped us with the adaptation of JFLAP’s graph module.

References
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through prototyping
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Abstract. Formal methods refer to a variety of mathematical modeling tech-
niques, which are used to model the behavior of a computer system and to verify
that the system satisfies design, safety and functional properties. In this paper, we
record the experience of teaching Formal Specification to master degree Com-
puter Science students, using the higher order π-calculus language. We present
a methodology for teaching formal specification based on a collaboration tool
called HOPiTool. This tool is the input gate to build a rapid prototype of mobile
agent application. We argue that students, through a rigorous integrated develop-
ment environment to formal specification, acquire knowledge, skills and abilities
that are essential in their professional lives as Computer Scientists.

Keywords: Mobile computing, Teaching and Learning, Formal Methods, Formal
Specification.

1 Introduction

Formal methods are considered as a basis for most research frameworks at master de-
gree level. However, its approach often seems difficult to understand for students, be-
cause of the complexity of formal methods. The use of formal method is clearly pre-
sented at the beginning of the scholar year by the need of formal specification in the
context of mobile computing. This formal facet is also explained by the use of property
proof. Yet all of these reasons are merely considered a pretext to teach mathematics
in computer science lessons. In fact, our students have a pragmatic profile and their
experience is essentially based on design and programming studies. Also, the use of
semi-formal methods is more established and well accepted by master degree students.

Since 2004, we decided to introduce formal methods in teaching mobility. Our ob-
jective was to introduce formal methods not only as general knowledge which could be
useful for everyone, but as a wizard which would be able to lead the programming of
a mobile agent application. The direct application was immediately understood by our
students and the motivation of everyone was obvious: not only can the formal method be
useful in approaching a technical subject, but has also piqued the interest of companies
such as those in the telecom industry.

Our teaching orientation was geared towards the use of a specification platform
(called Higher- Order π-calculus tool HOPiTool) which we have developed on purpose.
This high-level tool allows students to generate mobile agent application skeletons.
This tool has also become the main interest in a first approach and, because it is the
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vehicle of a specific formal calculus, the Milner’s formal language was understood and
assimilated by all beginners in the group of students. Some features of our tool can
be compared to Mobile WorkBench Tool (for a large subset of π-calculus) [6] but the
context and the functionalities (interaction, and code templating operations) have not
the same application.

This paper explains the architecture of our teaching approach. First we describe the
application domain of the formal methods we use; secondly we place all actors of our
scenario and depict a specific lesson. Then, we list the immediate results and, step by
step how our technical tool plays the role of an exchange platform between users and
experts. Finally, we sum up with the projection of our work on some other subjects and
contexts.

2 Architecture of our teaching approach

Previously, the formal methods course unit was lecture-based (three hour-long lectures
per week), with the support of weekly tutorials in the first term and (subsequently)
weekly practical sessions in the second term. The lectures introduced the following
broad topics:

– Industrial use of formal methods [1];
– Mathematical notation (i.e. logic, sets, relations, functions, sequences, etc.)
– Property proof from model, and formal theory

Because of this situation, and the increasing number of students attaining poor marks
for the formal methods unit, it was decided to change our approach. In 2002, we built a
platform dedicated to formal specification teaching. Our tool was initially intended as a
formal specification editor and certifier, rather than a teaching tool. However the initial
use showed promise for another application.

The core choice of the approach had to do with which formal language to adopt and
teach. This choice was directed by the potential applications; the most direct applica-
tions were the most whacking ones.

Because of our abilities in mobile computing and nomadic computing, we chose the
higher order π-calculus language created by Robin Milner [2].

In theoretical computer science, the π-calculus is a notation originally developed
by Robin Milner, Joachim Parrow and David Walker as advancement over Calculus of
Communicating Systems in order to provide mobility in modeling concurrency [3]. In
the family of process calculi that have been used to model concurrent programming, the
π-calculus plays a role similar to that of the λ -calculus concerning sequential program-
ming.

The expressiveness of this formal calculus allows us to consider mobile feature as
basic structural feature of our specifications. A formal π-calculus specification is, thus,
easy to interpret as an operational description of a real mobile application on a concrete
device. This factor was a valuable asset with our students - especially those having a
technical background.

Mobile computing applications were also a key argument in our presentation. This
kind of direct application is interesting for large industry, with companies such as Mo-
torola, which sprung up to support the growing need for mobile devices. Some other
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domains are taken into account such as ubiquitous computing. Students are receptive to
these real issues and discover by the end of the academic year that companies are very
interested in people who are familiar with these subjects.

At the beginning of the development map, we determined some basic features for
our tool:

– The user must obtain an initial prototype when his formal specification is correct
(respect a set of rules),

– The prototype is automatically executable on the current network, even if it is re-
stricted to one node,

– The platform has to be collaborative - meaning that the work of a user can be
observable by any one else with permission to do so,

– A specification repository should offer basic ’bricks’ for beginners to start with,
– At the end of a user project, its owner can only consider a formal specification

as a formal view of the project, as opposed to the initial prototype, which is an
executable one.

Since then each lecture became divided into two parts: an explanation of the lec-
ture concerning a specific concept (about one hour), followed by a concrete and direct
application of this concept through practical work using the HOPiTool.

For example, the first lecture is about the deployment of an agent in a graph and its
consequences on the communication scheme. The second part of the lecture is about
the specification of a system based on a set of sentries which control telnet protocol and
forward information when a connection occurs. A sentry is an agent which observes a
specific protocol or has a precise task. The section which follows highlights the role of
the practical aspect in our global teaching strategy.

3 An essential direct application of formal method

This template of lecture is the basis for all lectures in the course. The direct application
allows the teacher to evaluate not only the level of a student but also the homogeneity
of the group. This note is explained via the Figure 1 below. After the explanation of the
teacher, each student of the group receives the requirements for the formal specification
he has to write. Then a controller agent is installed on the teacher’s platform. This
installation step means that a directory of specifications (for the controller) is duplicated
Each student can consult this specification as a reader. It serves as a reference that the
telnet agents should exchange data with it.

Then each student can write his own specification in his workspace. This workspace
is hidden from the other students with only the teacher having access as a reader. HO-
PiTool helps the student not only with checking syntax, but also checking whether an
agent specification can be evaluated in a more complex system where some agents (a
controller and its student agent) share some channels or gate vocabulary.

The following agent generation step creates a local prototype from a student speci-
fication, in the same workspace. Of course, this stage can detect some ambiguities and
even some errors. This semantic step has to be configured (by the teacher at the begin-
ning of the use: some network features, etc.).
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Fig. 1. A snapshot of a working period

Simulation and observation follows. Before launching his prototype, the student
must notify the teacher that he is ready to start his own agent (or his own set of agents).

The event provides information about the skill of the students, even if the subject is
similar to the first part of the lecture. Secondly, the teacher has to launch his controller
prototype. Then, the simulation can elapse. Depending on the construction of each part,
a result can be observed by both the student and the teacher.

Finally, a global simulation can be prepared if the workspace of each student is made
available to the others. In this last step the teacher can assess students’ understanding
of the notions involved in the prototyping.

To sum up this section, we note that a direct application is controlled and driven
by the teacher. This scheme is also available in another context: when several students
work in collaboration with each other. In this case, the role of HOPiTool platform is
quite different, the teacher platform does not support an agent and its role is that of an
observer of the activity within a student group. This is particularly useful to understand
and evaluate the origin of problems in school projects.

As HOPiTool is always available on the student’s platform, each student’s work
(specification of prototype) which is not finished during a lecture must be realized be-
fore the following lecture. However, the same measurements can be assessed (duration
of work, relation with some other student’s work). These conditions motivate each stu-
dent to achieve his goals.

The next section presents in detail a specific lecture and how formal method and
mobile prototype are combined.

4 Description of a specific lecture

The timing of each lecture needs to be precisely defined as the measurement could be
wrong or merely approximate. In this section we will present a fragment of a lecture
with the subject being how to export an agent.

The first part of the lecture is dedicated to the expression of the agent exportation
and, especially, the signature of the exported agent and how another agent can receive or
import an agent. The signature is explained and the scope of names which are looked up
by the agent (called B on figure 2). Robin Milner uses unification algorithm and some
extension are added for the higher- order expression. These properties are particularly
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difficult for students to grasp, who do not have a background in logics. A first reading
of such specification is complex and students made mistake between pattern matching
and unification.

The figure below highlights a scenario: an agent A exports another agent S like it
could publish a service. On another node, an agent called B wishes to import this agent
like it could be subscribed to a remote service.

(a) (b)

Fig. 2. Higher-order communication description (a) Higher-order π-calculus specifica-
tion, (b) Box diagram

The second part of the lecture involves a case study on SLP (Service Location Pro-
tocol) [4]. The students build a formal specification of SLP protocol where the mobile
features are highlighted. Of course, these aspects involve the use of agent exportation.
From a reference of the SLP protocol each student defines two kinds of agents: a direc-
tory agent and a service agent. The teacher specifies a user agent. These names come
from the SLP IETF reference document. The next figure show both parts of the specifi-
cation and the gates which are used to exchange them.

Fig. 3. Agent specification UA is written by the teacher and SA, DA are written by the
student

Several auxiliary agents are defined by the students (to keep all the exchanges of
services). This part of the work is hidden here but is essential for the overall specifi-
cation. The first half of the second part is used for the specification and the controls,
upon which the generation code can take place. The entire prototype is written in Java
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and Jini (Java Intelligent network Interface); we use the results of some previous re-
search work in our research team about mobile agents [5]. This library maps agents to
classes in a way such that the exchange of agents is described as a Jini service. Even if
the students are not familiar with the library, they can consider the results of the code
generation as a potential validation of their previous work. Thus, one class per agent is
generated and an ant file is created with all the useful targets for the compilation, the
deployment and the execution of the prototype. The first execution happens between
the teacher UA prototype and the student prototype. When this level is satisfied, a more
complex validation can be done with a distinct service per student and a more complex
UA agent. The interpretation of the results is immediate and the link between higher
order π-calculus and the mobile code becomes apparent. The next section presents the
consequences of our approach and how HOPiTool is enhanced by the development of
additional modules.

5 Immediate feedback

The overall course schedule is today quite different from what it used to be. Two years
ago, the plan followed the difficulties of the subjects, now it is implicit in the step by
step control of teaching material made possible by HOPiTool. The core of the course
may appear to be centered on the HOPiTool platform, yet the tool itself serves only as
a tool, a pretext for other direct applications. Two main applications are realized: in the
first year, a set of case studies are built. They represent a library or a reference for the
beginners.

Next, the formal approach is enhanced with a test module. It allows the student to
write specifications faster while improving quality. This module was a project initiated
by a research group, but implemented during a master’s degree project. The goal is to
generate some test suites which respect the formal specification written by a student.
These tests can be composed into a hierarchy of test suites. The test suites contain test
cases and even other test suites. When the prototype is generated, the tests can be run
automatically and can check their own results. When a student runs tests, he gets simple
and immediate visual feedback as to whether the tests pass or fail. There is no need to
manually comb through a report of test results.

The structure of a student workspace has evolved as shown in figure 4. The test
cases can be run automatically or manually depending on the level of the student. The
test generation is a pedagogical approach; it completes the understanding of the spec-
ification. Several criteria can be added, for instance, to insure that all branches of the
specification are explored. These test cases arise from the specification, yet their Java
derivations illustrate the role of the higher order π-calculus language. This adds to the
belief that formal languages are a key brick in software development.

6 Conclusion

In our experience, the use of a pedagogical tool led to a new organization of the entire
course. Because it is not only a help for every one but also something more complex,
the structure of each lecture changes. Now even the theoretical courses have practical
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Fig. 4. New structure of the student workspace

exercises. The structuring of a lecture consists of one hour for theory and two hours
for practice. The main result is a different behavior in the students; the formal subject
becomes more appealing.

Finally, the evaluation of the module has changed since the HOPiTool platform
becomes a framework for the exams. The validation of the students’ exam is also sim-
plified with the use of test cases. The teachers provide a reference after the exam with
statistics. Also, tracking the students’ progress becomes easier than before and scores
are improved.
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Abstract. We present a case study in evaluating a formal methods technique,
using student assessed exercise solutions as sample input to SymmExtractor, a
symmetry detection tool for the SPIN model checker. We discuss the ethical pro-
cedure which must be followed when using student programs for research, and
present the results of our evaluation.

1 Introduction

The mathematical nature of formal methods means that designers of a technique or tool
may give little thought to its widespread usability, concentrating chiefly on theoretical
soundness and elegance with respect to a limited application domain. Although the
rigour of a formal approach depends on these theoretical aspects, usability is clearly
important if techniques and tools are to be adopted by industry, educators, or other
researchers.

Formal methods students are suitable participants for evaluation of formal methods
techniques — their interest is balanced between the practical aspects of a particular tool
and the theory which underlies its construction, and they will reject a technique which
has limited application even if it is theoretically elegant. Further, such evaluation can be
mutually beneficial: students can learn about practical formal methods by using certain
techniques and tools, and simultaneously aid research into the usability of prototype
extensions.

The contribution of this paper is a case study evaluating an automatic symmetry
detection tool, SymmExtractor. The evaluation is based on a set of example solutions to
an assessed exercise from the Modelling Reactive Systems final year course at the Uni-
versity of Glasgow. We discuss the ethical issues involved in using student programs
for research, present the design of our evaluation, and propose some changes to Sym-
mExtractor based on the evaluation results. The benefit of this evaluation was one way:
students allowed us to use their solutions in our research. We conclude by proposing
a symbiotic approach in which students’ education in formal methods can also benefit
from participation in evaluation.

? Supported by the Carnegie Trust for the Universities of Scotland.
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2 Symmetry in Model Checking

Model checking [5] is a popular automated formal reasoning technique whereby tem-
poral logic properties of a concurrent system can be checked via an abstract, finite
state model of the system. A widely used model checker suitable for protocol verifica-
tion is SPIN, which allows reasoning over specifications written in Promela [10]. The
application of model checking is limited due to the state space explosion problem –
as the number of components in a system increases, the state space of its associated
model grows combinatorially, becoming too large to reason over. Symmetry reduction
techniques aim to combat this problem by exploiting replication in the topology of the
system. Such replication may induce automorphisms, or symmetries of the underlying
state space. These automorphisms form a group, any subgroup of which can be used
to partition the state space into equivalence classes. Certain temporal properties can be
checked over a quotient state space, consisting of one state per equivalence class. This
can potentially result in large savings in memory and verification time [3,7].

For details of symmetry reduction in model checking, see a recent survey [12]. We
now describe two tools for analysing symmetry in Promela models. The first, Sym-
mExtractor, infers symmetries of the state space underlying a Promela specification
via static analysis of the specification. The second, SPIN-to-GRAPE, allows generators
for the group of all symmetries of a small state space to be computed, and was used
extensively in the design and evaluation of SymmExtractor.

2.1 The SymmExtractor and SPIN-to-GRAPETools

For symmetry reduction to be a useful technique it is vital to be able to detect sym-
metries of a state space without actually building the state space. There are three main
approaches to symmetry detection: restricting the input language so that the state space
associated with a specification is guaranteed to be symmetric [15]; extending the lan-
guage with keywords which can be used to specify symmetry [11]; and inferring sym-
metries of the state space by analysing the communication structure of a specification
[3,6]. The third approach is less restrictive than the first, and avoids the manual effort of
the second, thus potentially allows symmetry reduction to be a “push button” technique.

SymmExtractor [6] performs automatic symmetry detection for Promela by extract-
ing the static channel diagram (SCD) of a Promela specification. The SCD is a graphi-
cal representation of potential communication between components of the specification.
Generators for the group of symmetries of the SCD, Aut(SCD), is computed, and the
computational algebra system GAP [9] is used to determine generators for a subgroup
of Aut(SCD) which induces a symmetry group of the underlying state space, and thus
can be used for symmetry-reduced model checking. SymmExtractor is incorporated in
TopSPIN [7], which uses the detected symmetries to for state space reduction when
model checking with SPIN.

SymmExtractor requires that a Promela specification obeys certain restrictions. These
include: the use of an init process in which all processes are instantiated simultane-
ously; restrictions on the use of channel variables; and a constrained set of allowable
operations on variables which take as their values process identifiers. These restrictions
aim to make automatic symmetry detection tractable and straightforward to implement,
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without unduly modifying the way that Promela programs are specified. The evalua-
tion presented in this paper aims to identify mismatches between these restrictions and
natural modelling styles used by students in a set of sample specifications.

For small models, it can be illuminating to construct the state space as a directed
graph and explicitly compute its group of automorphisms. The SPIN-to-GRAPE tool [8]
outputs the state space underlying a Promela specification as a directed graph suitable
for input to GRAPE [16], a graph-theoretic add on to GAP. GRAPE can then be used
to compute the automorphism group of the state space and the corresponding quotient
state space.

SPIN-to-GRAPE can be used to explicitly analyse the symmetry group of a state
space with up to several thousand states. The tool was used extensively for testing pur-
poses during the development of SymmExtractor and TopSPIN [7] (a symmetry reduc-
tion package for SPIN which incorporates SymmExtractor). In Section 4.2 we discuss
the role of SPIN-to-GRAPE in the evaluation of SymmExtractor.

3 Modelling Task – a Telephone Exchange

Modelling Reactive Systems (MRS) is a final year 20-lecture formal methods course at
the University of Glasgow. The primary focus of the course is on the theory and practice
of model checking, and students use SPIN in practical sessions. The main prerequisite
for MRS is a discrete mathematics course for computing science, which covers the
basics of set theory, predicate logic, relational algebra and methods of proof. In addition,
students are required to have passed first year mathematics courses on calculus and
algebra, as well as multiple computing science courses on programming, data structures
and algorithms. Almost 20% of the assessment for MRS is via a practical exercise
which involves specifying a reactive system using Promela, then reasoning about the
specification with SPIN.

The MRS practical exercise for 2004/2005 involved producing three versions of a
specification for a two user telephone system. Intuitively, a Promela specification of a
two-user telephone exchange should exhibit one non-trivial symmetry which switches
the local states of the users (and their associated channels) throughout all global states.
Thus solutions to this modelling task provide a good set of Promela examples with
which to evaluate the restrictions imposed by SymmExtractor, discussed in Section 2.1.
Further, the associated state spaces are small enough for SPIN-to-GRAPE to compute all
state space symmetries present in a given specification, which can be compared with
those detected by SymmExtractor.

4 Evaluation

4.1 Ethical Approval

To ensure that our user study is ethical, we have followed the Glasgow Ethics Code
check-list [13]. This is a 12-point check-list distilled from the ethical standard of the
British Psychological Society [2], and focuses on the issues which are most relevant to
computing science projects. Compliance with most of the points on the check-list was
straightforward. The following points required some care:
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– All participants explicitly stated that they agreed to take part Students who
allowed us to use their solutions in the study were provided with an information
sheet detailing the aims of the study, and asked to sign a consent form (provided
as Appendix A and adapted from a standard example [14]). The intended usage of
students’ solutions is detailed in Section 4.2.

– The researcher conducting the experiment is not in a position of authority
or influence over any of the participants As the solutions formed part of the
course assessment, it was important that the the consent of students was not sought
until after solutions had been assessed and returned. This assured students that their
decision to take part in the study could have no effect on their score for the exercise,
and encouraged them to answer the assessed questions in exactly the same way as
they would have otherwise.

A further ethical concern is that the assessed exercise should be designed to meet the
intended learning outcomes of the course and not to meet research aims (unless these
overlap). In addition, since assessment has been shown to narrow students’ focus [1],
care must be taken to ensure that an assessment biased towards the research interests
of the course director does not restrict breadth of learning. In our case the exercise had
been set to meet the course aims before we designed our evaluation.

The study was approved by the ethics committee of the Faculty of Information and
Mathematical Sciences at the University of Glasgow (ref. FIMS00203). We obtained
signed consent forms from 17 students from a class of 35.

4.2 Methods

For each specification in the sample set we gathered the following data by a combination
of automatic and manual analysis:

1. Size of the unreduced state space (computed using SPIN)
2. State space symmetries computed by SPIN-to-GRAPE, and size of the resulting quo-

tient state space
3. Symmetry breaking features of the specification, and modifications required to re-

store symmetry (documented by experimenter)
4. Violations of restrictions imposed by SymmExtractor (as reported by the tool) and

modifications required to satisfy restrctions (documented by experimenter)
5. Symmetries detected by SymmExtractor
6. Size of the quotient state space computed by TopSPIN.

Symmetry breaking features are aspects of the specification which destroy the intu-
itive symmetry discussed in Section 3. When SPIN-to-GRAPE showed absence of this
expected symmetry in a given specification, the experimenter manually examined the
specification to identify symmetry breaking features. We classify the modifications of 4
above as minor if they could be avoided by a straightforward extension of SymmExtrac-
tor, medium if they would be unnecessary if SymmExtractor could capture symmetry
between global variables, or major if they could only be avoided by significant devel-
opment of the theory on which SymmExtractor is based. The quotient state space is
computed using TopSPIN to ensure that it matches the quotient structure constructed
with respect to the symmetries computed by SPIN-to-GRAPE.
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4.3 Results

We refer to the individual components of a three part solution as specifications. Of the
51 specifications analysed, just over half did not exhibit the expected symmetry due
to symmetry breaking features. In most cases this was because run statements were
not surrounded by an atomic block; for other examples the telephone users were ini-
tialised asymmetrically (e.g. handset variables for users 1 and 2 were set to up and down
respectively, destroying symmetry between users). In all cases it was possible to restore
symmetry by trivial modifications, with a negligible effect on the global state space.
With these modifications, SymmExtractor was able to detect symmetry immediately
from 23 of the resulting specifications. A further 13 required modifications which we
classified as minor – these included replacing locally instantiated channels with globally
instantiated channels, and removing channel instantiation statements from record dec-
larations. Another 7 specifications required medium modifications (as described above).
The final 8 specifications required major modifications. These modifications have iden-
tified a problem with the usability of the tool, which involves the way that arrays indexed
by process identifiers are accessed.

We have extended the SymmExtractor documentation with a short set of modelling
guidelines based on the problems encountered when applying the tool to this set of
examples. It is clear that the tool would be more useful if it could handle symmetry be-
tween global variables, and an approach to this extension is sketched in [6]. The main
challenge which the evaluation results have presented is to find techniques to automat-
ically determine the relationship between numeric identifiers passed as parameters to
processes by the user (and used to access arrays), and the runtime id values which SPIN

assigns to processes.

5 Conclusions and Future Work

We have presented a case study in formal methods evaluation, using solutions to a stu-
dent assignment as input to the SymmExtractor symmetry detection tool. The evalua-
tion has identified some necessary improvements to the tool, as well as some modelling
styles which destroy potential symmetries of a model. We have also discussed the ethi-
cal procedure which we followed before using student programs.

We are currently evaluating SymmExtractor further using another set of student pro-
grams, which model a railway signalling system. In future we hope to carry out this kind
of evaluation during a formal methods course, so that students can learn by critically
analysing new add-ons (like our symmetry reduction package) to existing tools. The
students were unaware, when designing their solutions to this assessed exercise, that
symmetry detection and reduction techniques would later be applied to their programs.
However, symmetry reduction is part of the MRS course. Therefore it would be useful
to see the effect on their programming style had they been asked to build specifica-
tions suitable for symmetry reduction. As development of SymmExtractor and TopSPIN

continues this is very much a future research direction.
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Appendix

Participant Consent Form: Symmetry in Promela Models

The aim of this experiment is to investigate structural symmetry arising in typical
Promela models of distributed systems.

The experiment will involve allowing the experimenter to analyse your assessed exer-
cise submission for last year’s Modelling Reactive Systems 4 course. The analysis is
concerned with the structure of the state space underlying your solutions, not with the
semantic correctness of the solutions.

All results will be held in strict confidence, ensuring the privacy of all participants.
No personal participant information will be stored within the data. Data will be stored
online in a password protected computer account.

A feedback email message will be sent to all participants, after the data has been anal-
ysed.

Please note that it is the Promela language, not you, that is being evaluated. You may
withdraw from the experiment at any time without prejudice, and any data already
recorded will be discarded.

If you have any further questions regarding this experiment, please contact:

Alastair Donaldson
Computing Science Department
Lilybank Gardens
ally@dcs.gla.ac.uk

I have read the information sheet, and agree to voluntarily take part in this experiment:

Name: Email:

Signature: Date:

This study adheres to the BPS ethical guidelines, and has been approved by the FIMS
ethics committee of The University of Glasgow (ref: FIMS00203). Whilst you are free
to discuss your participation in this study with the researcher (contactable on 330 4236
ext. 0049), if you would like to speak to someone not involved in the study you may con-
tact the chairs of the FIMS Ethics Committee: s.garrod,s.schweinberger@psy.gla.ac.uk.
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Teaching with the Computerised Package Language,
Proof, and Logic (LPL)

Roussanka Loukanova

Computational Linguistics
Dept. of Linguistics and Philology, Uppsala University

Abstract. In the first sections of this paper, I discuss briefly education in founda-
tional subjects involving Mathematical Logic. Then, I share my experience with
a courseware for introductory and intermediate undergraduate courses in Mathe-
matical Logic, which incorporates a pedagogical approach of combining:
(1) a textbook, which introduces logic methods of reasoning and proofs in infor-
mal, but correct way, which is then paralleled by formalization
(2) using computer software for better comprehension of abstract and theoretical
concepts.
(3) practice with model checkers and automated provers.
I will demonstrate the programs in the Language, Proof, and Logic (LPL) pack-
age with several exercises on models and formal proofs.

1 Importance of Education in Formal Methods

Teaching Formal Methods typically, but not always, is conducted by courses such as
Math Logic, Discrete Math, Computability, etc. It has an old history, the beginning of
which is the beginning of the Philosophy and Sciences. Courses in logic have been
indispensable from the academic education in various major fields of sciences up to
their modern proliferation. Nowadays, knowledge and skills in mathematical logic are
essential for various subjects such as mathematics, computer science, philosophy, gen-
eral and computational linguistics, informatics, etc. Various courses in logic are given
for undergraduate and graduate students in many of the educational programs of these
subjects. This has led the lecturers to select and include in their courses specific topics
of formal methods, depending on the demands of the particular subjects. A special at-
tention has been given to education in Math Logic in the context of the undergraduate
curriculum. With the advance of the information technologies, we can not overestimate
the importance of teaching formal methods in the entire university education, including
for forming formal reasoning in humanities and arts. Despite of that, there is a tendency
for replacing existing requirements for courses in logic with other, unrelated, courses.
Even, in the above mentioned disciplines, the current trend is for reducing the logical
content of the relevant courses, and especially for eliminating proofs. This problem ex-
ists even in computer science and computational linguistics, where the techniques of
proofs are the layout of many, if not the most, formal and computational approaches to
contemporary applications.

Why logic is, and in general formal methods are, important to education in mathe-
matics, computer science, philosophy, computational linguistics, bioinformatics, medicine,
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and so on? The original research on logic and formal methods continues to be as ac-
tual as in its origin times: the methods of reasoning and deriving new knowledge in a
consistent, sound way, without faults. This by itself is sufficient for including it in the
educational programs. But with the contemporary advent of computers and information
technologies there are more arguments for including formal methods in the curricula.

Firstly, the computers themselves (both, hardware and software) are a direct practi-
cal output of developments in logic, incl. its sub-fields of computability.

Secondly, all of the above mentioned subjects require skills for using computers
and computer systems by understanding the foundational basics. This involves a flaw of
current software tools for logic and other computability methods, e.g., formal grammar
tools, finite automata, Turing machines. The flaw even goes deeper: Logic and Com-
putability software tools are very implementation-bound. Similar problem exists for the
computational grammar tools for processing human languages, where the parsing tech-
niques of software tools are typically based on variations of Context-Free parsing, while
the grammar theory implemented is typically diverging from the classical Chomsky Hi-
erarchy of Grammars (see Loukanova, HT 2006, Computational Grammar II). Software
tools for classical math do not suffer from this problem (e.g., Lagrange would be able
to use a tool like Maple with at most one minute of computer introduction).

And thirdly, and most importantly, understanding the formal foundations is neces-
sary for the education of developers of computers, computer systems and applications.
Education of professionals for the job market related to these subjects requires provid-
ing knowledge and skills for work with formal systems and models and relating them
to real world tasks.

Some universities include logic courses for humanity and arts students, but more
often, the formal reasoning requirements are either optionally, or entirely, covered by
pure math courses, such as calculus or probability. For example, Indiana University
students in Humanity and Arts can take a course in Finite Math or Calculus. As another
example, Notre Dame requires at least two semesters mathematics, where the courses
depend on the major of students. For students in science, business and engineering, this
includes Calculus; for mathematics students, this can include some sub-field of Logic,
such as Computability and Automata Theory on topics of what can and what can not be
computed, and if a task is computable, how and with what resources.

2 Some of the Goals of Teaching Formal Methods

Educational programs in formal methods vary among subjects, educational programs
and traditions of schools. The argument for providing Mathematical Logic for human-
ity and arts is to provide students with formal methods of sound reasoning and abilities
of analyzing arguments. For that, basic courses in classic logic suffice. But for students
in computer science and computational linguistics, it is important that education pro-
vides foundational background for syntax and semantics of programming languages
and human languages. The emphasis on the latter is lesser in computer science. For the
education in computer science, these courses would, typically, differ in topics, goals
and methods, from those for computational linguistics, and far more for humanities.
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Graduate (PhD) programs in natural sciences, such as medicine and biology, should
offer advanced courses in formal methods: These would provide foundations for inter-
disciplinary research and developing advanced industry technologies for building sound
bio models and simulation, and introducing formal verification of models of complex
bio systems.

Thus, in all varieties of educational programs, courses on formal methods vary in
goals and topics, but they also share common features which are specific for the subject
of formal methods, incl. logic. The many years work on education in logic is reflected,
for instance, by the Guidelines on Logic Education of the Committee on Logic Educa-
tion of the ASL, The Bulletin of Symbolic Logic 1, 1995.

The goals of teaching in Mathematical Logic include, but are not limited to the
common goals of higher education, such as:

– independent work on the course
– preparation for meeting and taking real and serious tasks related to the subject
– promoting discovery up to striving for challenging tasks on the subject
– abilities to use the learned methods and techniques for applications in other subjects

and real life tasks

General common goals of teaching in Logic:

– Some of the direct goals include covering
• the fundamentals of model theory
• syntax-semantics relationships
• symbolic manipulations
• methods and techniques of proofs

– Long term goals related to the every-day real life:
• understanding foundational logical principles of reasoning and argumentation
• to provide basis of relating formal reasoning in symbolic languages to everyday

human language, or to professionally specialized usage of human language
• managing information flow: techniques of processing available information

represented in any form, spoken and written, in pictures, diagrams, etc., and
being able to derive new information in reliable ways (a task which is receiving
a special status with the contemporary advances of information technology)

– Specific subject related goals:

• to provide reliable knowledge about the formal and theoretical apparatus of the
selected topics

• learning topic specific techniques and methods
• to promote ability to generalize specific techniques in varying and new tasks
• to provide basis for further independent study and research in the subject of

formal methods
• abilities to apply formal methods in real life applications and tasks for meeting

the demands of sciences and industry in the context of current information and
technology advances
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3 Typical Topics Covered by Logic Courses

The topics covered by a general course on formal methods can be summarized, with
some variations depending on specific needs and context as follows (see also the Guide-
lines on Logic Education of ASL):

Mathematics students get specific training in the various fields and sub-fields of
mathematics. They learn various, specific for these fields, techniques for geometric, nu-
merical, functional, etc., manipulations and rigorous proofs. The goals of (sequences of)
courses in logic for mathematicians is to provide knowledge of the formal background
of these techniques and Foundations of Mathematics.

Logic and computability provide the foundations of Computer Science in all of its
essentials (from the hardware to software, via the operating systems and programming,
including specialties on syntax, semantics and compilers of programming languages,
algorithms, data structures, cryptology and security techniques, data bases and soft-
ware applications). It should be already a standard (which is still far from the reality
at some universities) that computer science departments teach logic and computabil-
ity at all levels of the study, by courses with titles such as, Theoretical Foundations of
Computer Science, Logic, Computability, Finite Mathematics, Discrete Math, Theory
of Automata and Formal Languages, etc. The specific topics covered vary depending
on the level of the courses and other factors.

Computational Linguistics is an interdisciplinary field between theoretical linguis-
tics, computer science, logic, mathematics, artificial intelligence, cognitive science and
neuroscience. It covers the contemporary developments for computerized processing
of human languages. To provide foundational knowledge, the goals and topics of the
courses on formal methods for Computational Linguistics are very close to those for
Computer Science, but with a stronger emphasis on Model Theory, Higher Order Log-
ics, Type Logic Grammars, Computational Semantics (by focusing on compositional-
ity), Formal Grammars and Languages, Automata Theory, Parsing Methods specialized
for human languages, Methods of Resolution and Unification. These courses provide
foundations of formal and computational approaches to grammar, in its broad cover-
age: computerization of morphology, lexicon, syntax and semantics.

In the last years, there has been a dramatic move to developing computerized ap-
plications of Logic (i.e., the development of the software itself involves logic) for
teaching formal methods at all levels, from the undergraduate introductory logic up
to advanced graduate courses in mathematics, computer science, computational lin-
guistics, artificial intelligence, cognitive science and other subjects. A list of some
computerized logic systems and courseware, including a very brief description, and
Internet resource addresses, is given by the Committee on Logic Education of ASL at
http://www.phil.ucalgary.ca/asl-cle/.
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4 Teaching and Learning Logic with the package Language, Proof,
and Logic

In this section, I will share my teaching experience1 in meeting the learning criteria by
using the package Language, Proof, and Logic.

4.1 The Courseware Package

The Language, Proof, and Logic package comes with a textbook and a CD which in-
cludes a complete manuscript of the textbook in searchable pdf format and the following
programs:

Tarski’s World software for learning the syntax and semantics of first order lan-
guages via a particular first-order language and its finite models. Students can write
statements about geometric objects and some relations between them. By using the
software, they can build visual models of sets of statements and check their truth and
satisfiability. The software has a friendly tool called Game with which students can
follow up their mistakes and understand them in a very pedagogical way.

Fitch is a natural deduction proof environment for building and checking first-order
proofs. Students can try and check up their intuitions in writing formal proofs by “back-
ward” reasoning, and with the help of Fitch they can check for wrong steps, discard
them and backtrack to follow correct ones.

Boole is a program that facilitates the construction and checking truth tables. With
it, they can learn, in a very efficient way, such notions as tautology, tautological con-
sequence, etc. By using Boole, students are able to build up in a very fast and efficient
way even large truth tables that are error-free. With it, they are able to solve problems
that, if done on paper by hand, would be very tedious and error-prone.

Submit allows students to submit, with a personal ID, via the Internet, solutions of
exercises to Grade Grinder which is an automatic grading service. Grade Grinder sends
(in just few minutes) email reports to students about how they did. Students can submit
unlimited number of times for improving their solutions (without involving a lecturer).
When satisfied by their results, they can request Grade Grinder to sent a report to the
lecturer for course credits. The lecturer can see the details of the final solutions by
getting email reports and by Internet logging to the grading server.

The software programs facilitate enormously learning and promote understanding
of the material by students, especially those who encounter the formal and abstract
methods for the first time. In addition to this, the programs have beautiful visual inter-
faces and are easy to use.

The LPL package has Internet web site with software updates and information about
the software, examples and other resources.

4.2 Knowledge Provided by the Course Package

The package is an introduction to logic, which can be used in introductory or inter-
mediate level undergraduate courses. It is appropriate for logic courses in philosophy,

1 I also have experience with Turing’s World, Hyperproof, MIZAR, PVS, and other software for
computational grammars.
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computer science, mathematics, general and computational linguistics, artificial intel-
ligence, cognitive science, bioinformatics, (pre)-medical and other schools. In some of
these disciplines, including computer science, mathematics and computational linguis-
tics, more depth is needed. Formal definitions and results (meta-theorems) with proofs
can be provided either by using additional textbooks and lecture materials.

The aim of the package is learning the syntax and semantics of first order language
and logic in a way that is friendly and pleasurable for students. However, to avoid the
risks of transient “entertainment elements” in education, which wear off rapidly, up to
becoming nuisance, the package should be used in a combination with more advanced
introduction in logic, especially for Computer Science and Computational Linguistics.

The models of first order language is presented in a clear way by demonstrating
relationships between human language (English), a language of logic and models of
real world objects. Tarski’s World program can be used for building models of sets of
sentences. The textbook includes plenty of exercises with Tarski’s World for translat-
ing English sentences into first order language. These exercises facilitate learning the
syntax and semantics of both, natural and logic languages. By testing truth conditions
with Tarski’s World, students learn logic and, also, get closer awareness of unexpected
subtleties of the human language syntax and its semantics. The experiences with these
type of exercises is especially important for students in computational linguistics. In
natural (human) language processing, ambiguity of natural language is one of the fun-
damental difficulties and topic of applications and research. The textbook includes nu-
merous exercises with Tarski’s World, which help students to comprehend complex
relations between syntax and semantics of human languages and their ambiguity. These
exercises prepare students for the introductory and advanced courses in Computational
Semantics, where various scope ambiguities are covered (for example, quantifiers and
attitudes).

The courseware investigates the notion of logical consequence in first order logic
and its relation to the natural logical consequence in human languages. Throughout the
textbook, students learn logic rules of reasoning and proofs in two styles, informal and
formal. The textbook introduces several methods of proofs, in particular, natural deduc-
tion system, resolution, counterexamples, mathematical induction and others. Natural
deduction is practiced by using the Fitch software in the package. The method of coun-
terexample for demonstrating that a claim is not a consequence of others, is introduced
by providing explanations and exercises with Tarski’s World software.

The students can read more advanced, optional sections about major results in first
order logic, which are introduced in a clear, intuitive way. They learn techniques for ap-
plications of logic procedures such as unification and resolution in logic programming.

What students learn with the logic software in the package is oriented towards tra-
ditional formal logic, but it is a friendly first experience, which prepares them for other
advanced logic software and applications of logic in computer science and computa-
tional linguistics. Such applications include verification systems, automatic provers,
model checkers, formal and computational syntax and semantics of natural language,
etc.
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4.3 Pedagogical Approach

The entire package is specially developed by achieving the effects of a unique peda-
gogical approach: The textbook introduces students to logic notions and concepts in a
step-by-step way. It gives clear and intuitive descriptions by including examples and
exercises, many of which are solved in details with self-study instructions. The logic
concepts are pedagogically grouped and each group is introduced at first with clear in-
tuitive explanations and problem examples with informal solutions. The informal intro-
duction is then followed by a formal introduction. In this way, students learn techniques
for informal, but correct reasoning and proofs. They are able to comprehend far easier
and deeper the formal techniques and results.

Many concepts can be learn by a combination of reading the text and performing
exercises with the software applications. The exercises in each section are preceded
by examples of detailed solutions marked as Try it. For better learning of complex
concepts and results, the textbook also includes many exercises that are for work on
paper by a pencil, in the classic way for abstract theories.

The textbook can be used with or without software applications. A lecturer does not
need to use the software in the lectures. The pedagogical value of the book is complete
even if used as a classical reading material.

4.4 The Grading System

By using the programs, students are able to do an impressive amount of exercises, which
normally, on paper by hand, would be extraordinarily time consuming, if possible at all.

Solutions and proofs, if done by hand (or typeset in some text-editor), are prone
to mistakes which can go unnoticeable by students (and sometimes by lecturers). Typ-
ically, in the traditional way, students submit solutions with some mistakes and then,
after grading, do not have much opportunities to correct themselves for a better grade.
With the software help, students have the opportunity to search after mistakes to im-
prove their solutions. In this way, they learn by deeper understanding the concepts in
the process of correcting their own mistakes. In addition, the achieved results provide
them with unique satisfaction and promote further learning.

Something more, with the automatic grading system, a lecturer can assign an im-
pressive number of exercises for homework and exams, which otherwise, would be
extraordinary, up to impossible, amount of grading work. The textbooks includes also
exercises for solving and grading in a traditional way.

5 Teaching Experiments and Experience with LPL

I have used LPL in the following courses:

– Indiana University (IU), course Mathematical and Logic Methods for Cognitive
Science (1998)
Jon Barwise and I developed the course for the Cognitive Science program of IU.
We used Tarski’s World, Fitch and Turing’s World in the labs. Students had read
scheduled material prior to lectures. We conducted lectures “on the blackboard,”
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by giving definitions, theorems and proofs in response to student’s questions. The
learning outcomes were very high.

– Indiana University (IU), course Discrete Mathematics, Computer Science, (1998-
1999).
I used the LPL programs in the labs to the course, while other textbooks were used
for lectures.

– I used the LPL courseware package for teaching Seminars on Topics in Computa-
tional Semantics at the University of Minnesota, Minneapolis. The course was for
students majoring in Computer Science and Computational Linguistics. Learning
outputs were very high.

– I used the LPL programs in the labs as part of a course Natural Language Processing
(NLP) for Computer Science students at Uppsala University (2002, 2003). The
learning outcomes were very high.

– I have been using the LPL courseware package for The Natural Language Engineer-
ing (Computational Linguistics) program of Uppsala University since 2002 in the
courses on Logic (see Loukanova, VT 2003, Foundations of Computer Science I
and Loukanova, HT 2006, Foundations of Computer Science II) and Computational
Semantics (see Loukanova, VT 2006, Computational Semantics II). To provide
more in dept coverage of the theoretical background in Logic needed for formal
and computational methods in NLP, I prepared additional lecture notes. However,
the background level of the students, and the limitations of the course time, do not
permit including theoretical results and proofs.

6 Conclusions about the LPL Courseware

By my teaching experience, the courseware package incorporates unique pedagogical
methods, which can be summarized as follows:

– Providing intuitive and clear descriptions supplemented with many real life exam-
ples

– Teaching informal but correct reasoning by giving proofs in natural and less tech-
nical language

– Informal proofs are followed by formal proofs. Such parallel presentations promote
deep learning of technical concepts and theory.

– Promoting independent study, which targets and achieves deep understanding and
discovery

– Engaging two learning modes: Read It (by reading the textbook, and other materi-
als); and Do It (by practicing with the logic applications)

– The independent study is highly promoted by the advanced computer software and
on-line Internet resources.

– The grading software provides objective and verified testing.

My experience with LPL courseware has convinced me that it has to be used to-
gether with additional teaching materials for covering in depth formal definitions and
theoretical results with proofs. There is a serious conflict between the time limitations
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of the courses in Logic and the educational needs of Computational Linguistics, Nat-
ural Language Processing (NLP)2 and Computer Science3 for a solid background in
formal methods. One way for filling up these needs, seems to be developing materials
on formal methods that are appropriate for more independent learning by students, with
supervision and consultations by a lecturer, instead of the classical lecturing.

I will provide this discussion of LPL software package by demonstrating its pro-
grams with exercises.
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A Formal Model of the Bluetooth Inquiry Protocol
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Abstract. In the first phase of the Bluetooth communication protocol two de-
vices try to synchronize their clocks. For this they have to find each others fre-
quency. We used the verification tool UPPAAL to verify for a variety of situations
that indeed eventually two devices will find each other. Furthermore we used the
modeling process as a way to find possible incorrect statements in the Bluetooth
specification.

A Introduction

Bluetooth is a widely used communication protocol these days. It is used in the commu-
nication between phones, computers, headsets and many more devices. In the year 1994
the Ericsson company decided it wanted a protocol that could be used to connect mobile
phones to other devices. Jaap Haartsen, working for Ericsson, developed the protocol.
The techniques were further developed by the Bluetooth Special Interest Group.

One of the things described in the protocol is the way in which two devices that are
neither connected nor synchronized can try to find each other. This is called the Inquiry
Response Phase, the first phase in the protocol, which should provide a way for the
devices to synchronize in order to allow further communication.

We have looked closer at the specification of this phase as described in [1] and
created an UPPAAL model to formally verify that after the Inquiry Response Phase
indeed the devices will be synchronized.

In this paper, we will first give an informal explanation of the Inquiry Phase, the
Inquiry Scan Phase and the Inquiry Response Phase. We will then look closer to how
we modeled these phases in detail. We will then look at some of the problems we ran
into and the decisions we have made to solve these. In the final part of the paper we will
state our conclusions and make some suggestions for possible further research.

B Informal description

When two Bluetooth devices want to start communicating they do that using the Inquiry
Phases. In these phases one of the devices is assumed to be in master mode querying
for other devices. The other device is assumed to be in slave mode. The master keeps
sending packages and listening for responses. The slave will listen for a package from
the master and respond to the master by sending a return package.

The devices do, however, change frequency during every phase. The frequencies
used in Bluetooth are very common frequencies used in wireless phones, remote con-
trols, garage doors and more. Therefore the devices change (“hop”) their frequencies a
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lot. Probably the devices will not use the same frequency the first time and the com-
munication attempt will fail. However, the hopping should be done in a way that at a
certain point in time the devices will use the same frequency in the same time interval
and further synchronization can be achieved using that.

There are quite a few tricks involved in order to get this to work properly. There is
the hopping of frequencies, timing issues in sending, receiving and listening and some
more.

We want to verify that indeed the devices will eventually synchronize in all cases if
we follow the specification.

C Detailed description

In this section, we will give a top-down overview of the formal model of the Bluetooth
Inquiry Phases. The official specification introduces the terms slave and master to mean
the following:

“Although master and slave roles are not defined prior to a connection, the
term master is used for the inquiring device and slave is used for the inquiry
scanning device.”

This is exactly the definition that we will use in this document. Informally, inquiring
can be seen as the process of trying to find a Bluetooth device in the direct neighbor-
hood. Similarly, inquiry scanning is the process of a Bluetooth device scanning the
environment for inquiring devices that are trying to communicate. This is the integral
process of the Bluetooth inquiry sub state—there will be no communication apart from
“finding each other”. After there has been a successful handshake, the devices advance
to the next sub state of the Bluetooth protocol, in which we are not interested within
this research.

In order to come up with a formal description of what is going on, we tried to follow
the prescriptive Bluetooth Standard Specification [1] as close as possible. In doing this,
we have initially made a simplistic model in which we abstracted from all tricky details
and made unrealistic assumptions, in order to avoid complexity. Examples of this are
discussed in Chapter D. After that, we have gradually removed assumptions and tried
to model the thereby newly introduced complex constructs into the existing model, bit
by bit, persistently assuring ourselves that the key properties of the system would still
hold.

In the following sections, we will start with a top-down overview, after which we
will incrementally strike down alongside the building blocks that together form the
model.

C.1 Bluetooth clocks

One of the key objects within each Bluetooth device is the (internal) Bluetooth clock,
also called the native clock. Bluetooth devices have to synchronize with each other,
using time slots with a duration of 312.5 µs. Virtually all the timing of the Bluetooth
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communication is defined in terms of these time slots, which indicates the smallest
common time unit.

Of course, an exact value of 312.5 µs is not feasible in real time systems. Since
the clocks will consist of hardware clocks at the lowest level, there will always be the
problem of clock drift and jitter, which should be taken into account.

Per device, there is a native clock counter, which is an array of 28 bits, posing a
total number of 228 = 268,435,456 possible clock values. Since the clock increments
each 312.5 µs, a full clock cycle will take almost a day (≈ 83886.08 seconds).

Using UPPAAL, we represented the ticking of a Bluetooth clock like the way it is
displayed in Figure 1. The template consists of only one state, in which UPPAAL waits
until the clock should be incremented. Upon taking the transition, UPPAAL resets an in-
ternal clock (representing the hardware clock), time and executes the tickClock()
function, which takes care of increasing the array of 28 bits. The relevant source code
for this template is shown in Figure 2.

Fig. 1. The Bluetooth Clock modeled in UPPAAL

As can be seen, the array of CLOCK LENGTH (a constant set to 28) bits is passed
along with the instantiation of this template. It is this array of booleans that is incre-
mented each step, by the given algorithm.

Drift and jitter are implemented by letting UPPAAL wait a non-deterministic amount
of time. This is done using the typical UPPAAL construct for this: by introducing a state
invariant time <= CLK_MAX and a transition guard time >= CLK_MIN. We took
a clock period of 625 µs (which is 2*312.5 µs, because UPPAAL cannot handle real
numbers, only integers) and a deviation. With a deviation we specify how much the
tick may deviate from the normal period. Both drift and jitter can be included in the
deviation.We merged both jitter and drift into a deviation which is easy to implement
in UPPAAL. A drift of one and a jitter of two UPPAAL time units per period means a
worst case deviation of three time units per period.
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C.2 Communication

Communication of messages must takes place at the start of a time slot and at no other
time. Since two Bluetooth devices initially have no notion of each other, they have not
yet synchronized their clocks with each other1.

Figure 3 displays the model of a Bluetooth device, which actually holds the model
for both a master and a slave device, since most Bluetooth devices can be used as both
a master and a slave. However, the choice for a device to become either one of them is
a choice that implies a different behavior. The DoInquiry parameter to the template
constructor actually determines for the instance of the device whether it will become a
master or a slave. In our model, we have validated some properties of the system, using a
simple communication model consisting of one master and one slave, each instantiated
with a different value for DoInquiry.

Usually Bluetooth devices “contain” an internal BluetoothClock. Since UPPAAL
does not fully support object oriented constructs like this, we have modeled this by
defining two global native clocks (int[0,1] CLKNs[NR_OF_DEVS]) and passing
corresponding references to these clocks to both a Device instance and a BluetoothClock
instance.

The initial WaitingToStart state holds an invariant stating that the clock has
not yet reached a certain maximal value. This technically introduces a maximal waiting
time for the system to start, without having to introduce a new UPPAAL clock, which
is effective avoidance of a state-space explosion. The waiting time itself avoids that the
clocks have equal values along the way for a long time by waiting a random (maximal)
amount of time.

In the next section, we will take a more detailed look at the implementation of the
master and slave parts of the model.

C.3 The slave

To start with the simplest case, the slave life time goes through three states sequentially.
First, the slave is ready to start a connection and starts listening in the environment
for a master that is searching for it. After it receives a message from a willing master
device, it will immediately go into a waiting state in which it has to wait for the second
next clock tick to arrive, before it may send back a message to the master. This is a
requirement because the master uses a send-send-listen-listen activity pattern, making
the time space between a send action and the corresponding listen action exactly two
Bluetooth clock ticks.

After this mandatory waiting time, the response packet is sent back to the master.
Then, the inquiry phase is over and the slave’s part is done here. This process is depicted
in Figure 4.

Of course, things are a bit more complicated then described here. Communication
involves the sending of packets at certain defined moments in time and at certain broad-
cast frequencies.

Because a device can only listen or send at only one frequency at a time, and
to avoid collisions of all Bluetooth devices (and others) in the same area using the

1 In fact, this is not a part of the inquiry phase, but is done in a later stadium.
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same frequency, the Bluetooth specification defines a hopping sequence of frequencies,
which follows a pseudo-random hopping pattern. The master follows a faster hopping
sequence than the slave to broaden the changes to successfully find a slave device.

Urgent ether transitions Furthermore, ether is defined to be a two-dimensional,
urgent, broadcast channel. It is urgent to make sure that the transitions are taken as soon
as they are possible. It is a broadcast channel to match reality (if a signal is broadcasted
and nobody picks up the signal, the system should not deadlock). Finally, the two-
dimensions of the channel definition are a construct to match frequency relevance on
which the packet is broadcasted (signals broadcasted on frequency X should not be
picked up by a device listening on frequency Y, if X is unequal to Y) and the type of the
packet. For the inquiry phase of the Bluetooth protocol, the type of packet can either
be an ID or an FHS-packet. For both packets, concerning our model, the contents of
the packets is irrelevant within the inquiry phase2. In the inquiry sub state, the master
sends out the first packet, which is an ID-packet, while the slave responds with an FHS-
packet. We have abstracted away from their contents and replaced the packet types by
constants.

C.4 The master

The master part is the most complex part of the device. The master is involved in com-
plex timing of packet sending and listening. As described above, the task of the master
can be described as sending an ID-packet over frequency X and Y rapidly, then imme-
diately starting to listen if someone replies at frequency X and, if not, do the same for
frequency Y. If it did not get a response, it tries again on the next two frequencies. The
frequencies are defined by the hopping sequence and change rapidly, trying a different
frequency each time.

Although a slot in the inquiry phase is defined to be of a length twice as long as the
clock tick period (so the slot length is 625 µs), the master performs two actions per slot.
When the master sends messages, it is called a TX-slot (transmission), otherwise, it is
a RX-slot (reception).

Figure 5 shows the part of the device model that is relevant for a master device. The
first thing that is forced by the way the model is built, is that the master will wait until
it starts the inquiry procedure until the least significant two bits of its native clock are
zero. This is expressed by the guard CLKN[0]==0 && CLKN[1]==0 on the urgent
transition3. In a worst case scenario, this may take at most 3 clock ticks. The reason for
this, is the need to make a choice when to initiate a TX-slot (at least, without having to
record the clock value, which would be a lot of administration).

After this urgent transition, the first ID-packet is sent out urgently (see the discus-
sion of the urgent ether channel in the previous section). These two transitions are al-
ways executed right at the same moment, because, once the least significant clock bit is
0, both guard on urgent transitions hold. Note the function call to calcInquiryFreq()

2 The contents of the FHS-packet is used in the next phase to page the other device.
3 The urg! synchronization channel is an urgent broadcast channel, introduced as a dummy for

expressing that the transition is urgent, nothing more. It has no side effects other that this.
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here. This function calculates the hopping sequence, which results in a frequency, de-
pending on the current value of CLKN, the native Bluetooth clock. Hopping sequences
are detailed in Section C.5.

Please note that, in contrast to what the specification implies, we have modeled the
sending and receiving of packets to be instantaneously, i.e. sending does not take time
and the packet is immediately done.

Next, we wait in the state TX00 (this naming convention should make clear that
we are in a TX-slot, and the native clock’s least significant bits are both zero). Then,
again, immediately when the clock is incremented (i.e. when CLKN[0] == 1) we
should send out another ID-packet. Because the hopping sequence calculation is exe-
cuted again, and CLKN’s value has changed, the frequency will be different here.

Once we are in the TX01 state we have to wait for the time slot to be finished in
order to be allowed to act again. The master is now supposed to start listening for a
response of a potential slave, on a corresponding frequency. However, since the clocks
of both the slave and the master are subject to drift and jitter, we should start listening
somewhat before the sending probably will take place.

Therefore, the Bluetooth specification introduces a so called uncertainty delay, which
is a small amount of time before the clock tick arrives. The tricky aspects of this seem-
ingly small exception are greater than one might expect at first glance. Not only because
of the fact that we should manually use the hardware clock to time this event—which,
from a conceptual point of view should not be necessary, ideally, because the Bluetooth
clock is an abstraction made so we would not have to use the hardware clock in the
first place. Besides this being an ugly hack in our opinion, it has consequences for the
way the listening frequency must be calculated, because this calculation depends on the
current CLKN value. However, what we want is to use the CLKN value for the next
time slot (only in this particular situation). This requires a hack from our side, which
we solved by adding a boolean parameter to the calcInquiryResponseFreq()
function call, stating whether we should increment the CLKN counter beforehand, or
use it as it is.4.

The rest of the master part is kind of straight forward. Nothing special happens in
the remaining states or transitions. Once the TX01 state is left, we arrive at a nameless
state, from which immediately is listened for a potential slave response. If that response
is captured, we are finished. If not, we go to another state (RX1 , which represents the
whole RX-slot where the least significant bits of CLKN are both 10 and 11) in which is
listened for a response (on two frequencies, since the CLKN value changes during this
state).

C.5 Detailed Description of the Hopping sequence calculation

Calculating the Bluetooth hopping frequencies mainly consists of calculating one large
function. This function (the basic hop selection kernel) is described in a high level of
detail in the Bluetooth specification. To represent this function in our model, we have
implemented a series of UPPAAL functions that exactly executes the individual parts
of the selection kernel. There are no differences between the calculation of the hopping

4 The code is not getting any more elegant due to this.
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sequences by our model and the calculation by the specification. Even the naming used
in our model is nearly the same as the one used in the specification. So there is no
need to focus on the details of the UPPAAL calculation here. Those can be found in the
specification, or in the comments between the code of our model.

D Assumptions

We have made some assumptions in our model. Some were already stated earlier. In
this section we will list and discuss the assumptions made.

– In figure 2.10 on page 81 of the specification: The master-to-slave slots always
occur at CLKN[1] = 0. It is not stated that it should be this case, but it makes the
model much more clear this way and it does not cause further problems because
of the way the rest of out model works. The difference between the clocks of the
devices might still be one, two, three etc. up to the maximum introduced.

– In our model, the slave sends a response-FHS-package and then assumes the pack-
age arrived at the master and is finished with this phase. Actually the FHS-package
can be lost or disturbed. The Inquiry Scan Physical Channel specification does not
say what to do in this case. Probably, the listening cycle has to start over for the
slave, but the exact drill is unclear so far.

D.1 Assumptions about the Hopping sequence calculation

As we stated in the previous chapter, the specification gives a detailed and almost com-
plete description of the hopping sequence calculation. There is however one part where
the specification is not entirely clear and seems to contradict itself. At page 88 section
2.6.2.4 the second addition of the selection kernel is explained. The specification says:

The addition operation only adds a constant to the output of the permutation
operation.

When we look at Figure 2.16 on page 86 of the specification, we can seen that the
second addition has Y2 as one of its inputs. This seems to be a contradiction, since Y2
depends on the clock (Table 2.2 page 91) and is therefore variable instead of constant.

To solve this issue, we have ignored the above quote of the specification and have
used the following calculation for the second addition:

(InputStream+Y2 +E +F) mod 79

In which the input stream is the 5-bit result from the permutation operation.
Furthermore, Table 2.2 on page 91 states that for the inquiry phase D = A18−10, we

assumed this to mean D8 = A18 and D0 = A10.
There was one more issue we had to resolve while constructing the model. This

has to do with the A-train and B-train switches. The trains themselves are described
in much detail on page 92, 93 and 94. However when to switch between the trains
cannot be found in this part of the specification. Some searching through the other parts
resulted in (page 331 of volume 3):
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A single train shall be repeated for at least Ninquiry = 256 times before a new
train is used.

When we assume that a train will start when CLKN[3-0]=0, then only CLKN[3-0]
will change while processing a train, since a train only consists of 16 different frequen-
cies. We have defined our Xi calculation in such a way that our assumption is correct.
We can now switch between the trains on the switch of CLKN[12], since at that point
in time the train will have been used exactly 256 times. We could of course increase
this number as the specification states, but this would cost more time in simulation and
verification. Since the specification states (on the same page as the quote) that at least
three switches between the trains must have taken place to be sure a connection has
been made, there is no reason to assume the value of Ninquiry is very large, because this
would only increase the connection time.

E Conceptual problems and design decisions

We started with separate master and slave models (templates). But because the hopping-
sequence-calculation should be in both, and it is more natural because a device is not
only a master or only a slave initially, we decided to make a one device model (tem-
plate).

We only verified the model with 2 devices, one being master and the other slave.
For the checking if the devices will synchronize on the hopping sequences we do not
need more devices. We did not check if there can be interference between more devices
in the inquiry phase.

We had at some point a problem when the clock of the master and the slave would
remain ticking exactly at the same time. In practice this will never occur, but in our
model it was a possibility. When the slave receives the ID packet from the master at
the first sending-try of the master in a slot, it waits for 625 µs. Then UPPAAL has
to choose which of the two clocks to tick first. When it chooses the master-clock, ev-
erything goes alright. However when it chooses the slave-clock, the slave starts sending
the response-FHS package before the master starts listening. The master in this way just
misses the (beginning of) the FHS package. This problem is solved by implementing
the uncertainty window which we had to do anyway.

E.1 Clock decisions

We used a Bluetooth-clock of only 17 bits instead of 28. Because for the hopping se-
quence calculation (and in our model) you only need bits 0 to 16, and this way the
verification is much faster.

For the initial state the devices can only wait for the first 8 bits to be raised to 1 then
it has to leave the initial state. The waiting is done for the two clocks (the master-clock
and slave-clock) to differ. Actually we wanted it to be possible to let them differ for all
the clock-bits. But this took too long to verify and we did not wait for the results.
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E.2 Hopping sequence calculation

To represent the different global variables of a Bluetooth device, we had two possibili-
ties. The first was to use integers and the second was to use bit-arrays. The advantage of
numbers is that they might be processed a lot faster by UPPAAL. However, we are not
entirely sure of this, because the actual state space remains the same as with bit arrays.
So because of the fact that using bit arrays is easier to code and comprehend and much
more intuitive to read, we decided to use the arrays. This has resulted in a model that
looks a lot like the specification and has just one array-to-integer conversion function.

The specification of the inquiry and inquiry scan sub state does not explicitly state
the bit length of the internal device variable N. So we have just assumed this to be 5 (the
same as the length of the bit stream of the selection kernel). This might be incorrect,
but that does not pose any threats to the correctness of the model. The reason is, that in
any execution of the model, N can only be incremented by at most one. So N will alway
be zero or one. Although this has not been a problem for us, if the model would be
extended to a situation in which more than two packages will be transmitted, the length
of N might become an issue.

F UPPAAL problems

F.1 Documentation in a node

When we add some documentation in state DoneScanningWaitingToSend, UP-
PAAL gives some syntax errors: “Missing initial state” and “Missing system tag” We
do not know why this is and it is only a problem in this state. It seems to be a bug in
UPPAAL.

F.2 Lack of urgent transitions

At some point we wanted to leave a state as soon as a guard would hold. We first tried
to make the state urgent, but this did not work because it wanted to leave the state as
soon as possible without waiting for the guard to hold, causing a deadlock. (Obviously,
this could be expected since time is not allowed to proceed in an urgent state.) So we
changed the state back to not urgent and tried to make the transition urgent. There do
not exist urgent transitions in UPPAAL. Now we had to introduced an urgent broadcast
channel, which works, but is conceptually a bit odd and we would rather have seen
urgent transitions. The system does take the transition as soon as the guard holds now
and does not have to synchronize because of the broadcast, so the problem is solved.

F.3 “Maybe satisfied”

In the UPPAAL language one can define boundaries to integers. This is quite useful
in verifying the correctness of your code and most likely it is useful to prevent a state
explosion. We had also implemented these boundaries and used them on a variable that
stored the result of a modulo operation. We had expected this result to be positive,
but in UPPAAL the modulo function appeared to be able to return negative values.
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Not aware of this flaw, we tried the code in the verifier. After some calculation, to
our astonishment, UPPAAL resulted in the message: ”Property maybe satisfied”. Since
the boundary error only rarely occurred, the simulator did not help much. So after some
exhaustive searching we eventually found the flaw and were able to verify our properties
correctly.

F.4 Clock guard on urgent transitions

As already mentioned in the detailed discussion on the slave implementation, UPPAAL
does not allow for expressing guards on urgent transitions if the guard is a predi-
cate over a UPPAAL clock. As we have tried to model the slave transition from the
DoneScanningWaitingToSend state to the state where the response is sent as an
urgent transition, UPPAAL complains about not being able to compile. This is depicted
in Figure 6.

To avoid this error message, we manually recoded the model to contain an invariant
(hwclock <= 2*CLOCK PERIOD) that should hold until the guard can finally be
taken and does not hold after the guard does not hold anymore. Of course, this is not the
preferred way of doing things. Due to internal computations of UPPAAL these clock
guards are not allowed, so they now require some tinkering of the modeler.

F.5 Hopping sequence calculation

When having understood the selection kernel, implementing it in UPPAAL is not as
easy as this might seem. UPPAAL has a very limited language syntactically as well
as semantically. For functions that consist of just a few lines of code, the language is
sufficient, but for a function such as the selection kernel, this requires some creativity
and will certainly result in code that is not as beautiful as one would like it to be. We
will not discuss all detailed restrictions of UPPAAL here. Those can be found in the
manual. However, We will name the most problematic one:

UPPAAL can not handle variable sized arrays as parameter to its functions. In the
selection kernel there are a lot of operations that are executed more than once with
different bit stream sizes. For example the various addition operators. One would like
to specify some kind of binary adder, and use this throughout the code. But this is
impossible due to the restrictions of UPPAAL. We have solved this issue, by specifying
a different function for every box of the selection kernel and copying some of the code.
This results in code that is still usable and intuitive, but it certainly is not code that is
easily maintainable.

G Results and conclusions

We have created a model of which we think is sufficiently close to reality to be used in
the verification of some properties of the Inquiry Response Phase.

Modeling the Inquiry Response Phase in UPPAAL worked rather well. It gave us
good insight in the phase and some questions surfaced that we could not answer easily.
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We even found a strange remark in the specification that to our opinion is incorrect as
discussed in section D.1.

Although it is arguable whether the specification is well written, at least we could,
with some effort, all agree on what we think the specification specifies.

We verified that always eventually the master device will receive a return packet
from the slave for a lot of initial values. This means we have a strong belief that two
Bluetooth devices will eventually synchronize.

The UPPAAL model we have created can be downloaded from
http://www.cs.ru.nl/ita/publications/papers/fvaan/bluetooth/
The website of the UPPAAL project is http://www.uppaal.com

G.1 Verification Results

In total, we have tried to prove two properties of the system, representing system live-
ness and safety. These are:

– A3 Master.Finished ∧ Slave.Finished
This property actually expresses that the system always eventually will reach the
“finished” state for both devices, i.e. it expresses that always eventually the mas-
ter device will receive a return packet from the slave. Actually, this property is the
desired property the developers of Bluetooth would want to satisfy under all condi-
tions. We have validated this important property for a whole variety of initial clock
values. Besides that, we have been able to verify these properties, too, for both ideal
Bluetooth clocks as well as clocks that were subject to drift and jitter.
Some of the validated configurations:

maxwaitbit deviation (UPPAAL time units) time (min)
4 1 ¡1
7 1 3
7 3 8

The maxwaitbit indicates that when bit number maxwaitbit of the Bluetooth
clock is or becomes 1 the devices must enter the Bluetooth phase instead of waiting
at the initial state. This way we can check a range of initial clock values. Ideally
we should verify this for maxwaitbit being the maximum clock bit. But that simply
takes too long.
The deviation indicates that, for each period of 625 UPPAAL time units, the
clock tick may differ this amount of UPPAAL time units. A deviation of 3 indicates
therefore a deviation of 3

625 UPPAAL time units, indicating a maximum deviation
of about 7 minutes a day. In practice the clocks used will not be that bad, therefore
this means in practice that synchronization is accomplished. We could have used a
tighter interval but apart from resources required for the verification this would not
affect the result.
Also, the simplification we made of bringing down the CLKN array down to only
17-bits of length, as mentioned in Section E.1, did not have effect on the validity of
this property, as we expected beforehand. This makes us think the simplification is
a harmless one. Verification was significantly faster after this simplification, which
in turn accounted to make complex improvements easier to verify.
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– A2 not deadlock
This property actually expresses a system invariant, stating that the system as a
whole will never deadlock. This property is very important in getting a confidence
that the specification is correctly modeled. Of course if the system can always reach
the state Finished for all devices, it cannot have deadlocked.
Some of the validated configurations:

maxwaitbit deviation (UPPAAL time units) time (min)
0 0 0
2 0 0
4 0 0
7 0 0

With these properties satisfied and no counter examples found we have a strong
belief that in our model these properties actually hold for all initial values. Therefore
we think in the Bluetooth protocol the devices will also find each other eventually.

H Further Research and related work

Probably we could verify more situations than the ones we did verify thus far. So an-
other group could work on that.

One of the things we did not look closer at is the duration of a transmission in
the Inquiry Response Phase. Currently we assume that a transmission, if the receiver
listens in time, will arrive completely and without errors or not arrive at all. Time does
not elapse while sending or receiving. In reality this is not the case and it might be
something to take a closer look at.

Something else we did not look at, but probably will be relatively easy to do using
the model is verify properties for more than two instances (master, slave, slave for
example).

Our research focused on the Inquiry Response Phase, leaving out other phases. Ob-
viously these could be interesting.

Closely related work can be found in the paper [2] where the probabilistic tool
PRISM was used to analyze the Inquiry Phase.
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// Because some of the internal variables of this clock are
// needed elsewhere in the model, as we will discuss at a
// later point in time, the variables for the internal clock
// (CLKN) as well as the UPPAAL clock (time) are
// parameters of BluetoothClock
//
// Parameter definition:
// int[0,1] &CLKN[CLOCK_LENGTH], clock &time;

// Relevant global constants (from the global declarations file)
const int CLOCK_LENGTH = 28; // Length of clock in bits
const int CLOCK_PERIOD = 625; // Clock period times 2, because

// Bluetooth only supports
// discrete values

// Local (BluetoothClock) constants
const int DEVIATION = 3;

//Both drift and jitter can be included in the deviation
const int CLK_MIN = DRIFT + CLOCK_PERIOD - DEVIATION;
const int CLK_MAX = DRIFT + CLOCK_PERIOD + DEVIATION;

void tickClock()
{

increment(CLKN);
}

void increment(int[0,1] &inputClock[CLOCK_LENGTH])
{

for (i : int[0, CLOCK_LENGTH-1])
{

if (inputClock[i])
inputClock[i]:=0;

else
{ inputClock[i]:=1;

return;
}

}
}

Fig. 2. Source code listing for the BluetoothClock template
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Fig. 3. The full Device template as modeled in UPPAAL
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Fig. 4. The device part relevant for slave devices

Fig. 5. The device part relevant for master devices

Fig. 6. Errors in the UPPAAL model when adding clock guards to urgent transitions
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