
An Introduction to Algorithmic
Refinement

Formal Methods II, 2002/03

J.N. Oliveira

MII/0203 – p.1/34

Implicit/explicit refinement

Given VDM-SL implicit specification

S(a:A) r:B

pre ...

post ...

function

�

is said to satisfy, to refine, or to
implement

�

, written

� �

iff, for every �,

� � �

� pre-

� � post-

� � �	
�

�

MII/0203 – p.2/34

In pointfree notation

� � dom

� � � � �� � �

� �

rule

� �� �	 � � � � �
�� 	 � �

dom

�� �
�� �

� �

shunting

�� dom

� � �
Summary: explicit specification (= implementation)

�

is
thus more defined and more deterministic than implicit
specification

�
:

�� � � �� dom

�� �

(1)
MII/0203 – p.3/34

Example

Recall

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};

We want to find

�

such that

��� ��� � �� � �� 	�
 � � �

Recall that

��� ��� � � � � �� 	
 �
 ker � �� �� ��, where. . .

MII/0203 – p.4/34

About seq2bag

VDM-SL definition:

seq2bag(s) ==

cases s:

[] -> {|->}

others -> { hd s |-> 1 } bunion seq2bag(tl s)

end;

Definition of gene �of the seq2bag catamorphism:

�
 � � � �
 � �� � � 	 � �� � 	 � ��

where � 	 � �� �
 � �� � �

and

�

denotes bag union (bunion is

not standard VDM-SL: define it).

MII/0203 – p.5/34

Implementing � �� � � �

��� ��	
 ��
��
 ��� � � �

� �

definition

�

��� dom

��� ��	
 ��
��
 �� � � ��� ��	
 ��
��
 ��� �

� �

definition

�

��� dom

�

ker � 	� � �� ! �
ker � 	� � ��

� �

kernel of a function

�

��� � " � � 	� � �� # � � 	� � ��

� �
shunting rule

�

� 	� � �� � � � � 	� � ��

� �
equality of functions

�

� 	� � �� � � $ � 	� � ��

MII/0203 – p.6/34

Handling refinement equations

�

is the “unknown” of refinement equation

� � � �� ��� �
 � � � �� � �
Since � � � �� ��and

�

are list catamorphisms, one can resort to
cata-fusion,

� � � �� ��� �
 � �� �� ��

� �

let
�
 �� � � � and � �� �� ��
 �� �� �

� � � �� ��� �� � � �
 �� �� �

� �
cata-fusion

� � � �� ��� �
 �� � 	 ��� 	 � � � � � �� � ��

MII/0203 – p.7/34

Solving refinement equations

By decomposing ��
 � �
� ��

, we obtain equations

�
 � �

� � � �� ��� �
 �� � � 	 � �� � � � � �� ���

Cata-cancellation yields solution �
 �
 � � , leading to

�
 	 � and

�
 	 �

.

�

is commutative, thus solution � � ��
� �
 �

ˆ

� ��

leading to

�
 	 �� �

.

Guessing further solutions: any list sorting function will solve

the equation! (More about this later. . .)

MII/0203 – p.8/34

Properties of

Basic:

�

�

�

(2)

� � �
 � � � � �

(3)

� � �
 � � � � �

(4)

�

ker �
 � � ��� � � (5)

� � � � � (6)

Monotonicity:

� � � � � �

(7)

MII/0203 – p.9/34

Proof of monotonicity

� � � � �

� �

definition

�

� � � ! � dom

� � � ! � � �

� �

property dom

� � � ! $ � �
dom

� ! �

� � � ! � � �

dom

� ! � � �

� �

relators commute with composition

�

� � ��� dom
� ! � � �

� �
relators are monotone

�

��� dom

� � �

� �
definition

�

� � �

MII/0203 – p.10/34

Stepwise refinement

Extend

�

in

�� �

to a relation

�� 	 � 	 � dom

�� ���

dom
� �

dom

	
(8)

Obs.:

clause dom

� �

dom

	

ensures that implementations
can only be more defined

clause

	 � dom

� � �
ensures that implementations can

only be more deterministic

Note that

� � 	
still holds but, in general,

� � 	

requires	

to be entire, since dom

�
 	 �

.

MII/0203 – p.11/34

Example

Let spec

�
� � � be

sqrt (x: real) r: real

pre abs(x) <= nu

post abs(r*r-x) <= epsilon

Then, wherever ��� � � and � � � �,

�
��� � ��

� �
��	 � �	

In the “limit”, � � �

� �

 � � � �
 � �

where � � �

or � � � �.

MII/0203 – p.12/34

Refinement is a partial order

Reflexivity:

� � 	 �

, that is

�� �

Transitivity:

� � � � �

, that is

�� 	 � 	 � � � � � �

Antisymmetry:

� � �
 � 	 �

�� 	 � 	 � � � �
 	

�

-monotonicity:
� � 	 � � �� � 	

MII/0203 – p.13/34

Stepwise refinement

The laws of

�

make it possible to refine a starting
spec

�

along several steps,

� � �� � � � �
� � �

each one introducing more and more definition
and/or determinism, and very often leading into a
function (totally defined deterministic algorithm):

� � �� � � � �
� � �

� � � �

What do we do after ?

MII/0203 – p.14/34

Back to

Formally, � � � � � , that is, spec � is
extensionally equivalent to implementation .

But there is more to it: in general, we think of
as being “more efficient” than �.

Efficiency can only be formalized in the
discipline of algorithmic complexity (out of
scope here)

We will study functional laws which add to
efficiency and generalize well-known (while)
loop generation and intercombination rules.

MII/0203 – p.15/34

Main refinement strategies

Refinement by “sequential loop”
inter-combination: fusion and absorption
laws:

“Deforestation” — removal of
intermediate data-structures

Refinement by “parallel loop” inter-combination:
mutual recursion elimination:

On this purpose we will see Fokkinga’s
law and its well-known corollary, the
“banana-split” law.

MII/0203 – p.16/34

Mutual recursion elimination

Consider the following pair of mutually dependent functions:

f(n) == if n = 0 then n else g(n - 1);

g(n) == if n = 0 then 1 else f(n - 1) + g(n - 1);

Can any of these functions — say �— be converted into a
while loop?
In pointfree notation:

�� ��
� � � ��
 � 	 �
� ��

�� ��
� � � ��
 � �
�

� � � �
� �� �

MII/0203 – p.17/34

Mutual dependence made explicit

�� ��
� � � ��
 � 	 �
� ���� � �
� �� �

�� ��
� � � ��
 � �
�

� � � �
� �� � cf.

���� �
 � � ����� �	

��
 �

	 �
 � 	 �
� � � ��

which is such that

� �
 	 ��� �

. So (� -absorption) we can
write

�� 	 �
 � 	 �
� ��� �� � � �
� ��

�� 	 �
 � �
�

� �� � � �
� ��

MII/0203 – p.18/34

The mutual-recursion law

This situation is handled by the so-called mutual-recursion
law, also called “Fokkinga law”:

�
�

�� 	 �
 �� � � �
� ��

�� 	 �
 �� � � �
� ��

� � �
� ��
 �� � �
�

� � � �

that is, in general

�
���

�����
���� 	 �
 � �� � � ��� � 	 	 	 �
��

�

...

��

� 	 �
 �

� � � �
� � 	 	 	 �

��

�

� � �
� � 	 	 	 �
��

�
 �� � � � � 	 	 	 �
�

� � �

MII/0203 – p.19/34

Proof

� �
� ��
 �� � �
�

� � � �

� �

cata-universal

� �
� ��� 	 �
 � �
�

� �� � � �
� ��

� � � -fusion twice (lhs and rhs)

� �� 	 �� �� 	 � �
 � �� � � �
� �� �

�� � � �
� �� �

� �
“split” structural equality

�
�

�� 	 �
 �� � � �
� ��

�� 	 �
 �� � � �
� ��

MII/0203 – p.20/34

Example

Let

�
 � 	 �
� � � �

and

�
 � �
�

� �

in the example above:

� �
� ��

 �

Fokkinga law

�� � � 	 �
� ��� �
�

� �
�

� � � � �

 �
exchange law

�� � � 	 �
�

� �
�

� �� �
� � � � �

fg(n) == if n = 0 then mk_(0,1)

else let p=fg(n-1)

in mk_(p.#2,p.#1 + p.#2);

MII/0203 – p.21/34

Example

Since

� �
 � �
� �� , we obtain �
 � �� � �. On the other hand, it

is easy to extract �from

f(n) == if n = 0 then n else g(n - 1);

g(n) == if n = 0 then 1 else f(n - 1) + g(n - 1);

as the standard Fibonacci function:

g(n) == if n = 0 then 1

else if n = 1 then 1

else g(n - 2) + g(n - 1);

Summary: we have calculated � � � � �as a linear version of

Fibonacci (�
 � �� � �). MII/0203 – p.22/34

Corollary: “banana-split” (1)

Consider the function which computes the average of a
non-empty list of natural numbers:

�� � � ��� ��� �
 � � �� � � � �� � � � �� � �

Both � � � and

� � � �� � are

�� �

catamorphisms:

� � �
 �� � 	 �
�

� � � �

� � � �� �
 �� � �
� � � � �� ��� � � �

Function �� � � ��� performs two independent traversals of the

argument list before division

� � �

takes place. Can we avoid

this? “Banana-split” will fuse such two traversals.
MII/0203 – p.23/34

Corollary: “banana-split” (2)

Let

�
 	� � � � and

�
 �� � �� in the mutual recursion law.
Then

�� 	 �
 � 	� � � � �� � � �
� ��

� �

composition is associative and

�

is a functor

�� 	 �
 	� � � � �� � �
� �� �

� �

by � -cancellation

�� 	 �
 	� � �

� �

by cata-cancellation

�
 �� 	 � �
MII/0203 – p.24/34

Corollary: “banana-split” (3)

Similarly, �
 �� � � �

will follow from

�
 �� � � � Then, from the
mutual recursion law we get

� �� 	 � �
�

�� � � � �
 �� � 	� � � � �
�� � ��� � � �

that is

� �� 	 � �
�

�� � � � �
 �� � 	 � � �� � � � � �
� ��� � � �

(9)

This law provides us with a very useful tool for “parallel” loop

inter-combination: “loops”

�� 	 � �
and

�� � � �

are fused together into a

single “loop”

�� � 	 � � �� � � � � �
� �� � � �

.

MII/0203 – p.25/34

Genericity of “banana-split”

Banana-split fuses two data-structure traversals
(“loops”) in the generic sense. For instance,

� �� � � ��

��� �
�

��

�

� � 	
	
�

� � � �
 � �

still makes sense in the case of binary leaf trees, for

� 	
 �
����� �
�

� �

� � � �
 �
�

�����
�

� �

Again � 	
 and
� � � �
 �

can be fused together (bi-

recursively).
MII/0203 – p.26/34

Data refinement in full

Simultaneous algorithm/data refinement: given

a spec

� �

�

abstraction function

� �

��

representation relation

� �

	 �
then

� �

�

will be said to implement

�

iff

� � ��� �� 	 �

� �

�
�

��

��

	 � (10)

MII/0203 – p.27/34

Analysis of refinement equation

The above refinement equation is to be solved for

�

(the
unknown), and will in general exhibit more than one
solution.� � ��� �� 	 � means

��� �� 	 �� dom

�� � �

dom

� �
dom

� ��� �� 	 � �

In case

�
 	
 	 �

(no data refinement involved), it boils
down to algorithmic refinement:

�� 	 �� �� 	 �

MII/0203 – p.28/34

Example

� ��

� �

��� �

� �

��� �

 �
�

�

� � �
�

�

Note how non-determinism of implementation is

coped with by the target abstraction function.

MII/0203 – p.29/34

Solving refinement equations

Since dom

� �� 	 �
 dom

�

dom

�� 	 �

, the second clause
above rewrites to

dom

��

dom

�

dom

��� � �� 	 � � �

In case

�� (

�
�) is entire:

dom

��
dom

� �� 	 � � �

In case spec

�

and

�� (
� �) are entire and

	 �
 �
� ,

�

will be
entire and such that

� � �

�� �� ��

MII/0203 – p.30/34

Functional solutions

Case in which all entities in a refinement equation are total
functions (note the lowercase letters):

���� 	
 � � �� (11)

Example:

	
 ��

will implement �
 � �

under
data-refinement

��
 ��
 � � � � � .

	
 ��

is not a unique solution. These arise wherever

� �

is iso (

�

� is a function):

	
 �

�� � � ��

This appeals to calculating

	

by cata-fusion over inductve
implementation type

�

.
MII/0203 – p.31/34

Example

Set by list refinement:

� �� � �
 � �� �
 � � � �� � � � � �
(

���
 	 �

):

� � �

� � � �

�
	 �

���� � �
 � ��
� � � � �

We know that � � � � �
 �� 	 � � � �
. Since target function is a list cata� �� � �
 � �� �
 �� � � �

, by cata-fusion refinement equation will hold

provided

� � � �� 	 � �
 �� � 	 �� 	 � � � � � � � holds.
MII/0203 – p.32/34

Example (cont.)

Let

�
 � � � �
�� �

.

Since � � �
 FALSE, we calculate

� �
 FALSE.

We are left with

� � � �
�

 � � �
 �� �

�� � � � �

From � � �
�

 � �
 � � � �

�

 � � � � � � �

, we infer

�� �
��
� � � �
 � ��

.

All in all:

belongs(a)(l) ==

if l = [] then false

else (a = hd l) or belongs(a)(tl l)

MII/0203 – p.33/34

Calculation of while/for loops

Left-linear recursion: refinement towards
while/for loops — see pp. 125–131 of

J.N. Oliveira. Operation refinement, June
2000. Departamento de Informática,
Universidade do Minho. Chapter of book in
preparation.

MII/0203 – p.34/34

	Implicit/explicit refinement
	In pointfree notation
	Example
	About 	exttt {seq2bag}
	Implementing $IsPermutation$
	Handling refinement equations
	Solving refinement equations
	Properties of $issat $
	Proof of monotonicity
	Stepwise refinement
	Example
	Refinement is a partial order
	Stepwise refinement
	Back to $g issat f$
	Main refinement strategies
	Mutual recursion elimination
	Mutual dependence made explicit
	The mutual-recursion law
	Proof
	Example
	Example
	Corollary: «banana-split» (1)
	Corollary: «banana-split» (2)
	Corollary: «banana-split» (3)
	Genericity of «banana-split»
	Data refinement in full
	Analysis of refinement equation
	Example
	Solving refinement equations
	Functional solutions
	Example
	Example (cont.)
	Calculation of 	exttt {while/for} loops

