An Introduction to the Relational
Hylomorphism Calculus
José N. Oliveira
Dept. Informatica

Universidade do Minho, 4700 Braga, Portugal
jno@di.uminho.pt

January 6, 2003

Part I
Rudiments of the Relation
Calculus

Inclusion and composition
Composition is associative:
R-(S-T)=(R-S)-T (1)
Composition is monotonic:
RCS
TCU (2)
(R-T)C(S-U)
Identity
R-id=id-R=R (3)
Equality
“Ping-pong” rule:
R=S = RCSASCR 4)
Indirect proof:
R=S = VX.(XCR=XCYS) (5)

Meet and converse

Meet-universal
XC(RNS) = (XCRA(XCS)
Converse

Involution : (R°)°=R
Order-preserving : RC S =R° C S°
Contravariance : (R-S)°=S°-R°

Converse distributes over N (proof in next slide):

(RNS)° = R°N S°

Elegant (indirect) proofs

XCR°NS°

{ N-universal}

(X CR°)A(X C 5°)

{ involution}

(X° CR)A(X° CS)

{ N-universal}

X° C(RNS)

{ involution}
X C(RNS)°
thus { indirection}

R°NS°=(RNS)°

Dedekind’s rule

also known as the modular law:
(R-SYNT C R-(SN(R°-T)) (11)
Dually (apply converses and rename):
(R-SYNT C (RN(T-58°)-8 (12)
Symmetrical equivalent statement:
(R-S)NT C (RN(T-5°)-(SN(R°-T)) (13)

= "weak right-distribution of meet over composition”.

Properties (A)

e N-cancellation — from X = RN S in (6) infer:

RNSCR A RNSCS (14)

e N-abbreviation:

R=RnNS (15)

e N-idempotency:

RNR = R (16)

Proof of (15):
RCS

{ inclusion is reflexive}

RCRARCS

{ meet-universal (6) }
RC(RNS)
{ cancellation (14) }

RC(RNS)A(RNS)CR

{ ping-pong}
R=(RNYS)

Proof of (11):

c<2 _pB<S 4

(3b.cRb A bSa) A cTa

{ predicate calculus }
(3b.cRb A bSa A cTa)

{ converse and trivia }
(3b.cRb AbSa AbR°c A cT'a)

{ relational composition }
(3b.cRb A bSa A b(R® - T)a)

{ meet in predicate calculus }

(Fb.cRb AB(S N (R - T)a))

Properties (B)

Proof of (16):

N is commutative: X C(RNR)

RNS = SAR (17) = { meet-universal}
(X CR)A(X CR)
N is associative: = { logic}
RN(SNT) = (RNS)NT (18) (X CR)
= { indirection}
N-fusion: BB R
T-(RNS) € (T-R)N(T-S) (19)
(RNS)- T C (R-T)n(S-T) (20) Proof of (17):
X C(RNS)
= { universal}

Orders and their taxonomy (A) (X CR)A(XCS)

= { logic}

An order (or endo-relation) A <2— A is (X CS)A(X CR)
reflexive: iff idg C R (21) = { universal}
coreflexive: iff R Cida (22) XC(SNR)
transitive: iff R-RCR (23) = { indirection}
anti-symmetric: iff RNR® Cidy (24) RNS=SNR
symmetric: iff RCR°(=R=R") (25)
connected: iff RUR° =T (26) Proof of (19):

- T.-(RNS)C(T-R)N(T-S)

where A <—— A is the largest relation of its type. { meet-uni 16)}

= meet-universa.

T-(RNS)CT-RAT-(RNS)CT-S
<~ { monotonicity}
RNSCRARNSCS

{ cancellation}

A connected order (26) is such that

Va,b.aRbV bRa

Proof of (25):
RC R°

{ A-idempotency}
RCR°ARCR®

{ converse is C-monotone and involutive}
RCR°AR°CR

{ ping-pong}
R=R°

Il

Order taxonomy (B)

¢ Preorders are reflexive and transitive orders.
e Partial orders are anti-symmetric preorders
e Linear orders are connected partial orders

e Equivalences are symmetric preorders

e Predicates are coreflexive orders: the “meaning” of a

predicate Bool <% 4 is a coreflexive relation]
such that

¢a = a[¢la

i.e., it maps every a which validates ¢ onto itself.

Order taxonomy (C)

——

order

N

symmetric reflexive transitive anti-symmetric connected
\ /
preorder
/ \
equivalence partial order
\
linear

Kernel and image

Kernel of B<2— 4 is A M A defined by

kerR¥ R°. R

R . img R .
Image of B<—— A is B<—— B defined by

img RE R R°
Duality:

ker (R°) = imgR

img (R°) = kerR

(29)
(30)

Using kernel in specifications

Implict specification of sorting in VDM notation:

ImplSort(1l: seq of real) r: seq of real
post IsPermutation(r,l) and IsOrdered(r);

where

IsPermutation: seq of real * seq of real -> bool
IsPermutation(11,12) ==
forall e in set (elems 11 union elems 12) &
card {i | i in set inds 11 & 11(i) = e} =
card {i | i in set inds 12 & 12(i) = e};

abbreviates to

Using kernel in specifications

€:

ImplSort < IsOrdered - (ker seq2bag)

where

seq2bag: seq of real -> map real to natl
seq2bag(l) ==
{el>card { i | i in set inds 1 & 1(i) = e } |
e in set elems 1 };

Proof of (29):

ker (R°)

{ definition (27) }
(R°)° - R®

{ involution (7) }
R-R°

{ definition (30) }

img R

Properties of kernel and image

Order-preservation:

RCS = kerRCkerS (31)
RCS = imgRCimg$§ (32)
Symmetry:
(ker R)° = kerR (33)
(imgR)° = imgR (34)
Also:
RCR-kerR (=imgR-R) (35)

Entireness and simplicity

An entire (or total) relation is such that its kernel is reflexive:
Risentire = idC kerR (36)

A simple (or functional) relation is such that its image is
coreflexive:

Rissimple = imgR Cid (37)

Simplicity is the dual of entireness. Simple relations are also
called partial functions.

(Total) functions

Functions are both simple and entire relations, usually
denoted by lowercase letters f:

dCf-f N f-f°Cid
———— —_———
entire simple

Thus:

f € R= R is entire
R C f= R is simple

In general, “larger than entire means entire” and “smaller
than simple means simple” — cf. (31,32).

Proof of (31) and (32) :
R-R° C S S°, respectively.

Proof of (33):

Proof of (35):

From (8) and (2) we get R° - R C S° -

(ker R)®

{ definition (27) }
(R® - R)°

{ contravariance (9) }
R° - (R°)°

{ involution (7) }
R°-R

{ definition (27) }

ker R
R
= { (16) }
RNR
- { modular law}

R-(idN R° - R)

N

{ monotonicity}

R-R°-R

Surjectiveness and injectiveness

More taxonomy:
e R is surjective iff R° is entire

e R is injective iff R° is simple

Facts:
R is entire and injective = ker R =1id (38)
R is simple and surjective = imgR=1id (39)
Bijections

f is bijective iff it is an injective and surjective function
(thus simple and entire)

B~<'— 4 bijective = ker f =id Aimg f = id (40)
In this case

d=f°-f N f-f°=id

More about kernel

Kernel of composition:
ker (R-S)=S°-(kerR)-S (41)
Kernel of meet:
R°-SNidC ker(RNS) (42)
Kernel of a partial function is transitive:

R is simple = ker R - ker R C ker R (43)

Proof of (38):

R is entire and injective
{ definitions }

id C ker R A img R°® C id
{ (30)}

id C ker RA ker R C id
{ ping-pong (4) }

id = ker R

Kernel of a function
Kernel of a total function is an equivalence: it is symmetric Proof of (42
(33), reflexive (36) and transitive (43): roof of (42):
, R°.SnNid
a (ker f)a C { (13) for T := id and R := R° }
= { kerf=1f°-f} (R°NS°)-(SNR)
3a".(a’'f°a") A (a" = fa) = { converse of meet and definition }
= { converse of a function, pointwise } ker (RN S)
Fa".(a" = fa') A (a" = fa)
= { equality is transitive } Proof of (43):
fa' = fa R is simple
= { definition}
R-R° Cid
. . = { by (2)}
Properties of coreflexives
R°-(R-R°)-RCR°-R
For any T and coreflexive R: = { associative -}
R°-R)-(R°-R)C(R°‘R
RTCT) (R R) - (R° - B) C (R° - R)
= definition of ker
T-RCT (45) { }
ker R -ker R C ker R
Coreflexives are symmetric and transitive:
R=R°=R-R=RnNid (46) Proof of (46):
. . . R Cid
Meet of two coreflexives is composition: =
= { abbreviation}
RNS=R-S (47) R=RNid
Symmetry:
Proof of (47): Ping-pong =:
R
R and S are coreflexives C { fact (35)}
= {by (44, 45)} B
R-R°-R
R-SCRAR:-SCS C { coreflexive R}
= by (6
ey (6)} id- R° -id
R-SC(RNS) = { identities}
Ping-pong <: R°
RNSCR-5 Transitivity:
= { identity and (46)} RCid
R-idNSCidNR-R°-S = { fact (44)}
= { S =idin (11)} R-RCR
T

10

Range

rng-universal: for all X C id,

mgRCX = RCX-R (48)
rng-reflexion (or rng R is coreflexive):
rng R Cid (49)
rng-cancellation:
RC(mgR)-R (50)
— in fact
R=(mgR)-R (51)
Range (cont.)
because from (49) one gets (rng R) - R C R which
ping-pongs with (50).
rng-“fusion”:
mg(R-S) CmgR (52)
Explicit definition of range
mgR = imgRnNid (53)
Corollary — R replaced by RN S:
mg(RNS) = idnN(R-S°) (54)

11

Proof of (52):

rng (R-S)CrngR
{ (48)}
R-SC(mmgR)-R-S
{ (651}
R-SCR-S
{ trivia }

Proof of (53): We want to prove, for every coreflexive X,

imgRNidCX = RCX-R

cf. (48) Ping-pong proof:

imgRNid C X

= { monotonicity }

(imgRNid)-RC X -R

= { (12) for R =id, S =T = R and transitive C }

(RNR)C X -R

RCX-R

{ trivia}

= { monotonicity }

R-R°NidC X -R-R°Nid

= {(12) for R=X,S=R-R° T =id and trivia }

R-R°NidC X -(R-R° N X°)

= {9}
R-R°PNidCX-R-R°NX-X°
= { (6) from left to right }

R-R°NidC X - X°

{ X is coreflexive}

imgRNidC X

Proof of (57):

domR
{ by definition and above}

img R° Nid
{ cf. above}
ker RN id

12

Proof of (54): Ping-pong:

N

N

rng (RN S)

{ definitions }
(RNS)-(RNS)°Nid

{ converse of meet }
(RNS)-(R°NS°)Nid

{ monotonicity }
(R-S°)nid

{ meet idempotency }
(R-S°)Nidnid

{ (42)}
ker (R° N S°) Nid

{ converse of meet }
ker (RN S)° Nid

{ kernel-image duality }
img(RNS)Nid

{ definition }
rng (RN S)

Range

Range of composition:
mg(R-S) = rmg(R-rmgs) (55)
NB:

e rng-universal (48) is a Galois connection:

g R CX = RC X-R
—— ——
R gX
(“lower adjoint”) (“upper adjoint”)

e more Galois connections to come.

e Galois connections are mathematically very rich.

Domain
Definition:
domR = rng R® (56)
that is:
domR = img R° Nid = ker RN id (57)

dom-universal: for all X C id,
domRCX = RCR-X (58)
Dual of (51):

R =R-(domR) (59)

Kernel and domain

Kernel of injective relation is its domain:
Risinjective = domR = ker R (60)
Domain of entire relation is the identity:

Risentire = domR =id (61)

13

Proof of (55): Ping-pong C:

Ping-pong D:

Proof of (58) :

Proof of (60):

Il

g (R-S)
c { (51) }
rng (R-1ng§ - S)
c { (52) }

rng (R - rng S)

rng (R-rng S) Crng(R-S)
{ explicitation (53) and simplification}
R-rngS-R°Nid C R-imgS - R° Nid

{ monotonicity}

rng S C img S
{ (33)}
T
domR C X
= {1}
rng R° C X
= {}
R°CX-R°

{ converses }
RCR-X°

{ coreflexive X }

Il

RCR-X

R is injective, i.e. R° is simple
{}

img R° Cid
{}

ker R C id

{1}
ker RNid = ker R
{}
dom R = ker R

Proof of (61):
R is entire
{ (36)}
id C ker R
{ (%)}
idNker R =id
{67}
domR =id

Simple/entire shunting

If T is simple, then

T-RCS =
R-T°CS

(kerT)-RCT°-S
R-kerT CS-T

The following version of (62) turns up in [MB02]:
T-RCS = (domT)-RCT°-S
The equivalent version of (63) is:

R-domTCS-T = R-T°CS

Proof of (63):
R-kerTCS-T

{ taking converses}
(kerT)° - R° CT°-S°

{ kernel symmetry (33) }

(kerT)-R° CT°-S°
{ fact (62) }
T-R°CS°

{ taking converses again }

R-T°CS

14

Proof of (62): Ping-pong:

Proof of (64): Ping-pong:

T-RCS

{ monotonicity of (T°-) }
(kerT)-RCTC°-§

{ monotonicity of (T-) }
T-(kerT)-RCT-(T°-S)

{ TCT- kerT by (35) }
T-RC(T-T°)-S

{ simplicity}
T-RCS

T-RCS

{ monotonicity of (T°-) }
(kerT)-RCT°-S

{ domT C kerT }
(domT) - RCT°- S

{ monotonicity of (T-) }
T -(domT)-RCT -T°-S

{ fact (59) and simplicity}
T-RCS

Reasoning about functions

Shunting rules:

f-RCS = RCf°-S (66)

R-f°CS = RCS-f (67)
Equality:

fCg9g=f=9=f2g (68)

Ping-pong proof of (68) follows.

Example of a ping-pong proof

fcy

{ identity}
fridCyg

{ shunting on f}
idC f°-g

{ shunting on g}
id-g° C f°
{ converses}

gcf

15

Proof of (66) and (67): Resort respectively to (64) and (65) for don
— because f is entire — and simplify.

Relators

A relator is a functor on relations

A FA
Rl lFR
B e FB

which is monotonic and commutes with converse:

RCS = (FR)C(FS)
F(R) = (FR)®

(Recall that F' will commute with composition and identity
too.)

Properties of relators
Proof of (69) :

F(R°-R)
o Relators preserve simplicity and entireness _ 0
e Relators commute with kernel and image: (FR°)-(FR)
ker(FR) = F (kerR) (69) = {
img(FR) = F(imgR) (70) (FR)”-(FR)
= {}
e Relators preserve coreflexivity, since R C id implies ker (F R)

FRCFid=id

(More to come here...)

References

[ABH"92] Chritiene Aarts, Roland Backhouse, Paul Hoogendijk,
Ed Voermans, and Jaap van der Woude. A relational
theory of datatypes, December 1992.

[Blo76] S.L. Bloom. Varieties of ordered algebras. JCSS,
13:200-212, 1976.

[MB02] Shin-Cheng Mu and Richard Bird. Inverting func-
tions as folds. In MPC’02: Mathematics of Pro-
gram Construction, Lecture Notes in Computer Sci-
ence. Springer, 2002. (forthcoming).

[01i92] J. N. Oliveira. Software Reification using the SETS
Calculus . In Proc. of the BCS FACS 5th Refinement
Workshop, Theory and Practice of Formal Software

16

Development, London, UK, pages 140-171. Springer-
Verlag, 8-10 January 1992. (Invited paper).

17

