An Introduction to Relational
Hylomorphisms

DI/UM, 2002

Jo£ N. Oliveira
Dept.Informatica
Universidadedo Minho, 4700Braga, Portuaal
jno@di.uminho.pt

mi0203In3—p.1/2?

“How” does one specify?

General problem solving strategy?

Problem >

mi0203In3- p.2/??

“How” does one specify?
Divide-and-conquer

divide (analysis)

T~
Problem > @b—proble@

mi0203In3- p.2/??

Divide-and-conquer (formall y)

Problem space

Solution space

mi0203In3- p.3/??

Divide-and-conquer (formall y)

Sub-problem structure

divide &

-F A

solve

mi0203In3- p.3/??

Divide-and-conquer (formall y)

divide

-F A

solve

FB

conquer

mi0203In3- p.3/??

Divide-and-conquer (formall y)

divide

-F A

solve F solve

FB

conquer

mi0203In3- p.3/??

Divide-and-conquer (formall y)

divide
-F A
solve F solve
< F B
conquer

Questions:
= What are the mathematics of divide, conquer, solve?

m Whatdo F A, F solve mean?

mi0203In3- p.3/??

Relator s

Symbol F is overloaded:

= F A means a (parametric) datatype , e.g. PA —

set of AiIn VDM-SL;
» F X means a relation

A FA
X | | FX
B F B

Eg. PX will relate every s C A to
{b€ B|da € s.bXa}

mi0203In3— p.4/??

Properties of relator s

Every relator F IS monotone,

RCS = (FR)C(FS)

and commutes with (-) , (_)° and id:
F(R-S) = (FR)-(FS)
F (1) = (FRY
Fid = id

Terminology:

mi0203In3- p.5/??

Properties of relator s

Every relator F IS monotone,

RCS = (FR)C(FS)

and commutes with (-) , (_)° and id:
F(R-S) = (FR)-(FS)
F (1) = (FRY
Fid id

Terminology:

R
A - F A s called an F-algebra

mi0203In3- p.5/??

Properties of relator s

Every relator F IS monotone,

RCS = (FR)C(FS)

and commutes with (-) , (_)° and id:
F(R-S) = (FR)-(FS)
F (1) = (FRY
Fid id

Terminology:

S
A——F A is called an F-coalg ebra

mi0203In3- p.5/??

Back to divide-and-conquer

Hylo equation X = R- (FX) - S:

S
A -FA
X F X
B F B

mi0203In3- p.6/??

Back to divide-and-conquer

Assume X decomposes into X; - Xo:

S
A -F A
X X, F(Xs - X))
B F B

mi0203In3- p.6/??

Back to divide-and-conquer

F commutes with composition:

X1

Xo

A

Y

S

T

R

-F A

F X4
FC

F X5
FB

mi0203In3- p.6/??

Back to divide-and-conquer

S
A -FA
X1 FXl
v T v
C - FC
X9 F X5
B - F B
R

T
What about (' - FC?

mi0203In3- p.6/??

Hylo factorization (1)

A standard result of the relational calculus
establishes conditions on S, R and T for

to be a unique solution:

mi0203In3—p.7/??

Hylo factorization (1)

A standard result of the relational calculus
establishes conditions on S, R and T for

to be a unique solution:

m S Is required to be “well-f ounded " — the “size”
of a sub-problem generated by S Is strictly
smaller than its source, cf. termination .

mi0203In3—p.7/??

Hylo factorization (1)

A standard result of the relational calculus
establishes conditions on S, R and T for

to be a unique solution:

S Is required to be “well-f ounded " — the “size”
of a sub-problem generated by S Is strictly
smaller than its source, cf. termination .

T Is required to be bijective over the datatype
which is inductively defined by F, that is,
C = uF.

mi0203In3—p.7/??

Hylo factorization (2)

C = uF, least fixpoints

S
A -F A
X1 F X4
17 Zn 7
LF = F ukF
X5 F X5
B < FB

1F

12

mi0203In3- p.8/??

Hylo factorization (2)

C' = uF, least fixpoints /&
pF = F(uF)
N
S n’
A - FA
X1 F X,
¥ ,Ln 7
LF = F ukF
XQ FXQ
B - F B

mi0203In3- p.8/??

Least fixpoints In VDM-SL

uF 1s the type one “defines” by writing domain
equations, e.g.

LTree = Leaf | Node ;
Leaf .. wvalue: Int
Node : left: LTree right: LTree

where we define LTree = uF for

FX < int | X*X

Is this a relator?

mi0203In3- p.9/??

Polynomial relator s

Instead of

FX ©int | X*X

Write

FX e X2

where

mi0203In3— p.10/??

Polynomial relator s

Instead of

FX ©int | X*X

write

def .

FX = int+X?
where J

= X? means the same as X x X
= sum and product are standard binary relators.

mi0203In3— p.10/??

Binary relator s x and +

Product :
A B Ax B
R| S| |Rx S
C D C' x D
(b, d)(R x S){a,c) = (bRa) N (dSc)

mi0203In3—p.11/??

Binary relator s x and +

Sum:
A B A+ B
R| S| |R+S
C D C+D

mi0203In3—p.11/??

Binary relator s x and +

Sum:
A B A+ B
R| S| |R+S
C D C+D
R+S=1i1-R,iy- S|
where

A+ B={ialac A} U{isb|be B}

11,10 — arbitrary (but consistent) disjoint injections.

mi0203In3—p.11/??

Case analysis combinator

mi0203In3—p.12/??

LTree example

mk Leaf,mk Node]
LTree< int + LTree X LTree

whereby

addLTree: LTree -> int
addLTree(t) ==
cases t :
mk_Leaf(i) > 0,
mk_Node(t1,t2) -> addLTree(tl) + addLTree(t2)
end,;

can be depicted in a diagram:

mi0203In3—p.13/??

Remarkab le facts about uF

in = |mk_Leaf mk_ Node]

LTree < F(LTree)
addLTree F(addLTree)
int < F(int)

mi0203In3— p.14/??

Remarkab le facts about uF

in = |mk_Leaf mk_ Node]

LTree < F(LTree)
addLTree F(addLTree)
int < F(int)
id, +]

Facts:

w addLTree is uniquel y determined by |id, +] and one
writes addLTree = (|[id, +]))

R
m Given A ——F A, (|R]) is called the “inductive extension
of R, “fold R” or “catamorphism of R".

mi0203In3— p.14/??

Hylo-factorization Theorem

Using (|_[) notation:

uX.(R-FX-8)=(R)-(5°)°

A =<

(5°D°

pk -

(R

SO

m

R

FA
F(S°)°
F uF
F(R)
F B

mi0203In3— p.15/??

Hylo-factorization Theorem

Taking converses:

pX.(R-FX-5°) =(R)-(S)

(R

A <

(5D
pk -

Y

S

m

R

FA
F(S)”
F uF

F (&)
F B

mi0203In3— p.15/??

Hylo-factorization Theorem

Entire/simple factorization if both R and S° are
entire/simple (=S surjective/injective)

(5D
pF -

(R

A -~

Y

Y

S

m

R

FA
F(S)”
F uF

F ()
F B

mi0203In3— p.15/??

Example: mergeSort

mergeSort : seq of int -> seq of Int
mergeSort (I) ==
cases |
0 -> |
[e] > I,
others -> let 11 ~ 12 in set {l}
be st abs(len 11 - len [2) < 2
In let |1 = mergeSort (l1),
| r = mergeSort (I2)
In Imerge (I |, | 1)
end;

Case analysis following Hu et al’s algorithm [HIT96Db]:

mi0203In3— p.16/??

mergeSort

From

mergeSort = |singl, lmerge - (mergeSort x mergeSort)] - S

{law [R-T,S-U] = [R,S] - (T +U)}

mergeSort = [singl,lmerge] - (id + mergeSort x mergeSort) -

Infer
mFf=dd+fxf
mFEX =int+ X x X

m uF = LTree

mi0203In3—p.17/??

mergeSort

mergeSort ’s formula:

mergeSort = (|[singl, lmergel|) - ([singl, pconc]|)”

where singl = Xe.|e| and

pconc
pconc(l1,12)
pre abs (len

seq

of int * seq of int -> seq of int
== 11 ~ I2
1 - len 12) < 2 ;

Factorization helps in understanding the “Equal-size,
Easy Split, Hard Join” classification of the algorithm.

mi0203In3—p.18/??

guickSort

quickSort . seq of int -> seq of int
quickSort () ==
cases |I:
b -> 1
e -> quickSort y | yin set elems | &y <x]) ~ [x] ~

quickSort y | yin set elems | &y > x])
end

Here F X = 1+ int x X?, so uF is BTree (binary search
tree):

quickSort = ([[], inord]|) - ([[], pinord])”

where

mi0203In3—p.19/??

guickSort

inord: int * (seq of int * seq of int) -> seq of int
inord(x,mk_(1,r)) =1 "~ [x] ~
pinord: int * (seq of int * seq of int) -> seq of int
pinord(x,mk_(l,r)) == inord(x,mk_(l,r))
pre forall y in set elems | &y < x and

forall y in set elems r &y > Xx;

quickSort = BTree in-order (conguer) following the
converse of a partial in-order traversal (divide).

Divide does the hard job of ensuring that the
Intermediate tree is bi-ordered.

Classification: “Equal-size, Hard Split, Easy Join”.

mi0203In3—p.20/??

Virtual data-structuring

= Particular choice of F for sub-problem
organization induces intermediate type uF.

This Is made explicit by hylo-factorization.

mi0203In3—p.21/??

Virtual data-structuring

= Particular choice of F for sub-problem
organization induces intermediate type uF.

This Is made explicit by hylo-factorization.

= Intermediate data-structure saves the outcome
of a “one go” divide step (.S])” and passes it on

to the conquer step (| R|) for processing.

mi0203In3—p.21/??

Virtual data-structuring

= Particular choice of F for sub-problem
organization induces intermediate type uF.

This Is made explicit by hylo-factorization.

= Intermediate data-structure saves the outcome
of a “one go” divide step (.S])” and passes it on

to the conquer step (| R|) for processing.

= In general, people “fuse” things very early In
design, thus virtualizing this structure.

= Factorization helps in spec under standing and
classification .

mi0203In3—p.21/??

	«How» does one specify?
	Divide-and-conquer (formally)
	Relators
	Properties of relators
	Back to divide-and-conquer
	Hylo factorization (1)
	Hylo factorization (2)
	Least fixpoints in Vdmsl
	Polynomial relators
	Binary relators $×$ and $+$
	Case analysis combinator
		extvdm {LTree} example
	Remarkable facts about $µ� $
	Hylo-factorization Theorem
	Example: 	extvdm {mergeSort}
		extvdm {mergeSort}
		extvdm {mergeSort}
		extvdm {quickSort}
		extvdm {quickSort}
	Virtual data-structuring

