Appendix A

M FP-1/0203: Addendatothe
L ectures Notes

A.1 Elements of the Fixpoint Calculus

A.1.1 Basic definitions

Definition 1 (Poset) A poset (A4, <4) is aset A equipped with a partial ordering < 4,
that is, a relation <4 C A x A which is reflexive, transitive and antisymmetric.
O

Definition 2 (Pre/post-fixpoints) Let A L A bea (endo) function on poset (4, < 4).
Then

e every a € A such that
a <afa (A1)
is said to be a post-fixpoint of f.
e every a € A such that
a >afa (A.2)
is said to be a pre-fixpoint of f.

e every a € A which is both a pre-fixpoint and a post-fixpoint of f is said to be a
fixpoint of f and is such that

a = fa (A.3)
holds.

2 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

Examples:

e Given endofunction
f:[0,10] — [0,10]
r ~ 10—z

one very easily checks that 5 is a fixpoint of f, since f5 =10—5 = 5.
e Let R C P x P bearelation on nonempty P in
z=RURox (A.4)
Define
fx=RURox (A.5)
on poset (P(P x P),C). Then

— P x P isan example of a pre-fixpoint of f (P x P is the largest relation in
the poset).

— @ and R are examples of post-fixpoints of f. Infact,) C Rand R C
RUR2.
Clearly, every fixpoint a = f a can be regarded as a “solution” to equation

z=fzx (A.6)

But one can also regard this equation as a “recursive” definition of its fixpoints. For
instance, recall equation (2.3)
=1+ f
v 2
The fact that 2 is a fixpoint of this equation can be rephrased to: “z = 1+ $£”isa
recursive definition of number 2.
However, the following equation

z2+3
4

admits two solutions (fixpoints) 1 e 3. What are we “recursively defining” here? The 1
or the 3? Furthermore, equation

r=

defines any object! By contrast, some equations don’t have any solution at all. Think
e.g. of

r=x+1

in N. So, in this case, our recursive equation defines. .. nothing!

A.l. ELEMENTS OF THE FIXPOINT CALCULUS 3

A.1.2 Computing fixpoints

Definition 3 (Monotone functions) A function B LA A from poset (4,<4) to
poset (B, <p) is said to be monotone iff

Va,a' € Ata<ad = (fa)<p(fd)

holds.
O

Definition 4 (Ordering on functions) Given two functions B P Aand B<2— 4
from poset (A, < 4) to poset (B, <g) define

f<g ¥ VacA:(fa)<p(ga) (A7)

O

Theorem 1 (Lattice Fixpoints) [Tarski 1955]
Let

e A S A be a monotone function on a complete lattice (A; <);
e P be the set of all fixpoints of f, i.e.
P={a€A|a=fa}
Then
e Pisnon-empty and (P; <) is a complete (sub)lattice.

e In particular, the least of all fixpoints (/\ P) and the greatest one (\/ P) are as

follows:
AP = Nzlz>fa} (A8)
VP = {z|z<fa} (A.9)

We define:
uf € AP (A.10)
vf € \/P (A.11)

In the sequel we shall be focussing on least fixpoints.

4 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

A.2 2001.12.06 — Laws of the Fixpoint Calculus

Computation rule:

pf = fuf (A.12)
Rolling rule:
mwg-f) = 9u(f-9) (A.13)
Square rule:
uf = p(f?) (A.14)
Monotonicity:
pf<pug <= f<g (A.15)
Induction rule:
pf<z < fz<z (A.16)

A.2.1 Illustration

Let fz =1+ . Successive application of the computation rule (A.12) leads to:

2
(1+4) 1 nf
=1 =1+-+2L
+ 2 +2+4

—~ 1 uf
= 22_n+2n+1

i=1

In the limit (n — o0), we get 25% = 0 and therefore pf =372, 2L = 2.
The rolling rule (A.13) can be applied decomposing f = g - h for hz = § and
gr =1+ x. Then

pf = wplg-h)=g(uh-g)
1+2
2

= 1+ pz.

whereby z = 12 has solution 1.

The aother rules enable us to reason inequationally. For instante, fact 1+ 3 < 2+ 2,
for all 2, and monotonicity (A.15) enables us to say that px.(1 + §) = 2 is smaller
than px.(2 + §) = 4.

A.2. 2001.12.06 — LAWS OF THE FIXPOINT CALCULUS 5

Similar intuition can be gathered from (A.5), providing evidence that uf = R*
(transitive closure of R).
For instance (rolling rule), we can decompose f into g - h where hz = R - x and
gr =RUz. Then
pf = plg-h)
{ rolling rule }
g(pu(h - g))
{ definitions of g, h}
RU (ux.(R- (RUx))
{ relational calculus }

RUpuz.(R*UR-x)

Further application of this rule will “factor out” R?, R, etc., leaving a “smaller and
smaller” fixpoint to be calculated. In the limit, one gets uf = U;Z, B’ = R*.

A.2.2 Inductive datatypes “are” fixpoints

Recall

X = 144xX (A.17)
——
FX

e The “=" symbol in equation (A.17) should be understood as “=2”
e F should be understood as a functor

e So any solution X, to the equation should carry along an algebra in and its
inverse out thus providing evidence of the required isomorphism:

out

Xo

IR

1 + A X X()
in
For instance,

out

/\
A* o~ 14+ A x A*
_/

in=[[],cons]

where out is the obvious inverse of in.

6 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

e The <-ordering corresponds to right-invertibility:

B thatis { f-r=ida (A.18)

x@ﬁ

In general: For F a polynomial functor, equation X = F X

e admits a standard solution — its least fixpoint solution

F uF (A.19)

Example:
puX1l+AxX = A*

— where pX.F X abbreviates u(AX.F X).

e uF isinitial among all other F-structures — that is to say, foragiven (4, A <>—F 4),
arrow k in

pF <" F uF

kl le

A <a— FA
is unique, recall universal property:

k=(a) & k-in=a-Fk

A.2.3 Application of the Fixpoint Calculus to datatypes

Computation rule:
/\
uF = F (uF) (A.20)
S~— -

cf. (A.19).

A.2. 2001.12.06 — LAWS OF THE FIXPOINT CALCULUS 7

Rolling rule:

(GinuF.6))
LGB = GuF-G) (A21)
cf.

Ny

(G- F) (G-F)(u(G-F))

(Igl)l l(GF)(IgD

G(u(F - 6)) =7—— (G- F)(G(u(F - G)))

9=Gin,(r.q)
Example: Let

FX = 1+X
GX = AxX

Then

F-G)X = 14+AxX
(G-F)X = Ax(1+X)2A+AxX

where (G - F) involves natural isomorphism k& = ([id,m], (! + m2)). Then

pF-G = A
nwG-F) = A*

The rolling rule will state the obvious fact that

AT = A x A*

holds, that is
i+
u(G-F)=A+</Tx(1+A+)\<k—A+AxA+ (A.22)
fl lidx(id+f) lid+idxf

idXin

Ax A <2 Ax (14 Ax A% <E— A+ Ax (4 x A
fork = ([id, m], (! + m2)).

Exercise 1.1 Concerning (A.22), show that f = (f1, f2) where f; is the “head” function and f5 is the
“tail” function on A+,
O

8 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

Monotonicity:
(ing-r)e

_/

T

/\ T T

uF < pG & FX < GX

_/
(ine-fg f

cf. diagram

ing
/_\f\
1G F(uG) <— G (uG)
<inp-f|)Gl quinF-fDG leqinpﬂ)g
pF <——F (uF) G (uF)

MmF f

Let us see an example of application, whereby possibly empty sequences are rep-
resented by non-empty ones — uF = A* and 4G = AT, for1 < A:

A* = 14+ Ax A*
\/
[[1,cons]

At > A+ Ax AT
_/

[sing,cons |

where singa = [a].

A.3 Mutual recursion

Consider mutually-dependent f and g as follows:

f: nat -> nat
f(n) == if n =0 then 0 else g(n - 1);

g: nat -> nat
g(n) ==if n=0then 1else f(n- 1) + g(n - 1);

How we reason about mutually-dependent functions?
The situation is handled by the so-called mutual-recursion law, also called “Fokkinga
law”:

f-in=h-F(fg)
A = (f,9) = ((h, k)] (A.23)
g-in=~k-F(f,g)

A.3. MUTUAL RECURSION 9

In terms of diagrams: from

" FT " FT

T T
fl lF(fﬁg) Hl/ lF(f,g)

A<h—F(AxB) B<k—F(A><B)
we get
T<—" FT
(f,g)l lF (f.9)
Proof:

= { by x-fusion (1.24)}
{ by hypothesis}
{ by (reverse) x-fusion (1.24)}
{ equality is reflexive}
TRUE

Applying this to the above pair of f and g:

f'[Q,SUC] = [Qag]

g'[Q,SUC] = [l;+<f7g)]
The mutual dependence can be made more explicit by forcing

f'[Q,SUC] = [Q>W2'<fag)]

g-[Q,SUC] = [l;+<fag>]
The underlying inductive type is

No = 1+Ng (A.24)
N——r
FNo

which is such that F f = id + f. So we can write

f-in = [0,m] -F(fg)
g-in = [1L,+]-F(f,9)

10 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

So we identify h = [0,72] and k = [1, +] therefore obtaining
(£,9)

{ Fokkinga law}
({[Q,m [, [L,+])D

{ exchange law}
(1[40, 1), (m2, +) 1D

which is easily converted into VDM-SL as follows:

fg: nat -> nat
fg(n) ==if n =0 then nk (0, 1)
else let p=fg(n - 1)
in nk_(p.#2,p.#1 + p. #2);

A.3.1 Example

Checking a list-invariant which ensures that a (non-empty) list is ordered:

ordered: A+ ——2
ordered[a) = TRUE
ordered (cons(a,l)) = a > (Mazl) A (orderedl)

Assuming singl a = [a] we can depict ordered as follows:

sin I,cons
At <L A+ Ax AT
orderedl lid—l—z’dx(Max,ordered)
2 W A -+ A x (A X 2)
where
def
a(a,(m,b)) = a>mAb
and where
Max = ([id, maz]|
cf.
[Singl,cons]
< A+ Ax AT
Ma.ml/ lid—i—idxMaz

A<————A+AXA

[id,maz]

A.3. MUTUAL RECURSION 11

It is easy to check that the equation implicit in this diagram is the same as the one
implicit in

[singl,cons]
At I A+Ax AT

Mazl l/z’d+id><(Maz,g)

A+Ax (AxB)

[idymaz-(idxm1)]

for any A+ —?.pB. ForB = 2and g = ordered we are in position to apply
Fokkinga’s law and to obtain:

(Maz,ordered) = (([id,max-(idxm)],[TRUE,a]))
{ exchange law (1.47)}
([(id, TRUE), (maz - (id X 71),a)])

Of course, ordered = m - (Maz,ordered). Calling auz to the above synthesized
catamorphism, we end up with the following realization of ordered:

orderedl = let (a,b) = auxl
in b
where

aur: ATt —— A x 2
ordered[a] = (a,TRUE)
ordered (cons(a,l)) = let (m,b) = auxl
in (maz(a,m),(a > mAD))
A.3.2 *“Banana-split”: a corollary of the mutual-recursion law
Leth=14-Fm andk = j - Fms in (A.23). Then
frin=(-Fm)-F(f g)
{ composition is associative and F is a functor}
frin=i-F(m-(f,9)
{ by x-cancellation (1.20)}

f-in=i-Ff
= { by cata-cancellation}
f=1(

Similarly, from k = j - F mo we get

9=_j)

12 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

Then, from (A.23), we get
(0, (4D) = (i - F 1,5 - F2))

that is

((eD, (3D) = G x 5) - (Fmy, Fra)) (A.25)

by (reverse) x-absorption (1.25).

This law provides us with a very useful tool for “parallel loop” inter-combination:
“loops” (%)) and (/7)) are fused together into a single “loop” (|(i x j) - (F 71, F ma)|). The
need for this kind of calculation arises very often. Consider, for instance, the function
which computes the average of a non-empty list of natural numbers:

average def (/) - (sum,length)
Both sum and length are Nt catamorphisms:
suma = ([id,+])
length = ([1, suc - m2]

Function average will do two independent traversals of the argument list before di-
vision (/) takes place. Banana-split fuses such two traversals into a single one, thus
leading to a function which: (a) runs twice as fast (b) can be converted into a while
loop by introduction of accummulation parameters (such as seen above).

Exercise 1.2 Apply the banana-split law to the following definition of the unzip function:
unzip % (my*, m*)

Extend unzip to binary trees and repeat the exercise.
O

A.4 Paramorphisms

Consider the standard definition of the factorial function (in VDM-SL notation):

fac : nat -> nat
fac(n) == if n =0 then 1 else fac(n-1) * n

The pattern of recursion of this function — usually known as primitive recursion — is
somewhat more elaborate than that of a catamorphism over IN.
Note than it can be captured by the following diagram:

[0;suc]

IN 1+N
facl lid+(fac,id)
N<— 1+ (NxN)

[1,mul-(idx suc)]

A.4. PARAMORPHISMS 13

Function fac is a particular instance of a so-called paramorphism. In general, a
paramorphism of some f relative to functor F, is the unique morphism {f) which is
such that

~ " FT

T
([f])l lF ((fD+id)
c

~—F(OxT)

that is, we have the following universal property:

h={f) = h-in=f-F(h,id)

A.4.1 Examples of paramorphisms

From above we can express the factorial function as a paramorphism:
fac= ([1,mul - (id x suc)])

A less straightforward example is that of a function nw — cf. we - win LINUX—
counting the number of words in text (seq of char):

nw : seq of char -> nat
nws) == if s =[] then O
else if not sep(hd s) and sepahead(tl s)
then nw(tl s) + 1 else nwm(tl s) ;

sepahead: seq of char -> bool
sepahead(s) == (s = []) or sep(hd s) ;

sep : char -> bool

sep(c) == ¢ = or ¢c ='\n or c ="\t ;

This is list-paramorphism

[[;cons]

char* — 1+ char x char*
nwl lid—l—idx(nw,id)
INo 1+ char x (INg x char*)

[0,h]
where

h : char * (nat * seq of char) -> nat
h(c,nmk _(i,s)) ==if not sep(c) and sepahead(s) then i

+ 1 else i

14 APPENDIX A. MFP-1/0203: ADDENDA TO THE LECTURES NOTES

A.4.2 Properties of paramorphisms

1. Clearly, every catamorphism can be expressed by a paramorphism;

(f)={f -Fm) (A.26)
Proof:
h={f-Fm)=h-in= f -Fm -F(h,id)
= { functor versus composition (2.45),x-cancellation}
h={f-Fm)=h-in=f-Fh
{ cata-universal}

(f)={s-Fm)

2. Conversely, every paramorphism can be expressed (indirectly) in terms of a cata-
morphism:
(h) = m1 - ({hyin - Fms)) (A.27)

Proof: let g be id in the mutual-recursion law, leading to f = (k). Then the
equation for g = id is
id-in =k-F(f,id)

and this is satisfied for k = in - Fmy.
So{f,g) = ((h,in - Fms)]) and f = (h) = w1 - ({h,in - Fma)].
3. PARA-REFLECTION:
id = (in - Fmy) (A.28)
By cata-reflection (2.58) this can be regarded as an instance of (A.26) above.

4. PARA-FUSION:
h-{f)=Q9) < h-f=g-F(hxid (A.29)

Example of aplication
By (A.27) the factorial function can be expressed by the projection of a catamorphism:
fac=m - ({[1,mul - (id x suc)],in - (id + m2)))
{ +-absorption (1.41)}
fac=m1 - ({[1, mul - (id x suc)],[0, suc- m2 1))
{ exchange law (1.47)}
fac=m1 - ([(1, 0), (mul - (id x suc), suc - m2))

This will lead to the following VDM-SL:

A.4. PARAMORPHISMS

fac : nat -> nat
fac(n)==facaux(n).#1;

facaux: nat -> nat*nat
facaux(n) == if n=0 then nk_(1,0)
else let p = facaux(n-1),
a = p.#1
b = p.#2
innk (a* (b+ 1),

b + 1);

15

