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Functions are not enough

Partiality:

vdm> p tl [ ]

l. 1, c. 4:

Run-Time Error 77: The sequence was empty

vdm> p 2/0

l. 1, c. 3:

Run-Time Error 76: Division with zero

vdm>

Functions such as tl, /, hd (and many others!) are

par tial
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Functions are not enough

gets : set of nat -> nat * set of nat

gets(s) == let a in set s

in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})

/home/jno/work/x.vdm, l. 4, c. 25:

Run-Time Error 53: The binding environment was empty

vdm>

but also nondeterministic :
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Specifications as “pr oper ties”

Specification of square root :

that is

(= has left inverse )

Specification of :
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Relational appr oach

Need to model

total/par tial functions

nondeterminism
proper ties , datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under -specification
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Relational appr oach

Need to model

total/par tial functions

nondeterminism
proper ties , datatype invariants and
loop-invariants

orders and inductive structures

vagueness or under -specification

adoption of binary relations, which have a long

tradition in the
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Pre/post specification style

Sort(l: seq of int) r: seq of int

post IsPermutation(r,l) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) == .....................

IsOrdered: seq of int -> bool

IsOrdered(l) == .............

gets(s: set of nat) r: nat * set of nat

pre card s > 0

post r.#1 in set s and r.#2 = s \ {r.#1} ;
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Pre/post specification layout

Spec(a: A) r: B

pre Precond(a)

post Postcond(r,a);

where

leads to the binar y relation approach:
� �
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Relations as Arr ows

From now on, an arrow

means a binar y relation from (source) to
(target) and write to denote that pair
is in .

Ordering on relations:

means that is either less defined or
more deterministic than .
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Basic relational combinator s

Given and

Composition is s.t.

holds wherever there exists some such
that .

Converse

Meet — recall set-theoretical intersection
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Basic Relation Calculus

Composition is associative:

Composition is monotonic:

Identity
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Relational Equality

“Ping-pong” rule:

Indirect proof:
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Meet and converse

-universal

Converse

Involution :
Order-preserving :
Contravariance :

Converse distributes over (proof in next slide):
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Elegant (indirect) proofs

-universal

involution

-universal

involution

indirection
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Dedekind’ s rule

also known as the modular law:

Dually (apply converses and rename):

Symmetrical equivalent statement:

= “weak right-distribution of meet over composition”.
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Proper ties (A)

-cancellation — from in -universal
infer:

-abbreviation:

-idempotency:
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Proper ties (B)

is commutative:

is associative:

-fusion:
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Orders and their taxonom y (A)

An order (or endo-relation) is

reflexive: iff
coreflexive: iff
transitive: iff
anti-symmetric: iff
symmetric: iff
connected: iff

where is the largest relation of its type.
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Order taxonom y (B)

Preor ders are reflexive and transitive orders.

Partial orders are anti-symmetric preorders

Linear orders are connected partial orders

Equiv alences are symmetric preorders

Predicates are coreflexive orders: the

“meaning” of a predicate is a
coreflexive relation such that

i.é, it maps every which validates onto itself.
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Order taxonom y (C)

order

symmetric reflexive transitive anti-symmetric connected

preorder

equivalence partial order

linear

MI/0203– p.19/35



Meaning of Pre/post specs

Spec(a: A) r: B

pre Precond(a)

post Postcond(r,a);

means

where is the coreflexive equivalent of Pre-

cond.
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Derived combinator s

Kernel of is
ker

defined by

ker

Image of is
img

defined by

img

Duality:

ker img
img ker
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Turning implicit specifications...

Sorting in VDM-SL notation:

Sort(l: seq of int) r: seq of int

post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};
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into relational models

abbreviates to
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into relational models

abbreviates to

ker

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

e |-> card i | i in set inds l & l(i) = e |

e in set elems l ;
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into relational models

abbreviates to

ker

assuming

seq2bag: seq of int -> map int to nat1

seq2bag(l) ==

e |-> card i | i in set inds l & l(i) = e |

e in set elems l ;

IsPermutation equivalence ker is always re-

flexive, symmetric and transitive.
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Proper ties of kernel and image

Order-preservation:

ker ker
img img

Symmetry:

ker ker
img img

Also:

ker img
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Entireness and simplicity

An entire (or total) relation is such that its kernel is
reflexive:

is entire ker

A simple (or functional) relation is such that its
image is coreflexive:

is simple img

Simplicity is the dual of entireness. Simple relations

are also called par tial functions .
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(Total) functions

Functions are both simple and entire relations,
usually denoted by lowercase letters :

entire simple

Thus:

is entire
is simple

In general, “larger than entire means entire” and
“smaller than simple means simple”
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Surjectiveness and injectiveness

More taxonomy:

is surjective iff is entire

is injective iff is simple

Facts:

is entire and injective ker
is simple and surjective img
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Bijections

is bijective iff it is an injective and surjective
function (thus simple and entire)

bijective ker img

In this case
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Kernel of a function

Kernel of a total function is an equivalence: it is
symmetric, reflexive and transitive:

ker

ker

converse of a function, pointwise

equality is transitive
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Proper ties of corefle xives

For any and coreflexive :

Coreflexives are symmetric and transitive:

Meet of two coreflexives is composition:
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