An Introduction to Algorithmic
Refinement

Formal Methods II, 2002/03

J.N. Olivaeira

MI1/0203 — p.1/3:

Implicit/explicit refinement

Given VDM-SL implicit specification

S(a: A r:B
pre ...
post ...

. / . . .
function B - A Is said to satisfy, to refine, or to
Implement S, written

S f
Iff, for every a,
Va € A. pre-S a = post-S(f a,a)

MI1/0203 — p.2/3:

In pointfree notation

a € domS=(fa)Sa

{ rule (f b)Ra=0b(f°- R)a }
domS C f°- S

{ shunting }
f-domS CS

Summary: explicit specification (= implementation) f is
thus more defined and more deterministic than implicit
specification S:

SFf = f.-domScCS (1)

MI1/0203 — p.3/3:

Example

Recall

| sPermutation: seq of int * seq of int -> bool
| sPermutation(l1,12) ==
forall e in set (elens |1 union elens |2) &
card {i | I Inset inds I1 &I11(1) = e} =
card {iI | 1 Inset inds |2 &I|2(1) = e};

We want to find f such that

IsPermutation - f

Recall that IsPermutation = ker seq2bag, where. ..

MI1/0203 — p.4/3:

About seg2bag

VDM-SL definition:

seg2bag(s) ==
cases S:
[] -> {]|->}
others ->{ hd s |-> 1} bunion seg2bag(tl s)
end:

Definition of gene ¢ of the seg2bag catamorphism:
g = [{=}, & (singb x id)]

where singb a = {a — 1} and @ denotes bag union (buni on is

not standard VDM-SL: define it).

MI1/0203 — p.5/3:

Implementing IsPermutation

IsPermutation = f
{ definition }

f -dom IsPermutation C IsPermutation

{ defi nition }

f - dom (ker seq2bag) C ker seq2bag

{ kernel of a function }

f -1d C seq2bag® - seq2bag

{ shunting rule }

seq2bag - f C seq2bag

{ equality of functions }

seq2bag - f = seq2bag

MI1/0203 — p.6/3:

Handling refinement equations

f is the “unknown” of refinement equation
seq2bag - f = seq2bag

Since seq2bag and f are list catamorphisms, one can resort to
cata-fusion,
seq2bag - f = seq2bag

{ let f = (o)) and seq2bag = (g|) }

seq2bag - (af) = (g)
= { cata-fusion }

seq2bag - a = g - (id + id X seq2bag)

MI1/0203 — p.7/3:

Solving refinement equations

By decomposing « := |3, 7], we obtain equations

g =1l
seq2bag -~y = @ - (singb X seq2bag)

m Cata-cancellation yields solution v = cons, leading to
a=1in and f = id.
= @ is commutative, thus solution v(a,l) =1~ |a] leading to

f = 1inuvl.

Guessing further solutions: any list sorting function will solve

the equation! (More about this later. . .)

MI1/0203 — p.8/3:

Properties of -

Basic:

Ikf , THYf
(SNR)Ff <« SFfARK
(SUR)Ff <« SEFfARK S
(kerg)Ff = g-f=g
g f f=g

Monotonicity:

Stf = FSEFJ

(2)
(3)
(4)
(9)
(6)

(7)

Proof of monotonicity

FSHFf

{ defi nition}
(Ff)-dom(FS)CFS

{ property dom (FS) =F(domR) }
(Ff)-F(domS)CFS

{ relators commute with composition }
F(f-domS)CFS
= { relators are monotone }
f-domS C S

{ defi nition }
Sk f

M11/0203 — p.10/3:

Stepwise refinement

Extend f In S+ f to arelation
SFR = R-domSC SAdomS CdomR (8)

Obs.:

m clause dom .S C dom R ensures that implementations
can only be more defined

m clause R-dom S C S ensures that implementations can
only be more deterministic

= Note that L - R still holds but, in general, T - R requires
R to be entire, since dom T = .

MI1/0203 — p.11/3:

Example

Let spec S, be

sgrt (x: real) r: real
pre abs(x) <= nu
post abs(r*r-x) <= epsilon

Then, wherever vy < vy, and ¢; > ¢,

SV17€1 I_ SV2,€2

In the “limit”, -- -+ S0 = s¢°+ f where f z = +/x
or fx=—/z.

M11/0203 — p.12/3:

Refinement Is a partial order

Reflexivity: F C d, that is
SHS
Transitivity: - -F C I, that is
SFRARFT = SET
Antisymmetry: FNF° C id
SFRARFS = S=R
F-monotonicity:

SFR = FSFFR

M11/0203 — p.13/3:

Stepwise refinement
The laws of - make It possible to refine a starting
spec S along several steps,
SES1FESyH. ..

each one introducing more and more definition
and/or determinism, and very often leading into a
function (totally defined deterministic algorithm):

SESiFSyb. . FS,kf

What do we do after f?

M11/0203 — p.14/3:

Backto g f

= Formally, g f = g = f, that is, spec g Is
extensionally equivalent to implementation f.

= But there is more to it: in general, we think of f
as being “more efficient’ than g.

= Efficiency can only be formalized in the
discipline of algorithmic complexity (out of
scope here)

= We will study functional laws which add to
efficiency and generalize well-known (whi | e)
loop generation and intercombination rules.

M11/0203 — p.15/3¢

Main refinement strategies

= Refinement by “sequential loop”
Inter-combination: fusion and absorption
laws:

“Deforestation” — removal of
Intermediate data-structures
= Refinement by “parallel loop” inter-combination:
mutual recursion elimination:

On this purpose we will see Fokkinga'’s
law and its well-known corollary, the
“banana-split” law.

M11/0203 — p.16/3:

Mutual recursion elimination

Consider the following pair of mutually dependent functions:

f(n) ==1f n
g(n) ==1f n

O then n else g(n - 1);
O then 1 else f(n - 1) + g(n - 1);

Can any of these functions — say ¢ — be converted into a
while loop?
In pointfree notation:

£+ [0, sud]
g- [Qv S’LLC]

| |
T .
[— &
+
-
=
N
—~

M11/0203 — p.17/3:

Mutual dependence made explicit

f] [Qa SUC] [Zdv T2 - <f7 g>] of WO /? 1+ WO
g-[0,sud = [L+-(f,9)] ~— T

in = |id, suc]

which is such that F f = id 4+ f. So (4+-absorption) we can
write

frin = [id,m]-F(f,g)
g-in = [1,+]-F(f,g)

M11/0203 — p.18/3:

The mutual-recursion law

This situation is handled by the so-called mutual-recursion
law, also called “Fokkinga law”:

{f.mh-F<f,g> = (f,9) = ((h, k)]

g-in==Fk-F(f g)

that is, in general

(froin=Thy-F{f1,..., fa)

\ fnzn:hnF<flaafn>

M11/0203 — p.19/3:

Proof

(f:9) = ({h, F))

{ cata-universal }

(f,9) in=(hk)-F(f, g)

{ x-fusion twice (lhs and rhs)}

(f-in,g-im)=<(h-F(f,g),k-F(f, g))

{ “split” structural equality }

g-in==~k-F(f,g)

M11/0203 — p.20/3:

Example

Let h = [id, m2] and k& = |1, +] in the example above:

fg(n)

(f.9)

{ Fokkinga law}

({[2d; ma], [L, +]))
= { exchange law}

([(id, 1, (7, +)])

== 1f n =0 then rrk_(O,l)
el se let p=fg(n-1)

In nk_(p.#2, p. #1 + p. #2);

MI1/0203 — p.21/3:

Example

Since fg = (f, g), we obtain g = w5 - fg. On the other hand, it
IS easy to extract g from

f(n) ==1f n O then n else g(n - 1);
g(n) ==1f n=0then 1 else f(n - 1) + g(n - 1);

as the standard Fibonacci function:

g(n) ==i1f n=0then 1
elseif n=1+then 1
else g(n - 2) + g(n - 1);

Summary. we have calculated m, - fg as a linear version of

FibonaCCi (g — To - fg) M11/0203 — p.22/3:

Corollary: “banana-split” (1)

Consider the function which computes the average of a
non-empty list of natural numbers:

average = (/) - (sum,length)

Both sum and length are IN*T catamorphisms:

sum = (||¢d, +]])
length = (|1, succ - ms]))

Function average performs two independent traversals of the
argument list before division (/) takes place. Can we avoid

this? “Banana-split” will fuse such two traversals.

MI1/0203 — p.23/3:

Corollary: “banana-split” (2)

Leth =1¢-Fm and £ = 5 - F o In the mutual recursion law.
Then

frin=(i-Fm)-F(f g)
{ composition is associative and F is a functor}

frin=i-F(m-(f,9)
{ by x-cancellation }
f-in=1i-Ff

{ by cata-cancellation}

;= (i)

M11/0203 — p.24/3:

Corollary: “banana-split” (3)

Similarly, g = (|7|) will follow from k£ = j - F 7o Then, from the
mutual recursion law we get

(2D, (5D) = (G- Fry, g - Frg))

that is
(2D, (5D) = ((@ x j) - (Fm1, F o)) (9)

This law provides us with a very useful tool for “parallel” loop
inter-combination: “loops” (i) and (|j]) are fused together into a

single “loop” (i x 7) - (Fmy, Fma))).

M11/0203 — p.25/3:

Genericity of “banana-split”

Banana-split fuses two data-structure traversals
(“loops”) In the generic sense. For instance,

average g (/) - (sum,length)

still makes sense in the case of binary leaf trees, for

sum = ([id, +])
length = ([1, +])

Again sum and length can be fused together (bi-
recursively).

M11/0203 — p.26/3:

Data refinement in full

Simultaneous algorithm/data refinement: given

S
m aspec B A
F

m abstraction function A —— C
Ry

® representation relation D <—— B

I
then C <—— D will be said to implement S iff
S
A < B
SEEF -1-Rs F1| \Rz

C =< D

(10)

MI1/0203 — p.27/3:

Analysis of refinement equation

= The above refinement equation is to be solved for I (the
unknown), and will in general exhibit more than one
solution.

mSkHF,-I-R, means
Fi-I-Ry-domSCS A domS Cdom(F;-1-R;y)

® In case I' = R = id (no data refinement involved), it bolls
down to algorithmic refinement:

Skid-1-1d

M11/0203 — p.28/3:

Example

2 ~ 2

A

0 id =1, 0

INy - INy
(0=)—>>,0

Note how non-determinism of implementation Is
coped with by the target abstraction function.

M11/0203 — p.29/3:

Solving refinement equations

Since dom (S - R) = dom (dom S - R), the second clause
above rewrites to

dom S C dom (dom F; - (I - Ry))
In case I} (fy) Is entire:
dom S C dom (/- Ry))

In case spec S and F; (f,) are entire and R, = f5, I will be
entire and such that

I C fi-5:/

M11/0203 — p.30/3:

Functional solutions

Case in which all entities in a refinement equation are total
functions (note the lowercase letters):

fi-t = s-fo (11)
= Example: ¢ = f* will implement s = P f under
data-refinement f = fo = elems.
® ¢ = f*I1s not a unique solution. These arise wherever f;

IS iso (fy Is a function):

o= fi-s- [

This appeals to calculating 7 by cata-fusion over inductve
Implementation type D.

M11/0203 — p.31/3:

Example

Set by list refinement:

(a belongs) = (a €)-elems
(f1 = id):
(a €)
2 < PA
id | ‘ elems
2 < A*
a belongs

We know that elems = (jins|). Since target function is a list cata
(a belongs) = (5)), by cata-fusion refinement equation will hold

provided (a €) -ins = - (id 4+ id x (a €)) holds.

M11/0203 — p.32/3:

Example (cont.)

Let B = |51, Ba].

® Since a € () = FALSE, we calculate 3; = FALSE.

= We are left with

a € ({x}Us)=pPs(z,a € s)
Froma € {x} Us = (a € {z}) V (a € s), we infer
Bo(x,b) =a =z Vb.

m All in all:

bel ongs(a) (1) ==
I1f | =[] then fal se
else (a = hd |) or belongs(a)(tl 1|)

M11/0203 — p.33/3:

Calculation of whi | e/ f or loops

Left-linear recursion: refinement towards
whi | e/ f or loops — see pp. 125-131 of

J.N. Oliveira. Operation refinement, June
2000. Departamento de Informatica,

Universidade do Minho. Chapter of book in
preparation.

M11/0203 — p.34/3:

	Implicit/explicit refinement
	In pointfree notation
	Example
	About 	exttt {seq2bag}
	Implementing $IsPermutation$
	Handling refinement equations
	Solving refinement equations
	Properties of $issat $
	Proof of monotonicity
	Stepwise refinement
	Example
	Refinement is a partial order
	Stepwise refinement
	Back to $g issat f$
	Main refinement strategies
	Mutual recursion elimination
	Mutual dependence made explicit
	The mutual-recursion law
	Proof
	Example
	Example
	Corollary: «banana-split» (1)
	Corollary: «banana-split» (2)
	Corollary: «banana-split» (3)
	Genericity of «banana-split»
	Data refinement in full
	Analysis of refinement equation
	Example
	Solving refinement equations
	Functional solutions
	Example
	Example (cont.)
	Calculation of 	exttt {while/for} loops

