
An Intr oduction to Relational
Hylomorphisms

DI/UM, 2002

JośeN. Oliveira

Dept.Informatica

UniversidadedoMinho, 4700Braga,Portugal

jno@di.uminho.pt

mi0203ln3– p.1/??

“Ho w” does one specify?

General problem solving strategy?

Divide-and-conquer :

Problem

mi0203ln3– p.2/??

“Ho w” does one specify?

Divide-and-conquer :

Problem Sub-problems

divide (analysis)

mi0203ln3– p.2/??

Divide-and-conquer (formall y)

Problem space

Sub-problem structure

Solution space

mi0203ln3– p.3/??

Divide-and-conquer (formall y)

Problem space

Sub-problem structure

mi0203ln3– p.3/??

Divide-and-conquer (formall y)

Problem space Sub-problem structure

mi0203ln3– p.3/??

Divide-and-conquer (formall y)

Problem space Sub-problem structure

mi0203ln3– p.3/??

Divide-and-conquer (formall y)

Problem space Sub-problem structure

Questions:

What are the mathematics of , , ?

What do , mean?

mi0203ln3– p.3/??

Relator s

Symbol is overloaded:

means a (parametric) datatype , e.g. —
set of A in VDM-SL;

means a relation

Eg. will relate every to

mi0203ln3– p.4/??

Proper ties of relator s

Every relator is monotone,

and commutes with , _ and :

Terminology:

mi0203ln3– p.5/??

Proper ties of relator s

Every relator is monotone,

and commutes with , _ and :

Terminology:

is called an -algebra
mi0203ln3– p.5/??

Proper ties of relator s

Every relator is monotone,

and commutes with , _ and :

Terminology:

is called an -coalg ebra

mi0203ln3– p.5/??

Back to divide-and-conquer

Hylo equation :

mi0203ln3– p.6/??

Back to divide-and-conquer

Assume decomposes into :

mi0203ln3– p.6/??

Back to divide-and-conquer

commutes with composition:

mi0203ln3– p.6/??

Back to divide-and-conquer

What about ?
mi0203ln3– p.6/??

Hylo factorization (1)

A standard result of the relational calculus
establishes conditions on , and for

to be a unique solution:

is required to be “well-f ounded ” — the “size”
of a sub-problem generated by is strictly
smaller than its source, cf. termination .

is required to be bijective over the datatype
which is inductively defined by , that is,

.

mi0203ln3– p.7/??

Hylo factorization (1)

A standard result of the relational calculus
establishes conditions on , and for

to be a unique solution:

is required to be “well-f ounded ” — the “size”
of a sub-problem generated by is strictly
smaller than its source, cf. termination .

is required to be bijective over the datatype
which is inductively defined by , that is,

.

mi0203ln3– p.7/??

Hylo factorization (1)

A standard result of the relational calculus
establishes conditions on , and for

to be a unique solution:

is required to be “well-f ounded ” — the “size”
of a sub-problem generated by is strictly
smaller than its source, cf. termination .

is required to be bijective over the datatype
which is inductively defined by , that is,

.

mi0203ln3– p.7/??

Hylo factorization (2)

, least fixpoints

mi0203ln3– p.8/??

Hylo factorization (2)

, least fixpoints

mi0203ln3– p.8/??

Least fixpoints in VDM-SL

is the type one “defines” by writing domain
equations, e.g.

LTree = Leaf | Node ;

Leaf :: value: int ;

Node :: left: LTree right: LTree ;

where we define for

Is this a relator?

mi0203ln3– p.9/??

Polynomial relator s

Instead of

write

where

means the same as

sum and product are standard binary relators.

mi0203ln3– p.10/??

Polynomial relator s

Instead of

write

where

means the same as

sum and product are standard binary relators.

mi0203ln3– p.10/??

Binar y relator s and

Product :

Sum :

where

, — arbitrary (but consistent) disjoint injections.

mi0203ln3– p.11/??

Binar y relator s and

Sum :

where

, — arbitrary (but consistent) disjoint injections.

mi0203ln3– p.11/??

Binar y relator s and

Sum :

where

, — arbitrary (but consistent) disjoint injections.

mi0203ln3– p.11/??

Case analysis combinator

In a diagram:

mi0203ln3– p.12/??

LTree example

_ _

whereby

addLTree: LTree -> int

addLTree(t) ==

cases t :

mk_Leaf(i) -> i ,

mk_Node(t1,t2) -> addLTree(t1) + addLTree(t2)

end;

can be depicted in a diagram:

mi0203ln3– p.13/??

Remarkab le facts about

�� �� � �� �� �

� �

_

��� � � � �

_

	�
 ��

�� � �� �

Facts:

is uniquel y determined by and one
writes

Given , is called the “inductive extension
of , “fold ” or “catamorphism of ”.

mi0203ln3– p.14/??

Remarkab le facts about

�� �� � �� �� �

� �

_

��� � � � �

_

	�
 ��

�� � �� �

Facts:

is uniquel y determined by and one
writes

Given , is called the “inductive extension
of , “fold ” or “catamorphism of ”.

mi0203ln3– p.14/??

Hylo-factorization Theorem

Using _ notation:

mi0203ln3– p.15/??

Hylo-factorization Theorem

Taking converses:

mi0203ln3– p.15/??

Hylo-factorization Theorem

Entire/simple factorization if both and are
entire/simple (= surjective/injective)

mi0203ln3– p.15/??

Example: mergeSort

mergeSort : seq of int -> seq of int

mergeSort (l) ==

cases l :

[] -> l ,

[e] -> l ,

others -> let l1 ˆ l2 in set {l}

be st abs(len l1 - len l2) < 2

in let l_l = mergeSort (l1),

l_r = mergeSort (l2)

in lmerge (l_l, l_r)

end;

Case analysis following Hu et al ’s algorithm [HIT96b]:

mi0203ln3– p.16/??

mergeSort

From

law

infer

�� �
�� �� �

mi0203ln3– p.17/??

mergeSort

mergeSort ’s formula:

where and

pconc : seq of int * seq of int -> seq of int

pconc(l1,l2) == l1 ˆ l2

pre abs (len l1 - len l2) < 2 ;

Factorization helps in understanding the “Equal-size,

Easy Split, Hard Join” classification of the algorithm.

mi0203ln3– p.18/??

quickSort

quickSort : seq of int -> seq of int

quickSort (l) ==

cases l:

[] -> [],

-ˆ[x]ˆ- -> quickSort ([y | y in set elems l & y < x]) ˆ [x] ˆ

quickSort ([y | y in set elems l & y > x])

end

Here

� � �

, so is BTree (binary search
tree):

where

mi0203ln3– p.19/??

quickSort

inord: int * (seq of int * seq of int) -> seq of int

inord(x,mk_(l,r)) == l ˆ [x] ˆ r;

pinord: int * (seq of int * seq of int) -> seq of int

pinord(x,mk_(l,r)) == inord(x,mk_(l,r))

pre forall y in set elems l & y < x and

forall y in set elems r & y > x;

quickSort = BTree in-order (conquer) following the
converse of a partial in-order traversal (divide).

Divide does the hard job of ensuring that the
intermediate tree is bi-ordered.

Classification: “Equal-size, Hard Split, Easy Join”.

mi0203ln3– p.20/??

Vir tual data-structuring

Particular choice of for sub-problem
organization induces intermediate type .

This is made explicit by hylo-factorization.

Intermediate data-structure saves the outcome
of a “one go” divide step and passes it on
to the conquer step for processing.

In general, people “fuse” things very early in
design, thus virtualizing this structure.

Factorization helps in spec under standing and
classification .

mi0203ln3– p.21/??

Vir tual data-structuring

Particular choice of for sub-problem
organization induces intermediate type .

This is made explicit by hylo-factorization.

Intermediate data-structure saves the outcome
of a “one go” divide step and passes it on
to the conquer step for processing.

In general, people “fuse” things very early in
design, thus virtualizing this structure.

Factorization helps in spec under standing and
classification .

mi0203ln3– p.21/??

Vir tual data-structuring

Particular choice of for sub-problem
organization induces intermediate type .

This is made explicit by hylo-factorization.

Intermediate data-structure saves the outcome
of a “one go” divide step and passes it on
to the conquer step for processing.

In general, people “fuse” things very early in
design, thus virtualizing this structure.

Factorization helps in spec under standing and
classification .

mi0203ln3– p.21/??

	«How» does one specify?
	Divide-and-conquer (formally)
	Relators
	Properties of relators
	Back to divide-and-conquer
	Hylo factorization (1)
	Hylo factorization (2)
	Least fixpoints in Vdmsl
	Polynomial relators
	Binary relators $×$ and $+$
	Case analysis combinator
		extvdm {LTree} example
	Remarkable facts about $µ� $
	Hylo-factorization Theorem
	Example: 	extvdm {mergeSort}
		extvdm {mergeSort}
		extvdm {mergeSort}
		extvdm {quickSort}
		extvdm {quickSort}
	Virtual data-structuring

