An Introduction to Data
Refinement

Formal Methods II, 2002/03

J.N.Oliveira

MII/0203 — p.1/47

FM software design process

= Formal specification — “what” the intended
software system should do

= Implementation — machine code produced
Instructing the hardware about “how” to do it

In general, there is more than one way In which a
particular machine can accomplish “what” the
specifier bore in mind:

= Relationship between specifications and
Implementations Is one-to-man vy

= Specifications are more abstract than
Implementations.

MII/0203 — p.2/47

Data refinement

Principle of data abstraction : A abstracts B
wherever

= A surjective abstraction function A - B can
be found:

Img F' = id (1)

F'i1s thus simple but possibly partial.

= Any entire subrelation R of F° Is said to be a
representation for F'. So R C F*°.

MI1/0203 — p.3/47

Representation relations

= It follows that R is injective , since ker R C ker F*° and
ker ['° =1Img I = id.

= S0, no two different abstract values a,a’ € A get mixed up
along the representation process.

m Altogether, ker R = id because id C ker R (R Is entire).

m It also follows that R is a right-in verse of F, that is
F-R = id (2)
This is proved by circular inclusion
F-RCidCF-R

INn the next slide. MIl0203 — p.4/47

Right Invertibility

F-RCidNidC F-R

{ img I’ = id and converses }
F-RCF-F°NidC R F°

{ ker R =1id}
F-RCF-F°ANR°-RCR°-F°
= { (F-) and (R°-) are monotone }
RCF°NRCF®°

{ RC F°isassumed }

TRUE

MI1/0203 — p.5/47

Refinement Inequations

R

— _

A < B suchthat F-R =1idy

F

This inequation has several informal interpretations:
- Ais “smaller” than B
- B Is able to “represent” A
- B Is “abstracted” by A
- A1s “Implemented” by B
- B Is a refinement (“refines”) A

MII/0203 — p.6/47

In a diagram

img F' =id Aker R = id

(ABSTRACTION) (REPRESENTATION)
img F' = id ker R = id

@jective + simD @re + injec@
Couectve > Gme) Centre e

id Cimg F img ' C id 1d C ker R ker R

MII/0203 — p.7/47

Example

Representing finite sets by finite lists :

' = elems 1,9]

{1,21- 2,1]

11,2, 1]

Among the many R C I'°, we may choose the following:

MI1/0203 — p.8/47

Relational representation

Listify . set of nat -> seq of nat
Listify(s) ==
if s ={} then []
else let e in set s

in [e] ~ Listify(s \ {e});

Intuitively,
rng Listify = [noRepeats]
where
noRepeats(s) == card elems s = len s

MII/0203 — p.9/47

Functional representation

listify . set of nat -> seq of nat
listify(s) ==
if s ={} then []
else let e = minset(s)

in [e] ~ listify(s \ {e});
Intuitively,

rng listify = [IsOrdered] - [noRepeats]

MI1/0203 — p.10/47

Concrete nvariants

® Wherever

B suchthat R C F°andrng R = [¢]

-

we say that ¢ Is the concrete invariant induced by R.

® In case R is a function, and because it always is injective,
one has

where B, denotes the subset of B which satisfies
concrete-invariant ¢. MIl0203 - p.11/47

Example of a partial abstraction

Every element of datatype A can be represented by a
“pointer”:

= Simplicity of the abstraction is ensured by a known fact:
the converse of an injective relation is simple.

m Concrete invariant: ¢ = [TRUE, FALSE]|

MII/0203 — p.12/47

Another partial abstraction

Finite mappings “are” (simple) finite relations:

mkr

—
mp AtoB < set of (A« B)
\/

mkf = mkr®
VDM-SL:

mkr : map Ato B -> set of (A * B)
mkr(f) == { mk (a,f(a)) | a in set dom f };

mkf : set of (A * B) -> map Ato B
mkf(r)y) == { p#l1 |-> p#2 | pin set r }
pre isSimple(r);

(Guess the concrete invariant.)

MII/0203 — p.13/47

A foundamental 1so abstraction

A— B - (B+1)4 (3)
untot

where, for types A, Band Just B: : val ue: B,

tot: map Ato B -> A -> [JustB]
tot(sigma)(a) ==
if a in set dom(sigma) then mk_ JustB(sigma(a)) else nil;

untot: (A -> [JustB]) -> map Ato B
untot(f) ={ al|-> b| a A b: B&fa = mkJustB(b) };

MI11/0203 — p.14/47

Pointfree untot = (i5-)

As checked next:

untot f =17 - f

{ relations as set comprehensions}
untot f ={(b,a)|a € A,be B:b(1]- f)a}

{ usingrule (f b)Ra =b(f°- R)a }
untot f ={(b,a)|ac A,be B:i; b= f a}

{ VDM-SL notation}

untot f ={al->bla: A b:B & f(a)=nk _Just B(b)}

MI11/0203 — p.15/47

Easy consequence of tot/untot:

extends to partial functions as follows:

A+1 - 1~ A (guess f and 7).

That is, the “singleton” finite map is a disguise of a “pointer”

structure. MII/0203 — p.16/47

Properties of <:

Refle xivity
id
A< = A cf idid=id
id
Transitivity
R S S R
— _ — _ — _
A < _BANB < _(C=A_< C
F G F-G

MI11/0203 — p.17/47

Proof of transitivity

It is enough to show that composition preserves simplicity and
surjectiveness:
img (F - G) = id

{ expanding and converses}

F-(imgG)- F° =1d

{ G is simple and surjective}

Img F' = ud

{ F is simple and surjective}
id = id

Also note that S - R C (F' - G)° by monotonicity.

MII/0203 — p.18/47

Structural data refinement

-

FR
—

B = FA _ < _FB
FF

where F is an arbitrary relator (functor):

id
= { functors commute with id}
Fid
= { R is right-inverse of F'}
F(F-R)
= { functors commute with composition}

(FF)-(FR)

MII/0203 — p.19/47

Refining finite sets (I)

Calculation:

A—1

= { tot representation }
(1+1)7

-~ { basic}
oA

= { 24 is isomorphic to PA }
PA

MI1/0203 — p.20/47

Refining finite sets (la)

set2fm

VDM-SL

set2fm : set of A -> map A to Nil
set2fm(s) = { al|-> nl | ain set s };

Pointfree

set2fm < (1)

MII/0203 — p.21/47

Right-in vertibility

Calculation:

dom - set2fm = id
17
dom (set2fm s) = s
17
dom(!-s)=s
{ lis a function, dom (f - R) = dom R}

doms = s

{ s is coreflexive}

S=S

MII/0203 — p.22/47

Refining finite sets (Il)

List (cf. example before):

—
set of A < seqof A
\/

elems

Index A:

—

set of A < map nat to A
\/
rng

MI1/0203 — p.23/47

Refining finite sets (lll)
Classify A by B (B D {}):

—
set of A < map AtohB

\/
dom

Quantify A (“multisets™):

—

set of A < map A tonat
\/

MII/0203 — p.24/47

Refining finite maps (1)

JustB::value:B:
JustC::value:C;
BorC = JustB | JustC ;

/\

map (BorC)to A = (map BtoA) x (map Cto A)
\ /
peither

peither: (map Bto A * (map Cto A -> map BorC to A
peither(m,n) == { mk JustB(b) |-> m(b) | b in set dom m} munion

{ mk JustC(c) |-> n(c) | c in set dom n}
MI1/0203 — p.25/47

Refining finite maps (la)

unpeither

— T~
(B+C)—~A = (B—A)x(C— A)
\ /
peither

where
peither(o,7) = |o,T]
for |[R, S| = (R-4])U (S -15), thatis

peither = U - ((-17) X (+i3))

MII/0203 — p.26/47

Refining finite maps (Il)

UNcojorn
_— T
A— (B+C) < (A—=B)x (A—C)
\ /
cOJoIN

where
cojoin = U - ((i1-) X (i2+))

NB: cojoin Is partial since the union of two partial
functions not always Is a partial function.

MII/0203 — p.27/47

Refining finite maps (lla)

Note the representation function:

uncojoin . map Ato BorC -> (map Ato B) * (map Ato C)
uncojoin(f) ==
mk ({ a |-> f(a).value
| a in set dom f & is_JustB(f(a)) }
{ a |-> f(a).value
| a in set dom f & is_JustC(f(a)) }

MII/0203 — p.28/47

The finite map bifunctor

= Note the (-i9)s, (i1-)S, etc

= In general, for an injective f and any g, define
bifunctor

def

f=9= 1) Cf)
that Is
(f—glo=g-0-f°
= S0, we could have written e.g.
peither = U - ((i; — id) x (iy — id))

MII/0203 — p.29/47

Refining finite maps (lll)

/ T
mp AtoBxC < (map AtoB) x (map Ato(C)
\ /

X

where (writing j ol n for x)

jon (map Ato B) * (map Ato C) > mapAto (B * C)
join(m,n) == { a |-> mk_(m(a),n(a))
| a in set dom minter dom n };

MI1/0203 — p.30/47

Refining finite maps (llla)

uUnjoin
—
A—Bx(C < (A— B)x (A—C)
\/
X

where

cxT L (o, T)

where (R, S) © (79 - R) N (w5 - S). Aright-inverse of join is

oy def : :
unjoin = {(id — mp,id — o)

MII/0203 — p.31/47

Refining finite maps (1V)

How do we extend

CuTrTYy

BCxA (BA)C

\:/
uncurry

to partial functions? Case B:= B+ 1

(B+)4 = ((B+1)*)"

{ thatis }
(Cx A) =~ B=(A—~ B)“

MII/0203 — p.32/47

Refining finite maps (IVa)

In general:
pcurry
—
(CxA)— B < C —(A— B)
\/
unpcurry

unpcurry map Cto (map Ato B) -> map (C * A) to B

unpcurry(f) ==
merge { let g=f(a)

n { mk (ab) |-> g(b) | b in set dom g }

| ain set dom f }

MI1/0203 — p.33/47

Refining finite maps (IVDb)

pcurry : map (C * A to B-> map Cto (map A to B)
pcurry(f) ==
et v ={ x#1 | x in set dom f }
n { al|-> { p#2 |-> f{(p)
| pin set domf & p#l=a }
| ain set y };

MII/0203 — p.34/47

Transposing relations

Let B := 2 in the curry/uncurry isomorphism and obtain

where

S
and A —— P A is the membership relation.

(4)

MI1/0203 — p.35/47

Transposing finite relations

collect
_— T~
set of (C'x A) < map C'toset of A

\/

discollect
collect . set of (C * A > mapCto set of A
collect(r) = { c|> {qg#2 | gin set r & c=q.#1 }

| cin set { p#l | p In set r } }

discollect . map Cto set of A-> set of (C * A

discollect(f) == dunion { { mk (c,a) | a in set f(c)

| ¢ in set dom f };

MI1/0203 — p.36/47

Refining finite maps (V)

Last but not least
unnjoLn
/ \
A=Dx(B—=C) < (A=D)x((AxB)=C) (5)
\ /

My,

where
M, = Xy, T ((id = Q) X peurry)) (6)
and
def

unnjoin = (id X unpcurry) - unjoin

MII/0203 — p.37/47

Recursive data refinement

How does one refine recursive VbM-sL models such as e.g.

FS :: D0 map Id to Node; -- FS neans file system

Node = File | FS; -- a Node is either a file
- - or a directory

|d = seq of char; -- node identifiers

File :: F. seq of token -- sequential files

thatis, /'S = uF for F X = Id — (File + X):

out

/\
uF = Id — (File 4+ uF)
\/

m

MI1/0203 — p.38/47

Recursive data refinement

or...

DecTree :: question: Wat

answers: map Answer to DecTree
What = seq of char;
Answer = seq of char;

that is, Decl'ree = uF In

DecTree = What x (Answer — DecTree)

for F X = What x (Answer — X))

MI1/0203 — p.39/47

Recursion “remo val”

Given

out

one has

_— >
wF _ < (K—FEK)x K (7)
\/
F
for K a domain of “pointers” such that K = IV.

MII/0203 — p.40/47

Abstraction function

= Main role in representation is played by a (partial)
o2

F-coalgebra F K K, assumed as a (finite) piece of
“linear storage”, a “heap” or a “database”.

m F (the transpose of abstraction F)) is of type
(K - FK) — K — uF and one can build
hylomorphism

Fo
(F < K
in o Fo=in-F(Fo)-o
V]
F(uF) <—— FK

MI11/0203 — p.41/47

Partiality of implementation

F(o,k) = (Fo)k will be undefined wherever
m k& domo
= o 1S not “closed” over itself (see below)
= 0 IS non-well-founded (see below)
Thus concrete invariant

o(o, k) © ke domo A (closed o) A (wellf o)

In order to define closed o and wellf o we need o¢’s
accessibility relation <, (next slide).

MI1/0203 — p.42/47

Accessibility and member ship

Accessiblility relation for o:

CF

where K

~o

K K
def
<= CF* 0O
~

polynomial functors, as follows:

d;f
d;f
déf
o’léf

def

S

F K extends K < P K inductively over

MII/0203 — p.43/47

Example

LetF X =1+ A x X. Then,

E1—|—A><X

— { € for coproduct bifunctor }

€1, €Axx]

— { € for constant and product (bi)functors }
L. (€4 -m) U (Exx.x -m2)]

= { € for constant and identity functor }

[J_, (J_ . 7T1) U (Zd . 7T2)]
{ Land [R,5]=(R-#i)U(S5-13)]

7T2°?:;

MI11/0203 — p.44/47

Example (pointfree)

E€iiaxx @

{ calculation above }
k(mg - 19)x

{ relational composition }
k(ma)(a, k') N x =is(a, k')

{ trivia }
r=r1ds(a, k') Nk =k

{ trivia }
r =iy(a,k)

MI11/0203 — p.45/47

Accessibility (example)

Pointer reachabillity in case of a “linear” heap
o

(1+AXx K) K:
ki <, ko = ko € domo A (O']CQ) = 7;2(@, kl)
In a drawing:
K A K
o= 14
kQ a]‘Cl kO <o]Cl
~N—

MII/0203 — p.46/47

Closure and wellf oundedness

Let < denote the transitive closure of <,. Then,

m closed 0 =rng <7 C domo thatis, all
reacheable k are defined.

mwellf o= (<) Nid= 1, thatis, <} is
Irreflexive (no cycles)

MI11/0203 — p.47/47

	FM software design process
	Data refinement
	Representation relations
	Right invertibility
	Refinement inequations
	In a diagram
	Example
	Relational representation
	Functional representation
	Concrete invariants
	Example of a partial abstraction
	Another partial abstraction
	A foundamental iso abstraction
	Pointfree $untot = (i_1°·)$
	Easy consequence of $tot/untot$:
	Properties of $leq $:
	Proof of transitivity
	Structural data refinement
	 Refining finite sets (I)

	 Refining finite sets (Ia)

	Right-invertibility
	 Refining finite sets (II)

	 Refining finite sets (III)

	 Refining finite maps (I)

	 Refining finite maps (Ia)

	 Refining finite maps (II)

	 Refining finite maps (IIa)

	 The finite map bifunctor
	 Refining finite maps (III)

	 Refining finite maps (IIIa)

	 Refining finite maps (IV)

	 Refining finite maps (IVa)

	 Refining finite maps (IVb)

	 Transposing relations
	 Transposing finite relations
	 Refining finite maps (V)

	Recursive data refinement
	Recursive data refinement
	Recursion «removal»
	Abstraction function
	Partiality of implementation
	Accessibility and membership
	Example
	Example (pointfree)
	Accessibility (example)
	Closure and wellfoundedness

