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FM software design process

= Formal specification — “what” the intended
software system should do

= Implementation — machine code produced
Instructing the hardware about “how” to do it

In general, there is more than one way In which a
particular machine can accomplish “what” the
specifier bore in mind:

= Relationship between specifications and
Implementations Is one-to-man vy

= Specifications are more abstract than
Implementations.
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Data refinement

Principle of data abstraction : A abstracts B
wherever

= A surjective abstraction function A - B can
be found:

Img F' = id (1)

F'i1s thus simple but possibly partial.

= Any entire subrelation R of F° Is said to be a
representation for F'. So R C F*°.
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Representation relations

= It follows that R is injective , since ker R C ker F*° and
ker ['° =1Img I = id.

= S0, no two different abstract values a,a’ € A get mixed up
along the representation process.

m Altogether, ker R = id because id C ker R (R Is entire).

m It also follows that R is a right-in verse of F, that is
F-R = id (2)
This is proved by circular inclusion
F-RCidCF-R

INn the next slide. MIl0203 — p.4/47



Right Invertibility

F-RCidNidC F-R

{ img I’ = id and converses }
F-RCF-F°NidC R F°

{ ker R =1id}
F-RCF-F°ANR°-RCR°-F°
= { (F-) and (R°-) are monotone }
RCF°NRCF®°

{ RC F°isassumed }

TRUE
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Refinement Inequations

R

— _

A < B suchthat F-R =1idy

F

This inequation has several informal interpretations:
- Ais “smaller” than B
- B Is able to “represent” A
- B Is “abstracted” by A
- A1s “Implemented” by B
- B Is a refinement (“refines”) A
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In a diagram

img F' =id Aker R = id

(ABSTRACTION) (REPRESENTATION)
img F' = id ker R = id

@jective + simD @re + injec@
Couectve > Gme)  Centre e

id Cimg F img ' C id 1d C ker R ker R
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Example

Representing finite sets by finite lists :

' = elems 1,9]

{1,21- 2,1]

11,2, 1]

Among the many R C I'°, we may choose the following:
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Relational representation

Listify . set of nat -> seq of nat
Listify(s) ==
if s ={} then []
else let e in set s

in [e] ~ Listify(s \ {e});

Intuitively,
rng Listify = [noRepeats]
where
noRepeats(s) == card elems s = len s
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Functional representation

listify . set of nat -> seq of nat
listify(s) ==
if s ={} then []
else let e = minset(s)

in [e] ~ listify(s \ {e});
Intuitively,

rng listify = [IsOrdered] - [noRepeats]
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Concrete nvariants

® Wherever

B suchthat R C F°andrng R = [¢]

-

we say that ¢ Is the concrete invariant induced by R.

® In case R is a function, and because it always is injective,
one has

where B, denotes the subset of B which satisfies
concrete-invariant ¢. MIl0203 - p.11/47



Example of a partial abstraction

Every element of datatype A can be represented by a
“pointer”:

= Simplicity of the abstraction is ensured by a known fact:
the converse of an injective relation is simple.

m Concrete invariant: ¢ = [TRUE, FALSE]|
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Another partial abstraction

Finite mappings “are” (simple) finite relations:

mkr

—
mp AtoB < set of (A« B)
\/

mkf = mkr®
VDM-SL:

mkr : map Ato B -> set of (A * B)
mkr(f) == { mk (a,f(a)) | a in set dom f };

mkf : set of (A * B) -> map Ato B
mkf(r)y) == { p#l1 |-> p#2 | pin set r }
pre isSimple(r);

(Guess the concrete invariant.)
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A foundamental 1so abstraction

A— B - (B+1)4 (3)
untot

where, for types A, Band Just B: : val ue: B,

tot: map Ato B -> A -> [JustB]
tot(sigma)(a) ==
if a in set dom(sigma) then mk_ JustB(sigma(a)) else nil;

untot: (A -> [JustB]) -> map Ato B
untot(f) ={ al|-> b| a A b: B&fa = mkJustB(b) };
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Pointfree untot = (i5-)

As checked next:

untot f =17 - f

{ relations as set comprehensions}
untot f ={(b,a)|a € A,be B:b(1]- f)a}

{ usingrule (f b)Ra =b(f°- R)a }
untot f ={(b,a)|ac A,be B:i; b= f a}

{ VDM-SL notation}

untot f ={al->bla: A b:B & f(a)=nk _Just B(b)}
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Easy consequence of tot/untot:

extends to partial functions as follows:

A+1 - 1~ A (guess f and 7).

That is, the “singleton” finite map is a disguise of a “pointer”
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Properties of <:

Refle xivity
id
A< = A cf idid=id
id
Transitivity
R S S R
— _ — _ — _
A < _BANB < _(C=A_< C
F G F-G
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Proof of transitivity

It is enough to show that composition preserves simplicity and
surjectiveness:
img (F - G) = id

{ expanding and converses}

F-(imgG)- F° =1d

{ G is simple and surjective}

Img F' = ud

{ F is simple and surjective}
id = id

Also note that S - R C (F' - G)° by monotonicity.
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Structural data refinement

-

FR
—

B = FA _ < _FB
FF

where F is an arbitrary relator (functor):

id
= { functors commute with id}
Fid
= { R is right-inverse of F'}
F(F-R)
= { functors commute with composition}

(FF)-(FR)
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Refining finite sets (I)

Calculation:

A—1

= { tot representation }
(1+1)7

-~ { basic}
oA

= { 24 is isomorphic to PA }
PA
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Refining finite sets (la)

set2fm

VDM-SL

set2fm : set of A -> map A to Nil
set2fm(s) = { al|-> nl | ain set s };

Pointfree

set2fm < (1)
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Right-in vertibility

Calculation:

dom - set2fm = id
17
dom (set2fm s) = s
17
dom(!-s)=s
{ lis a function, dom (f - R) = dom R}

doms = s

{ s is coreflexive}

S=S
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Refining finite sets (Il)

List (cf. example before):

—
set of A < seqof A
\/

elems

Index A:

—

set of A < map nat to A
\/
rng
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Refining finite sets (lll)
Classify A by B (B D {}):

—
set of A < map AtohB

\/
dom

Quantify A (“multisets™):

—

set of A < map A tonat
\/
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Refining finite maps (1)

JustB::value:B:
JustC::value:C;
BorC = JustB | JustC ;

/\

map (BorC)to A = (map BtoA) x (map Cto A)
\ /
peither

peither: (map Bto A * (map Cto A -> map BorC to A
peither(m,n) == { mk JustB(b) |-> m(b) | b in set dom m} munion

{ mk JustC(c) |-> n(c) | c in set dom n}
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Refining finite maps (la)

unpeither

— T~
(B+C)—~A =  (B—A)x(C— A)
\ /
peither

where
peither(o,7) = |o,T]
for |[R, S| = (R-4])U (S -15), thatis

peither = U - ((-17) X (+i3))
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Refining finite maps (Il)

UNcojorn
_— T
A— (B+C) < (A—=B)x (A—C)
\ /
cOJoIN

where
cojoin = U - ((i1-) X (i2+))

NB: cojoin Is partial since the union of two partial
functions not always Is a partial function.
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Refining finite maps (lla)

Note the representation function:

uncojoin . map Ato BorC -> (map Ato B) * (map Ato C)
uncojoin(f) ==
mk ( { a |-> f(a).value
| a in set dom f & is_JustB(f(a)) }
{ a |-> f(a).value
| a in set dom f & is_JustC(f(a)) }

MII/0203 — p.28/47



The finite map bifunctor

= Note the (-i9)s, (i1-)S, etc

= In general, for an injective f and any g, define
bifunctor

def

f=9= 1) Cf)
that Is
(f—glo=g-0-f°
= S0, we could have written e.g.
peither = U - ((i; — id) x (iy — id))
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Refining finite maps (lll)

/ T
mp AtoBxC < (map AtoB) x (map Ato(C)
\ /

X

where (writing j ol n for x)

jon (map Ato B) * (map Ato C) > mapAto (B * C)
join(m,n) == { a |-> mk_(m(a),n(a))
| a in set dom minter dom n };
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Refining finite maps (llla)

uUnjoin
—
A—Bx(C < (A— B)x (A—C)
\/
X

where

cxT L (o, T)

where (R, S) © (79 - R) N (w5 - S). Aright-inverse of join is

oy def : :
unjoin = {(id — mp,id — o)
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Refining finite maps (1V)

How do we extend

CuTrTYy

BCxA (BA)C

\:/
uncurry

to partial functions? Case B:= B+ 1

(B+ )4 = ((B+1)*)"

{ thatis }
(Cx A) =~ B=(A—~ B)“
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Refining finite maps (IVa)

In general:
pcurry
—
(CxA)— B < C —(A— B)
\/
unpcurry

unpcurry  map Cto (map Ato B) -> map (C * A) to B

unpcurry(f) ==
merge { let g=f(a)

n { mk (ab) |-> g(b) | b in set dom g }

| ain set dom f }

MI1/0203 — p.33/47



Refining finite maps (IVDb)

pcurry : map (C * A to B-> map Cto (map A to B)
pcurry(f) ==
et v ={ x#1 | x in set dom f }
n { al|-> { p#2 |-> f{(p)
| pin set domf & p#l=a }
| ain set y };
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Transposing relations

Let B := 2 in the curry/uncurry isomorphism and obtain

where

S
and A —— P A is the membership relation.

(4)
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Transposing finite relations

collect
_— T~
set of (C'x A) < map C'toset of A

\/

discollect
collect . set of (C * A > mapCto set of A
collect(r) = { c|> {qg#2 | gin set r & c=q.#1 }

| cin set { p#l | p In set r } }

discollect . map Cto set of A-> set of (C * A

discollect(f) == dunion { { mk (c,a) | a in set f(c)

| ¢ in set dom f };
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Refining finite maps (V)

Last but not least
unnjoLn
/ \
A=Dx(B—=C) < (A=D)x((AxB)=C) (5)
\ /

My,

where
M, = Xy, T ((id = Q) X peurry)) (6)
and
def

unnjoin = (id X unpcurry) - unjoin
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Recursive data refinement

How does one refine recursive VbM-sL models such as e.g.

FS :: D0 map Id to Node; -- FS neans file system

Node = File | FS; -- a Node is either a file
- - or a directory

|d = seq of char; -- node identifiers

File :: F. seq of token -- sequential files

thatis, /'S = uF for F X = Id — (File + X):

out

/\
uF = Id — (File 4+ uF)
\/

m

MI1/0203 — p.38/47



Recursive data refinement

or...

DecTree :: question: Wat

answers: map Answer to DecTree
What = seq of char;
Answer = seq of char;

that is, Decl'ree = uF In

DecTree = What x (Answer — DecTree)

for F X = What x (Answer — X))
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Recursion “remo val”

Given

out

one has

_— >
wF _ < (K—FEK)x K (7)
\/
F
for K a domain of “pointers” such that K = IV.
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Abstraction function

= Main role in representation is played by a (partial)
o2

F-coalgebra F K K, assumed as a (finite) piece of
“linear storage”, a “heap” or a “database”.

m F (the transpose of abstraction F)) is of type
(K - FK) — K — uF and one can build
hylomorphism

Fo
(F < K
in o Fo=in-F(Fo)-o
V]
F(uF) <—— FK
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Partiality of implementation

F(o,k) = (Fo)k will be undefined wherever
m k& domo
= o 1S not “closed” over itself (see below)
= 0 IS non-well-founded (see below)
Thus concrete invariant

o(o, k) © ke domo A (closed o) A (wellf o)

In order to define closed o and wellf o we need o¢’s
accessibility relation <, (next slide).
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Accessibility and member ship

Accessiblility relation for o:

CF

where K

~o

K K
def
<= CF* 0O
~

polynomial functors, as follows:

d;f
d;f
déf
o’léf

def

S

F K extends K < P K inductively over
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Example

LetF X =1+ A x X. Then,

E1—|—A><X

— { € for coproduct bifunctor }

€1, €Axx]

— { € for constant and product (bi)functors }
L. (€4 -m) U (Exx.x -m2)]

= { € for constant and identity functor }

[J_, (J_ . 7T1) U (Zd . 7T2)]
{ Land [R,5]=(R-#i)U(S5-13) ]

7T2°?:;
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Example (pointfree)

E€iiaxx @

{ calculation above }
k(mg - 19)x

{ relational composition }
k(ma)(a, k') N x =is(a, k')

{ trivia }
r=r1ds(a, k') Nk =k

{ trivia }
r =iy(a,k)

MI11/0203 — p.45/47



Accessibility (example)

Pointer reachabillity in case of a “linear” heap
o

(1+AXx K) K:
ki <, ko = ko € domo A (O' ]CQ) = 7;2(@, kl)
In a drawing:
K A K
o= 14
kQ a ]‘Cl kO <o ]Cl
~N—
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Closure and wellf oundedness

Let < denote the transitive closure of <,. Then,

m closed 0 =rng <7 C domo thatis, all
reacheable k are defined.

mwellf o= (<) Nid= 1, thatis, <} is
Irreflexive (no cycles)
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