
An Intr oduction to Data
Refinement

Formal Methods II, 2002/03

J.N.Oliveira

MII/0203 – p.1/47

FM software design process

Formal specification — “what” the intended
software system should do

Implementation — machine code produced
instructing the hardware about “how” to do it

In general, there is more than one way in which a
particular machine can accomplish “what” the
specifier bore in mind:

Relationship between specifications and
implementations is one-to-man y

Specifications are more abstract than
implementations.

MII/0203 – p.2/47

Data refinement

Principle of data abstraction : abstracts
wherever

A surjective abstraction function can
be found:

img (1)

is thus simple but possibly partial.

Any entire subrelation of is said to be a
representation for . So .

MII/0203 – p.3/47

Representation relations

It follows that is injective , since ker ker and
ker img .

So, no two different abstract values get mixed up
along the representation process.

Altogether, ker because ker (is entire).

It also follows that is a right-in verse of , that is

(2)

This is proved by circular inclusion

in the next slide. MII/0203 – p.4/47

Right inver tibility

img and converses

ker

and are monotone

is assumed

TRUE

MII/0203 – p.5/47

Refinement inequations

such that

This inequation has several informal interpretations:

- is “smaller” than

- is able to “represent”

- is “abstracted” by

- is “implemented” by

- is a refinement (“refines”)
MII/0203 – p.6/47

In a diagram

img

� � ��

ker

� � ��

bijective

(ABSTRACTION) (REPRESENTATION)

img

� � ��

ker

� � ��

surjective + simple entire + injective

surjective simple entire injective

��

img

�

img

� �� ��

ker

�

ker

�

MII/0203 – p.7/47

Example

Representing finite sets by finite lists :

elems

Among the many , we may choose the following:

MII/0203 – p.8/47

Relational representation

Listify : set of nat -> seq of nat

Listify(s) ==

if s = {} then []

else let e in set s

in [e] ˆ Listify(s \ {e});

Intuitively,

rng

where

noRepeats(s) == card elems s = len s

MII/0203 – p.9/47

Functional representation

listify : set of nat -> seq of nat

listify(s) ==

if s = {} then []

else let e = minset(s)

in [e] ˆ listify(s \ {e});

Intuitively,

rng

MII/0203 – p.10/47

Concrete invariants

Wherever

such that and rng

we say that is the concrete invariant induced by .

In case is a function, and because it always is injective,
one has

�

where � denotes the subset of which satisfies
concrete-invariant . MII/0203 – p.11/47

Example of a par tial abstraction

Every element of datatype can be represented by a
“pointer”:

�
�

Simplicity of the abstraction is ensured by a known fact:
the converse of an injective relation is simple.

Concrete invariant: TRUE FALSE

MII/0203 – p.12/47

Another par tial abstraction

Finite mappings “are” (simple) finite relations:

map to setof

VDM-SL:

mkr : map A to B -> set of (A * B)

mkr(f) == { mk_(a,f(a)) | a in set dom f };

mkf : set of (A * B) -> map A to B

mkf(r) == { p.#1 |-> p.#2 | p in set r }

pre isSimple(r);

(Guess the concrete invariant.)
MII/0203 – p.13/47

A foundamental iso abstraction

�

(3)

where, for types A, B and JustB::value:B,

tot: map A to B -> A -> [JustB]

tot(sigma)(a) ==

if a in set dom(sigma) then mk_JustB(sigma(a)) else nil;

untot: (A -> [JustB]) -> map A to B

untot(f) == { a |-> b | a: A, b: B & f(a) = mk_JustB(b) };

MII/0203 – p.14/47

Pointfree

As checked next:

relations as set comprehensions

using rule

VDM-SL notation

{a|->b|a:A,b:B & f(a)=mk_JustB(b)}

MII/0203 – p.15/47

Easy consequence of :

�
extends to partial functions as follows:

(guess and).

That is, the “singleton” finite map is a disguise of a “pointer”

structure. MII/0203 – p.16/47

Proper ties of :

Reflexivity

cf.

Transitivity

MII/0203 – p.17/47

Proof of transitivity

It is enough to show that composition preserves simplicity and
surjectiveness:

img

expanding and converses

img

is simple and surjective

img

is simple and surjective

Also note that by monotonicity.
MII/0203 – p.18/47

Structural data refinement

where is an arbitrary relator (functor):

��
� functors commute with

��

� ��

� �
is right-inverse of

�

� 	 � �

� functors commute with composition
	 � �
 	 � �

therefore is right-inverse of . Of course, this result extends to bifunctors.

MII/0203 – p.19/47

Refining finite sets (I)

Calculation:

� � �

� �
��

representation

	 �� �
 �

� � basic
� �

� � � �

is isomorphic to

�

�

MII/0203 – p.20/47

Refining finite sets (Ia)

VDM-SL

set2fm : set of A -> map A to Nil

set2fm(s) == { a |-> nil | a in set s };

Pointfree

��� �

MII/0203 – p.21/47

Right-in ver tibility

Calculation:

dom

dom

dom

is a function, dom dom

dom

is coreflexive

MII/0203 – p.22/47

Refining finite sets (II)

List (cf. example before):

setof seqof

Index :

setof map nat to

MII/0203 – p.23/47

Refining finite sets (III)

Classify by ():

setof map to

Quantify (“multisets”):

setof map tonat

MII/0203 – p.24/47

Refining finite maps (I)

JustB::value:B;

JustC::value:C;

BorC = JustB | JustC ;

map to map to map to

peither: (map B to A) * (map C to A) -> map BorC to A

peither(m,n) == { mk_JustB(b) |-> m(b) | b in set dom m} munion

{ mk_JustC(c) |-> n(c) | c in set dom n};

NB: a “1st NF” representation rule

MII/0203 – p.25/47

Refining finite maps (Ia)

where

for , that is

MII/0203 – p.26/47

Refining finite maps (II)

where

NB: is partial since the union of two partial

functions not always is a partial function.

MII/0203 – p.27/47

Refining finite maps (IIa)

Note the representation function:

uncojoin : map A to BorC -> (map A to B) * (map A to C)

uncojoin(f) ==

mk_({ a |-> f(a).value

| a in set dom f & is_JustB(f(a)) },

{ a |-> f(a).value

| a in set dom f & is_JustC(f(a)) }

);

MII/0203 – p.28/47

The finite map bifunctor

Note the s, s, etc

In general, for an injective and any , define
bifunctor

that is

So, we could have written e.g.

MII/0203 – p.29/47

Refining finite maps (III)

map to map to map to

where (writing join for)

join :(map A to B) * (map A to C) -> map A to (B * C)

join(m,n) == { a |-> mk_(m(a),n(a))

| a in set dom m inter dom n };

MII/0203 – p.30/47

Refining finite maps (IIIa)

where

�� �

where

��� �

� � . A right-inverse of is
��� �

� �

MII/0203 – p.31/47

Refining finite maps (IV)

How do we extend

to partial functions? Case

that is

MII/0203 – p.32/47

Refining finite maps (IVa)

In general:

unpcurry : map C to (map A to B) -> map (C * A) to B

unpcurry(f) ==

merge { let g=f(a)

in { mk_(a,b) |-> g(b) | b in set dom g }

| a in set dom f };

MII/0203 – p.33/47

Refining finite maps (IVb)

pcurry : map (C * A) to B -> map C to (map A to B)

pcurry(f) ==

let y = { x.#1 | x in set dom f }

in { a |-> { p.#2 |-> f(p)

| p in set dom f & p.#1=a }

| a in set y };

MII/0203 – p.34/47

Transposing relations

Let in the isomorphism and obtain

�

where

(4)

and is the membership relation.

MII/0203 – p.35/47

Transposing finite relations

setof map tosetof

collect : set of (C * A) -> map C to set of A

collect(r) == { c |-> { q.#2 | q in set r & c=q.#1 }

| c in set { p.#1 | p in set r } };

discollect : map C to set of A -> set of (C * A)

discollect(f) == dunion { { mk_(c,a) | a in set f(c) }

| c in set dom f };

MII/0203 – p.36/47

Refining finite maps (V)

Last but not least

�

(5)

where

�
�� �

� (6)

and

�� �

MII/0203 – p.37/47

Recur sive data refinement

How does one refine recursive VDM-SL models such as e.g.

FS :: D: map Id to Node; -- FS means file system

Node = File | FS; -- a Node is either a file

-- or a directory

Id = seq of char; -- node identifiers

File :: F: seq of token -- sequential files

that is, for :

MII/0203 – p.38/47

Recur sive data refinement
or

DecTree :: question: What

answers: map Answer to DecTree

What = seq of char;

Answer = seq of char;

that is, in

for

MII/0203 – p.39/47

Recur sion “remo val”

Given

one has

(7)

for a domain of “pointers” such that .
MII/0203 – p.40/47

Abstraction function

Main rôle in representation is played by a (partial)

-coalgebra , assumed as a (finite) piece of
“linear storage”, a “heap” or a “database”.

(the transpose of abstraction) is of type
and one can build

hylomorphism

MII/0203 – p.41/47

Partiality of implementation

will be undefined wherever

dom

is not “closed” over itself (see below)

is non-well-founded (see below)

Thus concrete invariant

dom

In order to define and we need ’s

accessibility relation (next slide).

MII/0203 – p.42/47

Accessibility and member ship

Accessibility relation for :

�

�
�� �

�

where

�

extends inductively over
polynomial functors, as follows:

�� �

�
�� �

���� �

�� �

� �
�� �

� � � �

�� �
�� �

� �

MII/0203 – p.43/47

Example

Let . Then,

�� � �

for coproduct bifunctor

� � �

for constant and product (bi)functors

� � �� � � �

for constant and identity functor

� �

and � �

� �
MII/0203 – p.44/47

Example (pointfree)

�� � �

calculation above

� �

relational composition

� �

trivia

�
trivia

�

MII/0203 – p.45/47

Accessibility (example)

Pointer reachability in case of a “linear” heap

:

� � � � dom � � �

In a drawing:

� �

� �

� � �

� � �

MII/0203 – p.46/47

Closure and wellf oundedness

Let denote the transitive closure of . Then,

rng dom that is, all
reacheable are defined.

, that is, is
irreflexive (no cycles)

MII/0203 – p.47/47

	FM software design process
	Data refinement
	Representation relations
	Right invertibility
	Refinement inequations
	In a diagram
	Example
	Relational representation
	Functional representation
	Concrete invariants
	Example of a partial abstraction
	Another partial abstraction
	A foundamental iso abstraction
	Pointfree $untot = (i_1°·)$
	Easy consequence of $tot/untot$:
	Properties of $leq $:
	Proof of transitivity
	Structural data refinement
	 Refining finite sets (I)

	 Refining finite sets (Ia)

	Right-invertibility
	 Refining finite sets (II)

	 Refining finite sets (III)

	 Refining finite maps (I)

	 Refining finite maps (Ia)

	 Refining finite maps (II)

	 Refining finite maps (IIa)

	 The finite map bifunctor
	 Refining finite maps (III)

	 Refining finite maps (IIIa)

	 Refining finite maps (IV)

	 Refining finite maps (IVa)

	 Refining finite maps (IVb)

	 Transposing relations
	 Transposing finite relations
	 Refining finite maps (V)

	Recursive data refinement
	Recursive data refinement
	Recursion «removal»
	Abstraction function
	Partiality of implementation
	Accessibility and membership
	Example
	Example (pointfree)
	Accessibility (example)
	Closure and wellfoundedness

