
Relational Formal Modelling

Formal Methods I, 2002/03

J.N.Oliveira

MI/0203– p.1/35

Functions are not enough

Partiality:

vdm> p tl []

l. 1, c. 4:

Run-Time Error 77: The sequence was empty

vdm> p 2/0

l. 1, c. 3:

Run-Time Error 76: Division with zero

vdm>

Functions such as tl, /, hd (and many others!) are

par tial

MI/0203– p.2/35

Functions are not enough

gets : set of nat -> nat * set of nat

gets(s) == let a in set s

in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})

/home/jno/work/x.vdm, l. 4, c. 25:

Run-Time Error 53: The binding environment was empty

vdm>

but also nondeterministic :

MI/0203– p.3/35

Specifications as “pr oper ties”

Specification of square root :

that is

(= has left inverse)

Specification of :

MI/0203– p.4/35

Relational appr oach

Need to model

total/par tial functions

nondeterminism
proper ties , datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under -specification

MI/0203– p.5/35

Relational appr oach

Need to model

total/par tial functions

nondeterminism
proper ties , datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under -specification

adoption of binary relations, which have a long

tradition in the

MI/0203– p.5/35

Pre/post specification style

Sort(l: seq of int) r: seq of int

post IsPermutation(r,l) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

IsOrdered: seq of int -> bool

IsOrdered(l) ==

gets(s: set of nat) r: nat * set of nat

pre card s > 0

post r.#1 in set s and r.#2 = s \ {r.#1} ;

MI/0203– p.6/35

Pre/post specification layout

Spec(a: A) r: B

pre Precond(a)

post Postcond(r,a);

where

leads to the binar y relation approach:
� �

MI/0203– p.7/35

Relations as Arr ows

From now on, an arrow

means a binar y relation from (source) to
(target) and write to denote that pair
is in .

Ordering on relations:

means that is either less defined or
more deterministic than .

MI/0203– p.8/35

Basic relational combinator s

Given and

Composition is s.t.

holds wherever there exists some such
that .

Converse

Meet — recall set-theoretical intersection

MI/0203– p.9/35

Basic Relation Calculus

Composition is associative:

Composition is monotonic:

Identity

MI/0203– p.10/35

Relational Equality

“Ping-pong” rule:

Indirect proof:

MI/0203– p.11/35

Meet and converse

-universal

Converse

Involution :
Order-preserving :
Contravariance :

Converse distributes over (proof in next slide):

MI/0203– p.12/35

Elegant (indirect) proofs

-universal

involution

-universal

involution

indirection

MI/0203– p.13/35

Dedekind’ s rule

also known as the modular law:

Dually (apply converses and rename):

Symmetrical equivalent statement:

= “weak right-distribution of meet over composition”.

MI/0203– p.14/35

Proper ties (A)

-cancellation — from in -universal
infer:

-abbreviation:

-idempotency:

MI/0203– p.15/35

Proper ties (B)

is commutative:

is associative:

-fusion:

MI/0203– p.16/35

Orders and their taxonom y (A)

An order (or endo-relation) is

reflexive: iff
coreflexive: iff
transitive: iff
anti-symmetric: iff
symmetric: iff
connected: iff

where is the largest relation of its type.

MI/0203– p.17/35

Order taxonom y (B)

Preor ders are reflexive and transitive orders.

Partial orders are anti-symmetric preorders

Linear orders are connected partial orders

Equiv alences are symmetric preorders

Predicates are coreflexive orders: the

“meaning” of a predicate is a
coreflexive relation such that

i.é, it maps every which validates onto itself.

MI/0203– p.18/35

Order taxonom y (C)

order

symmetric reflexive transitive anti-symmetric connected

preorder

equivalence partial order

linear

MI/0203– p.19/35

Meaning of Pre/post specs

Spec(a: A) r: B

pre Precond(a)

post Postcond(r,a);

means

where is the coreflexive equivalent of Pre-

cond.

MI/0203– p.20/35

Derived combinator s

Kernel of is
ker

defined by

ker

Image of is
img

defined by

img

Duality:

ker img
img ker

MI/0203– p.21/35

Turning implicit specifications...

Sorting in VDM-SL notation:

Sort(l: seq of int) r: seq of int

post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};

MI/0203– p.22/35

into relational models

abbreviates to

MI/0203– p.23/35

into relational models

abbreviates to

ker

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

e |-> card i | i in set inds l & l(i) = e |

e in set elems l ;

MI/0203– p.23/35

into relational models

abbreviates to

ker

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

e |-> card i | i in set inds l & l(i) = e |

e in set elems l ;

IsPermutation equivalence ker is always re-

flexive, symmetric and transitive.
MI/0203– p.23/35

Proper ties of kernel and image

Order-preservation:

ker ker
img img

Symmetry:

ker ker
img img

Also:

ker img

MI/0203– p.24/35

Entireness and simplicity

An entire (or total) relation is such that its kernel is
reflexive:

is entire ker

A simple (or functional) relation is such that its
image is coreflexive:

is simple img

Simplicity is the dual of entireness. Simple relations

are also called par tial functions .

MI/0203– p.25/35

(Total) functions

Functions are both simple and entire relations,
usually denoted by lowercase letters :

entire simple

Thus:

is entire
is simple

In general, “larger than entire means entire” and
“smaller than simple means simple”

MI/0203– p.26/35

Surjectiveness and injectiveness

More taxonomy:

is surjective iff is entire

is injective iff is simple

Facts:

is entire and injective ker
is simple and surjective img

MI/0203– p.27/35

Bijections

is bijective iff it is an injective and surjective
function (thus simple and entire)

bijective ker img

In this case

MI/0203– p.28/35

Kernel of a function

Kernel of a total function is an equivalence: it is
symmetric, reflexive and transitive:

ker

ker

converse of a function, pointwise

equality is transitive

MI/0203– p.29/35

Proper ties of corefle xives

For any and coreflexive :

Coreflexives are symmetric and transitive:

Meet of two coreflexives is composition:

MI/0203– p.30/35

	Functions are not enough
	Functions are not enough
	Specifications as «properties»
	Relational approach
	Pre/post specification style
	Pre/post specification layout
	Relations as Arrows
	Basic relational combinators
	Basic Relation Calculus
	Relational Equality
	Meet and converse
	Elegant (indirect)
proofs
	Dedekind's rule
	Properties (A)
	Properties (B)
	Orders and their taxonomy (A)
	Order taxonomy (B)
	Order taxonomy (C)
	Meaning of Pre/post specs
	Derived combinators
	Turning implicit specifications...
	ldots into relational models
	Properties of kernel and image
	Entireness and simplicity
	(Total)
functions
	Surjectiveness and injectiveness
	Bijections
	Kernel of a function
	Properties of coreflexives

