
Appendix A

MFP-I/0203: Addenda to the
Lectures Notes

A.1 Elements of the Fixpoint Calculus

A.1.1 Basic definitions

Definition 1 (Poset) A poset
���������
	

is a set
�

equipped with a partial ordering
���

,
that is, a relation

���
�������
which is reflexive, transitive and antisymmetric.�

Definition 2 (Pre/post-fixpoints) Let
� ��

oo be a (endo) function on poset
������� � 	

.
Then

� every ��� � such that

� � ��� � (A.1)

is said to be a post-fixpoint of
�

.

� every ��� � such that

� � � � � (A.2)

is said to be a pre-fixpoint of
�

.

� every ��� � which is both a pre-fixpoint and a post-fixpoint of
�

is said to be a
fixpoint of

�
and is such that

� � � � (A.3)

holds.
�

1
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Examples:

� Given endofunction ����� � ��� ���
	 � � ��� ���

 � � ��� 


one very easily checks that � is a fixpoint of
�

, since
� ��� � ��� ����� .

� Let � ��� ���
be a relation on nonempty

�
in


 ��������� 
 (A.4)

Define

� 
 ��������� 
 (A.5)

on poset
��� � � ����	 ����	

. Then

–
� �!�

is an example of a pre-fixpoint of
�

(
� �!�

is the largest relation in
the poset).

– " and � are examples of post-fixpoints of
�

. In fact, " � � and � �
�����$# .

Clearly, every fixpoint � � � � can be regarded as a “solution” to equation


 � � 
 (A.6)

But one can also regard this equation as a “recursive” definition of its fixpoints. For
instance, recall equation (2.3) 
 � �&% 
 '
The fact that

'
is a fixpoint of this equation can be rephrased to: “ 
 � �(%*)

# ” is a
recursive definition of number

'
.

However, the following equation


 � 
 # %,+
-

admits two solutions (fixpoints)
�

e
+
. What are we “recursively defining” here? The

�
or the

+
? Furthermore, equation 
 � 


defines any object! By contrast, some equations don’t have any solution at all. Think
e.g. of 
 � 
 %.�
in / 0 . So, in this case, our recursive equation defines. . . nothing!
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A.1.2 Computing fixpoints

Definition 3 (Monotone functions) A function � ��
oo from poset

������� � 	
to

poset
� � ����� 	 is said to be monotone iff

� � � ��� � � � � � � ����� � � � 	
��� � � ��� 	

holds.�

Definition 4 (Ordering on functions) Given two functions � ��
oo and � �	

oo

from poset
������� � 	

to poset
� � ��� � 	 define

� ��
 ��
��� � � � � � � � � 	
� � ��
 � 	 (A.7)

�

Theorem 1 (Lattice Fixpoints) [Tarski 1955]
Let

� � ��
oo be a monotone function on a complete lattice

��������	
;

� �
be the set of all fixpoints of

�
, i.e.

� ��� � � ��� � � � ���

Then

� �
is non-empty and

� ������	
is a complete (sub)lattice.

� In particular, the least of all fixpoints
������	

and the greatest one
��� ��	

are as
follows:

� � � � � 
 � 
 � � 
 � (A.8)� � � � � 
 � 
 � � 
 � (A.9)

We define:

� � ��
��� � �
(A.10)

 � ��
��� � �
(A.11)

�

In the sequel we shall be focussing on least fixpoints.
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A.2 2001.12.06 — Laws of the Fixpoint Calculus

Computation rule:

� � � � � � (A.12)

Rolling rule:

� � 
 � � 	 � 
 � � � � � 
 	 	 (A.13)

Square rule:

� � � � � � # 	 (A.14)

Monotonicity:

� � � � 
 � � � 

(A.15)

Induction rule:

� � � 
 � � 
 � 
 (A.16)

A.2.1 Illustration

Let
� 
 � �&% )

# . Successive application of the computation rule (A.12) leads to:

� � � �&% � �'

� �&% � �&%�� �
#
	'
� �&% �' % � �-

...

�
�� �
�
	

�' � % � �' ��� 	
In the limit ( 
 	��

), we get
� �

#������ � �
and therefore � � �����

�
�
	 	#�� �

'
.

The rolling rule (A.13) can be applied decomposing
� � 
 ��� for � 
 � )

# and
 
 � �&% 
 . Then

� � � � ��
 ��� 	 � 
 � � � ��� 
 	 	
� �&% � 
�� � % 
'

whereby 
 � 	 � )
# has solution

�
.

The aother rules enable us to reason inequationally. For instante, fact
� % )

#
�

' %�)
# ,

for all 
 , and monotonicity (A.15) enables us to say that � 
�� � � % )
#
	 �

'
is smaller

than � 
�� � ' % )
#
	 � -

.
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Similar intuition can be gathered from (A.5), providing evidence that � � � � �
(transitive closure of � ).

For instance (rolling rule), we can decompose
�

into

 � � where � 
 � � � 
 and
 
 ����� 
 . Then

� � � � � 
 � � 	
� � rolling rule �


 � � � ��� 
 	 	
� � definitions of


 � � �
��� � � 
�� � � � � ��� 
 	 	

� � relational calculus �
��� � 
�� � � # ��� � 
 	

Further application of this rule will “factor out” � # , � �
, etc., leaving a “smaller and

smaller” fixpoint to be calculated. In the limit, one gets � � � � �� ��	 � � �.� � .

A.2.2 Inductive datatypes “are” fixpoints

Recall

� � �&% ��� �� ��� 	
��
(A.17)

� The “=” symbol in equation (A.17) should be understood as “ 
� ”

��� should be understood as a functor

� So any solution
���

to the equation should carry along an algebra � 
 and its
inverse ����� thus providing evidence of the required isomorphism:

���
�����

**

� �&% � � ����
�ii

For instance,

���
� ���

**

� �&% � ������

� �"!#!�$ % & � �(' $ii

where ����� is the obvious inverse of � 
 .
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� The
�

-ordering corresponds to right-invertibility:

�
�

''� �
�

gg that is
� � ��� � ��� � (A.18)

In general: For � a polynomial functor, equation
� 
� � �

� admits a standard solution — its least fixpoint solution

�"�
� ���

))

� � �"��
�hh (A.19)

Example:

� � � �&% � � � � � �

— where � � � � �
abbreviates � ��� � � � � 	

.

� �"� is initial among all other � -structures — that is to say, for a given
����� � � ��

oo
	
,

arrow 	 in

�"�



��

� �"�

�


��

�
�

oo

� � ��oo

is unique, recall universal property:

	 � � � � � 	�
 	 � � 
�� � � � 	
A.2.3 Application of the Fixpoint Calculus to datatypes

Computation rule:

�"�
�����

**

� � � �"� 	�
�hh (A.20)

cf. (A.19).
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Rolling rule:

� ��� � � 	
� � �
�
�����
	�� 
�� � �

++

� �
� � � � � � 	 	�

� 
�� 	�� ��� � 

�
� 
�� 	 � �kk

(A.21)

cf.

� ��� � � 	
� � 	 � �

��

��� � � 	 � � ��� � � 	 	
��� � 
 ��� � 	 � �

��

�
�����

�� 	��

oo

�
� � � � � � 	 	 ��� � � 	 ���
� � � � � � 	 	 		 � �
�
� ����	�� 
��oo

Example: Let

� � � �&% �
� � � ��� �

Then
� � � � 	 � � �&% � � �
��� � � 	 � � � � � �&% � 	 
� ��% � � �

where
��� � � 	 involves natural isomorphism 	 ��� � ��� ��� 	 � ������%�� # 	� . Then

� � � � � 	 � � �
� ��� � � 	 � � �

The rolling rule will state the obvious fact that
� � 
� ����� �

holds, that is

� ��� � � 	 � � �
�

��

� � � �&% � � 	�
!�" �
�
! � � �

��

� % � ��� ��
! �
�
!�" �

��


oo

�
��# �

qq

� � � � � � � �&% � ����� 	
�
!�"
�
� #�$

oo
��% ��� ��� ����� 	


oo

(A.22)

for 	 �%� � ��� ��� 	 � ������%�� # 	� .
Exercise 1.1 Concerning (A.22), show that &('*)+&-,/.�&10/2 where &�, is the “head” function and &/0 is the

“tail” function on 354 .6
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Monotonicity:

�"�
� �
�
� 
 � � � � 	

((� � �
� �
�
� 	 � � � � 
hh

� � �
�

((� � �
�hh

cf. diagram

� �
� �
�
� 	 � � � � 


��

� � � � 	

 � �
�
� 	 � � � � 


��

� � � � 	�
oo

�
� 


uu

� � �
�
� 	 � � � � 


���"� � � �"� 	
�
� 	oo

� � �"� 	�oo

Let us see an example of application, whereby possibly empty sequences are rep-
resented by non-empty ones — �"� � � �

and � � � � � , for
� ���

:

� � 
� �&% � �����
!#!�$ % & ��� ' $

ii

� � 
� � % � ��� �
! '
�
� 	 % & ��� ' $

ii

where � � 
 
 � � � � � .

A.3 Mutual recursion

Consider mutually-dependent
�

and



as follows:

f: nat -> nat
f(n) == if n = 0 then 0 else g(n - 1);

g: nat -> nat
g(n) == if n = 0 then 1 else f(n - 1) + g(n - 1);

How we reason about mutually-dependent functions?
The situation is handled by the so-called mutual-recursion law, also called “Fokkinga

law”:

� � � 
�� ��� � � � � 
  
�
 � � 
�� 	 � � � � � 
  

� � � � 
  � � � � � � 	  � 	 (A.23)
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In terms of diagrams: from

�
�

��

� �

�� � % 	��

��

�
�

oo

� � ��� � � 	�oo

�
	

��

� �

�� � % 	��

��

�
�

oo

� � ��� � � 	
oo

we get

�
� � % 	��

��

� �

�� � % 	��

��

�
�

oo

��� � � ��� � � 	��� % 
 �oo

Proof:

� � � 
  � � 
 � � � � 	  � � � � � 
  
	 � by

�
-fusion (1.24) �

� � � 
  � � 
 � � � � � � � � 
  � 	 � � � � � 
  � 
	 � by hypothesis �

� � � 
  � � 
 � � � � � 
 � 
 � � 
  
	 � by (reverse)

�
-fusion (1.24) �

� � � 
  � � 
 � � � � 
  � � 

	 � equality is reflexive �


 ����

Applying this to the above pair of

�
and



:

� � � � � � ��� � � � � � 
 �

 � � � � � ��� � � � � � % � � � � 
  �

The mutual dependence can be made more explicit by forcing
� � � � � � ��� � � � � ��� # � � � � 
  �

 � � � � � ��� � � � � � % � � � � 
  �

The underlying inductive type is

/ 0 � 
� � % / 0 �
� ��� 	
�� ���

(A.24)

which is such that � � � ��� % �
. So we can write

� � � 
 � � � ��� # � � � � � � 
  
 � � 
 � � � � % � � � � � � 
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So we identify � � � � ��� # �
and 	 � � � � % �

therefore obtaining

� � � 
  
� � Fokkinga law �

� � � � � ��� # � � � � � % �  � 	
� � exchange law �

� � � � � ���  � � � # � %  � � 	
which is easily converted into VDM-SL as follows:

fg: nat -> nat
fg(n) == if n = 0 then mk_(0,1)

else let p=fg(n - 1)
in mk_(p.#2,p.#1 + p.#2);

A.3.1 Example

Checking a list-invariant which ensures that a (non-empty) list is ordered:

� � ��� � � � � � � //

'
� � ��� � � � � � � � 
 ����

� � ��� � � � � � � 
 � � � ��� 	 	 � ���

��� � 
 � 	 � � � � ��� � � � � 	

Assuming singl � � � � � we can depict � � ��� � � � as follows:

� �
� � !
	 � 	�!

��

� % � ��� ��
! �
�
!�"�����
 ) % � � !
	 � 	�! �

��

! singl % & ��� ' $
oo

' ��% � � ��� � '
	

!�������� % � $oo

where
�
� � � ��� ��� 	 	 ��
��� ���

� � �

and where
� � 
 � � � � ��� ��� � 
 � � 	

cf.

� �
��
 )

��

� % � ��� ��
! �
�
!�"���
 )

��

! singl % & � �(' $
oo

� ��% � � �
!
�
! % � 
 ) $oo
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It is easy to check that the equation implicit in this diagram is the same as the one
implicit in

� �
��
 )

��

��% � ��� ��
! �
�
!�"�� ��
 ) % 	��

��

! singl % & ��� ' $
oo

� ��% � � ��� � � 	!
�
! % � 
 ) � �

�
!�" � � � $oo

for any
� � 	

// � . For � �
'

and

 � � � ��� � � � we are in position to apply

Fokkinga’s law and to obtain:

� � � 
 � � � ��� � � �  � � � � � � � ��� � 
 � � � � � � 	 	 � � � 
 ����
 � � �  �� 	
� � exchange law (1.47) �

� � � � � � � 
 � � 
  �� � � � 
 � � ��� � � 	 	 � �5 � � 	
Of course, � � ��� � � � � � # � � � � 
 � � � ��� � � �  . Calling �(� 
 to the above synthesized
catamorphism, we end up with the following realization of � � ��� � � � :

� � ��� � � � � � �
��� � � ����	 � � � 
 �

� 
 �

where

� � 
 � � � //
� �

'
� � ��� � � � � � � � � � � 
 ����
 	
� � ��� � � � � � � 
 � � � ����	 	 � �

��� � � ����	 � � � 
 �

� 
 � � � 
 � � ����	 ��� ���
� � � 	 	

A.3.2 “Banana-split”: a corollary of the mutual-recursion law

Let � � � � � � 	 and 	 � � � � � # in (A.23). Then
� � � 
 � � � � � � 	 	 � � � � � 
  

	 � composition is associative and � is a functor �
� � � 
 � � � � � � 	 � � � � 
  	

	 � by
�

-cancellation (1.20) �� � � 
 � � � � �
	 � by cata-cancellation �

� � � � � � 	

Similarly, from 	 � � � � � # we get

 � � � � � 	



12 APPENDIX A. MFP-I/0203: ADDENDA TO THE LECTURES NOTES

Then, from (A.23), we get

� � � � � 	 � � � � � 	� � � � � � � � � 	 � � � � � #  �� 	
that is

� � � � � 	 ��� � � � 	� � � � � � � � 	 � � � � 	 � � � #  � 	 (A.25)

by (reverse)
�

-absorption (1.25).
This law provides us with a very useful tool for “parallel loop” inter-combination:

“loops”
� � � � 	 and

� � � � 	
are fused together into a single “loop”

� � � � � � 	 � � � � 	 � � � #  � 	 . The
need for this kind of calculation arises very often. Consider, for instance, the function
which computes the average of a non-empty list of natural numbers:

��� � � � 
 � ��
��� ��� 	 � � � � ����� � 
 
 � �  
Both � � � and

�
� 
 
 � � are / 0 � catamorphisms:

� � � � � � � � ��� � % � � 	
�
� 
 
 � � � � � � � � � ��� � � # � � 	

Function ����� � � 
 � will do two independent traversals of the argument list before di-
vision

��� 	
takes place. Banana-split fuses such two traversals into a single one, thus

leading to a function which: (a) runs twice as fast (b) can be converted into a while
loop by introduction of accummulation parameters (such as seen above).

Exercise 1.2 Apply the banana-split law to the following definition of the ���	��

� function:

������

�������' )�� ,�� .�� 0���2
Extend ������
 � to binary trees and repeat the exercise.6

A.4 Paramorphisms

Consider the standard definition of the factorial function (in VDM-SL notation):

fac : nat -> nat
fac(n) == if n = 0 then 1 else fac(n-1) * n

The pattern of recursion of this function — usually known as primitive recursion — is
somewhat more elaborate than that of a catamorphism over / 0 .

Note than it can be captured by the following diagram:

/ 0
� 
 &

��

�&% / 0! � % ' � &�$
oo �

! � � � 
 & %
�
! �

��/ 0 �&% � / 0 � / 0 	!�	 % � ��� � �
�
!�" ' � & � $oo
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Function
� � � is a particular instance of a so-called paramorphism. In general, a

paramorphism of some
�

relative to functor � , is the unique morphism � � � �  which is
such that

�
� ! � $ �

��

� �
�
�

oo


�� � ! � $ � %
�
! �

��� � � � � � 	�oo

that is, we have the following universal property:

� � � � � �  	 � � � 
�� � � � � � � ���  
A.4.1 Examples of paramorphisms

From above we can express the factorial function as a paramorphism:
� � � � � � � � ��� � � � � ��� � � ��� 	 � �  

A less straightforward example is that of a function 
�� — cf. wc -w in LINUX—
counting the number of words in text (seq of char):

nw : seq of char -> nat
nw(s) == if s = [] then 0

else if not sep(hd s) and sepahead(tl s)
then nw(tl s) + 1 else nw(tl s) ;

sepahead: seq of char -> bool
sepahead(s) == (s = []) or sep(hd s) ;

sep : char -> bool
sep(c) == c = ’ ’ or c = ’\n’ or c = ’\t’ ;

This is list-paramorphism

char
�

���
��

�&%
char

�
char

��
! �
�
!�"�� ��� %

�
! �

��

!#!�$ % & ��� ' $
oo

/ 0 � �&%
char

� � / 0 � �
char

� 	
! � % � $oo

where

h : char * (nat * seq of char) -> nat
h(c,mk_(i,s)) == if not sep(c) and sepahead(s) then i + 1 else i ;
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A.4.2 Properties of paramorphisms

1. Clearly, every catamorphism can be expressed by a paramorphism:
� � � � 	 ��� � � � � � 	 �  (A.26)

Proof:

� �%� � � � � � 	 �  	 ��� � 
�� � � � � 	 � � � � � ���  
� � functor versus composition (2.45),

�
-cancellation �� �%� � � � � � 	 �  	 ��� � 
�� � � � �

� � cata-universal �
� � � � 	 � � � � � � � 	 �  

2. Conversely, every paramorphism can be expressed (indirectly) in terms of a cata-
morphism:

� � � �  � � 	 � � � � � � � 
 � � � #  � 	 (A.27)

Proof: let



be ��� in the mutual-recursion law, leading to
� � � � � �  . Then the

equation for

 � ��� is

��� � � 
�� 	 � � � � � ���  
and this is satisfied for 	 � � 
 � � � # .

So � � � 
  � � � � � � � 
 � � � #  � 	 and
� � � � � �  � � 	 � � � � � � � 
 � � � #  � 	 .

3. PARA-REFLECTION:

��� � � � � 
 � � � 	 �  (A.28)

By cata-reflection (2.58) this can be regarded as an instance of (A.26) above.

4. PARA-FUSION:

��� � � � �  ��� � 
 �  � ��� � � 
 � � � � � ��� 	 (A.29)

Example of aplication

By (A.27) the factorial function can be expressed by the projection of a catamorphism:
� � � � � 	 � � � � � � ��� � � � � ��� � � ��� 	 � � � 
 � � ��� %�� # 	� �� 		 � +-absorption (1.41) �
� � � � � 	 � � � � � � ��� � � � � ��� � � ��� 	 � � � � � � ��� � � # �  � 	

� � exchange law (1.47) �
� � � � � 	 � � � � � � � �  � � � � � � � ��� � � ��� 	 � � ��� � � #  � � 	

This will lead to the following VDM-SL:
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fac : nat -> nat
fac(n)==facaux(n).#1;

facaux: nat -> nat*nat
facaux(n) == if n=0 then mk_(1,0)

else let p = facaux(n-1),
a = p.#1,
b = p.#2

in mk_(a * (b + 1), b + 1);


