The Data Cube as a Typed Linear Algebra Operator

DBPL 2017 — 16th Symp. on DB Prog. Lang.

Technische Universität München (TUM), 1st Sep 2017

(Also: 38th INFOBLENDER SEMINAR, HASLab, 27th Sep 2017)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

Linear algebra

Cube

Propertie

References

HASLab

The 16th International Symposium on Database Programming Languages (DBPL 2017)

will be held in conjunction with VLDB 2017 on **September 1st, 2017**, in Munich, Germany. Motivation

Linear algebra

Cube

References

HASLab

Motivation

"Only by taking infinitesimally small units for observation (the **differential** of history, that is, the individual tendencies of men) and attaining to the art of **integrating** them (that is, finding the sum of these infinitesimals) can we hope to arrive at the laws of history."

Leo Tolstoy, "War and Peace" - Book XI, Chap.II (1869)

L. Tolstoy (1828-1910)

150 years later, this is what we are trying to attain through **data-mining**.

But — how fit are our **maths** for the task?

Have we attained the "art of integration"?

Since the early days of psychometrics in the **social sciences** (1970s), **linear algebra** (LA) has been central to data analysis (e.g. tensor decompositions etc)

We follow this trend but in a **typed** way, merging **LA** with polymorphic **type systems**, over a categorial basis.

We address a concrete example: that of studying the maths behind a well-known device in data analysis, the **data cube** construction.

We will define this construction as a **polymorphic LA** operator.

Typing **linear algebra** is proposed as a strategy for achieving such an "**art of integration**".

Running example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Raw data:

t

	#	Model	Year	Color	Sale
	1	Chevy	1990	Red	5
	2	Chevy	1990	Blue	87
=	3	Ford	1990	Green	64
	4	Ford	1990	Blue	99
	5	Ford	1991	Red	8
	6	Ford	1991	Blue	7

Rows — records (*n*-many) — the *infinitesimals* **Columns** — attributes — the *observables*

Column-orientation — each column (attribute) A represented by a function $t_A : n \to A$ such that $a = t_A$ (*i*) means "*a* is the value of attribute A in record nr *i*".

Can records be rebuilt from such attribute projection functions?

Yes — by **tupling** them.

Tupling: Given functions $f : A \rightarrow B$ and $g : A \rightarrow C$, their tupling is the function $f \lor g$ such that $(f \lor g) a = (f a, g a)$

For instance,

 $(t_{Color} \circ t_{Model}) 2 = (Blue, Chevy),$ $(t_{Year} \circ (t_{Color} \circ t_{Model})) 3 = (1990, (Green, Ford))$

and so on.

For the column-oriented model to work one will need to express *joins*, and these call for *"inverse"* functions, e.g.

 $(t_{Model} \circ t_{Year})^{\circ} (Ford, 1990) = \{3, 4\}$

meaning that tuples nr 3 and nr 4 have the same model (*Ford*) and year (1990).

However, the type $f^{\circ}: A \to \mathcal{P}$ *n* is rather annoying, as it involves **sets** of tuple indices — these will add an extra layer of complexity.

Fortunately, there is a simpler way — **typed linear algebra**, also known as **linear algebra of programming** (LAoP).

The LAoP approach

Represent functions by Boolean matrices:

Given (finite) types A and B, any function $f: A \rightarrow B$

can be represented by a matrix $\llbracket f \rrbracket$ with A-many columns and B-many rows such that, for any $b \in B$ and $a \in A$, the (b, a)-matrix-cell is

 $b \llbracket f \rrbracket a = \begin{cases} 1 \Leftarrow b = f \\ 0 \text{ otherwise} \end{cases}$

NB: Following the **infix** notation usually adopted for relations (which are Boolean matrices) — for instance $y \le x$ — we write $y \ M x$ to denote the contents of the cell in matrix M addressed by row y and column x.

The LAoP approach

・ロト・日本・モート モー うへぐ

One projection function (matrix) per dimension attribute:

t _{Model}	1	2	3	4	5	6					
Chevy	1	1	0	0	0	0					
Ford	0	0	1	1	1	1	#	Model	Year	Color	Sale
t	1	2	3	4	5	6	1	Chevy	1990	Red	5
t _{Year}	1	2	3	4			2	Chevy	1990	Blue	87
1990	1	1	1	1	0	0	3	Ford	1990	Green	64
1991	0	0	0	0	1	1	4	Ford	1990	Blue	99
<i>t</i>	11	2	3	4	5	6	5	Ford	1991	Red	8
t _{Color}	1	2	<u> </u>	4			6	Ford	1991	Blue	7
Blue	0	1	0	1	0	1	Ŭ	roru	1331	Diuc	· ·
Green	0	0	1	0	0	0					
Red	1	0	0	0	1	0					

NB: we tend to abbreviate [f] by f when the context is clear.

The LAoP approach

Note how the inverse of a function is also represented by a Boolean matrix, e.g.

t°_{Model}	Chevy	Ford								
1	1	0								
2	1	0		t _{Model}	1	2	3	4	5	6
3	0	1	versus	Chevy	1	1	0	0	0	0
4	0	1		Ford	0	0	1	1	1	1
5	0	1								
6	0	1								

- no need for powersets.

Clearly,

 $j t_{Model}^{\circ} a = a t_{Model} j$

Given a matrix M, M° is known as the **transposition** of M.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

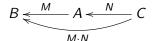
The LAoP approach

We **type** matrices in the same way as functions: $M : A \rightarrow B$ means a matrix M with A-many columns and B-many rows.

Matrices are arrows: $A \xrightarrow{M} B$ denotes a matrix from A (source) to B (target), where A, B are (finite) types.

Writing $B \stackrel{M}{\longleftarrow} A$ means the same as $A \stackrel{M}{\longrightarrow} B$.

Composition — *aka* matrix multiplication:



 $b(M \cdot N)c = \langle \sum a :: (b M a) \times (a N c) \rangle$

The LAoP approach

Function composition implemented by matrix multiplication, $\llbracket f \cdot g \rrbracket = \llbracket f \rrbracket \cdot \llbracket g \rrbracket$

 $\ensuremath{\textbf{ldentity}}$ — the identity matrix $\ensuremath{\textit{id}}$ corresponds to the identity function and is such that

 $M \cdot id = M = id \cdot M$

Function tupling corresponds to the so-called Khatri-Rao product $M \lor N$ defined index-wise by

 $(b,c) (M \lor N) a = (b M a) \times (c N a)$ (2)

Khatri-Rao is a "column-wise" version of the well-known **Kronecker product** $M \otimes N$:

$$(y,x) (M \otimes N) (b,a) = (y M b) \times (x N a)$$
(3)

(1)

The raw data given above is represented in the LAoP by the expression

$$v = (t_{Year} \circ (t_{Color} \circ t_{Model})) \cdot (t^{Sale})^{\circ}$$

of type

$$v: 1 \rightarrow (Year \times (Color \times Model))$$

depicted aside.

v is a **multi-dimensional** column vector — a **tensor**. Datatype $1 = \{ALL\}$ is the so-called **singleton** type.

Year x (Year x (Color x Model)									
	Blue	Chevy	87							
		Ford	99							
1990	Green	Chevy	0							
1990	Green	Ford	64							
	Red	Chevy	5							
	Keu	Ford	0							
	Blue	Chevy	0							
	Diue	Ford	7							
1991	Green	Chevy	0							
1991	Green	Ford	0							
	Red	Chevy	0							
	Keu	Ford	8							

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

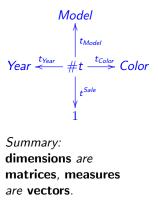
HASLab

Dimensions and measures

Sale is a special kind of data — a **measure**. Measures are encoded as **row** vectors, e.g.

recall

#	Model	Year	Color	Sale
1	Chevy	1990	Red	5
2	Chevy	1990	Blue	87
3	Ford	1990	Green	64
4	Ford	1990	Blue	<i>99</i>
5	Ford	1991	Red	8
6	Ford	1991	Blue	7



Measures provide for integration in Tolstoy's sense — aka consolidation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Totalisers

There is a unique function in type $A \to 1$, usually named $A \xrightarrow{!} 1$. This corresponds to a row vector wholly filled with 1s. Example: $2 \xrightarrow{!} 1 = \begin{bmatrix} 1 & 1 \end{bmatrix}$

Given $M: B \to A$, the expression $! \cdot M$ (where $A \xrightarrow{!} 1$) is the row vector (of type $B \to 1$) that contains all column **totals** of M,

 $\begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 50 & 40 & 85 & 115 \\ 50 & 10 & 85 & 75 \end{bmatrix} = \begin{bmatrix} 100 & 50 & 170 & 190 \end{bmatrix}$

Given type A, define its **totalizer** matrix $A \xrightarrow{\tau_A} A + 1$ by

$$\tau_{A} : A \to A + 1$$

$$\tau_{A} = \left[\frac{id}{!}\right]$$
(5)

Thus $\tau_A \cdot M$ yields a copy of M on top of the corresponding totals.

Data **cubes** are easily obtained from products of totalizers.

Recall the Kronecker (tensor) product $M \otimes N$ of two matrices:

$$\begin{array}{cccc} A & C & A \times C \\ M & N & N & M \otimes N \\ B & D & B \times D \end{array}$$

The matrix

$$A \times B \xrightarrow{\tau_A \otimes \tau_B} (A+1) \times (B+1)$$

provides for totalization on the **two dimensions** A and B.

Indeed, type $(A + 1) \times (B + 1)$ is isomorphic to $A \times B + A + B + 1$, whose four parcels represent the four elements of the "dimension powerset of $\{A, B\}$ ".

References

$\mathsf{Cube} = \mathsf{muti-dimensional} \ \mathsf{totalisation}$

HASLab

Recalling

$$\mathsf{v} = (t_{\mathit{Year}} \circ (t_{\mathit{Color}} \circ t_{\mathit{Model}})) \cdot (t^{\mathit{Sale}})^{\circ}$$

we build

$$\textit{c} = (au_{\textit{Year}} \otimes (au_{\textit{Color}} \otimes au_{\textit{Model}})) \cdot \textit{v}$$

This is the multidimensional vector (tensor) representing the **data cube** for

- dimensions Year, Color, Model
- measure Sale

depicted aside.

(Year+1	1) × ((Co	olor+1) x (Model+1))	ALL
		Chevy	87
	Blue	Ford	99
		ALL	186
		Chevy	0
	Green	Ford	64
		ALL	64
1990		Chevy	5
	Red	Ford	0
		ALL	5
		Chevy	92
	ALL	Ford	163
		ALL	255
		Chevy	0
	Blue	Ford	7
		ALL	7
		Chevy	0
	Green	Ford	0
1991		ALL	0
1991		Chevy	0
	Red	Ford	8
		ALL	8
		Chevy	0
	ALL	Ford	15
		ALL	15
		Chevy	87
	Blue	Ford	106
		ALL	193
		Chevy	0
	Green	Ford	64
ALL		ALL	64
ALL		Chevy	5
	Red	Ford	8
		ALL	13
		Chevy	92
	ALL	Ford	178
		ALL	270

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

HASLab

(6)

Totalisers yield cubes

Thanks to \times -absorption

 $(M \otimes N) \cdot (P \circ Q) = (M \cdot P) \circ (N \cdot Q)$

we can simplify the definition:

$$c = (\tau_{Year} \otimes (\tau_{Color} \otimes \tau_{Model})) \cdot v$$

$$= \{ v = (t_{Year} \lor (t_{Color} \lor t_{Model})) \cdot (t^{Sale})^{\circ} \}$$

$$(\tau_{Year} \otimes (\tau_{Color} \otimes \tau_{Model})) \cdot (t_{Year} \lor (t_{Color} \lor t_{Model})) \cdot (t^{Sale})^{\circ}$$

$$= \{ absorption-law (6) \}$$

$$((\tau_{Year} \cdot t_{Year}) \lor ((\tau_{Color} \cdot t_{Color}) \lor ((\tau_{Model} \cdot t_{Model})))) \cdot (t^{Sale})^{\circ}$$

$$= \{ define t'_{A} = \tau_{A} \cdot t_{A} \}$$

$$(t'_{Year} \lor (t'_{Color} \lor t'_{Model})) \cdot (t^{Sale})^{\circ}$$

Note that $t'_A = \begin{bmatrix} \frac{t_A}{!} \end{bmatrix}$, since t_A is a function.

Generalizing data cubes

In our approach a **cube** is not necessarily one such column vector.

The key to **generic** data cubes is (generalized) **vectorization**, a kind of "**matrix currying**": given $A \times B \xrightarrow{M} C$ with $A \times B$ -many columns and C-many rows, reshape M into its **vectorized** version $B \xrightarrow{\text{vec}_A M} A \times C$ with B-many columns and $A \times C$ -many rows.

Such matrices, M and $\mathbf{vec}_A M$, are **isomorphic** in the sense that they contain the same information in different formats, cf

 $c M (a, b) = (a, c) (\operatorname{vec}_A M) b$ (7)

which holds for every *a*, *b*, *c*.

Generalizing data cubes

Vectorization thus has an inverse operation — unvectorization:

That is, M can be retrieved back from $\operatorname{vec}_A M$ by unvectorizing it:

$$N = \operatorname{vec}_A M \quad \Leftrightarrow \quad \operatorname{unvec}_A N = M \tag{8}$$

Vectorization has a rich algebra, e.g. a fusion-law

 $(\mathbf{vec}\,M)\cdot N = \mathbf{vec}\,(M\cdot(id\otimes N)) \tag{9}$

and an absorption-law:

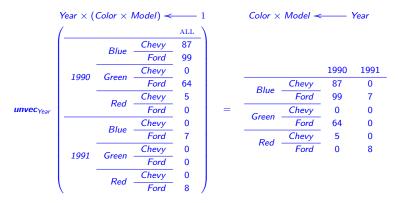
$$\mathbf{vec}(M \cdot N) = (id \otimes M) \cdot \mathbf{vec} N \tag{10}$$

(日)、

(Un)vectorization

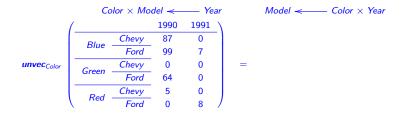
э

Let us unvectorize our starting (data) tensor, across dimension *Year*:



There is room for further unvectorizing the outcome, this time across *Color* — next slide:

Further unvectorization:



	BI	ue	Gr	een	Red		
	1990	1991	1990	1991	1990	1991	
Chevy	87	0	0	0	5	0	
Ford	99	7	64	0	0	8	

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

and so on.

It turns out **that** cubes can be calculated for any such two-dimensional versions of our original data tensor, for instance,

> **cube** N: $Model + 1 \leftarrow (Color + 1) \times (Year + 1)$ **cube** $N = \tau_{Model} \cdot N \cdot (\tau_{Color} \otimes \tau_{Year})^{\circ}$

where N stands for the second matrix of the previous slide, yielding

	Blue			Green			Red			ALL		
	1990	1991	ALL	1990	1991	ALL	1990	1991	ALL	1990	1991	ALL
Chevy	87	0	87	0	0	0	5	0	5	92	0	92
Ford	99	7	106	64	0	64	0	8	8	163	15	178
ALL	186	7	193	64	0	64	5	8	13	255	15	270

The 36 entries of the original cube have been rearranged in a 3*12 rectangular layout, as dictated by the **dimension** cardinalities.

The **cube** (LA) operator

Definition (Cube) Let *M* be a matrix of type

$$\prod_{j=1}^{n} B_j \stackrel{M}{\longleftarrow} \prod_{i=1}^{m} A_i \tag{11}$$

We define matrix **cube** M, the cube of M, as follows

cube
$$M = (\bigotimes_{j=1}^{n} \tau_{B_j}) \cdot M \cdot (\bigotimes_{i=1}^{m} \tau_{A_i})^{\circ}$$
 (12)

where \bigotimes is finite Kronecker product.

So **cube** *M* has type $\prod_{j=1}^{n} (B_j + 1) \leftarrow \prod_{i=1}^{m} (A_i + 1)$.

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Linear algebra

Cube

Properties

Properties of data cubing

Linearity:

$$cube (M + N) = cube M + cube N$$
(13)

Proof: Immediate by bilinearity of matrix composition:

$$M \cdot (N+P) = M \cdot N + M \cdot P$$
(14)
(N+P) \cdot M = N \cdot M + P \cdot M (15)

This can be taken advantage of not only in **incremental** data cube construction but also in **parallelizing** data cube generation.

Properties of data cubing

Updatability: by Khatri-Rao product linearity,

 $(M+N) \circ P = M \circ P + N \circ P$ $P \circ (M+N) = P \circ M + P \circ N$

the **cube** operator commutes with the usual CRUDE operations, namely with record **updating**. For instance, suppose record

	#	Model	Year	Color	Sale		t _{Model}	1		3	4	5	6
	5	Ford	1991	Red	8	cf	Chevy	1	1	0	0		0
							Ford	0	0	1	1	1	1
is up	date	ed to											
	#	Model	Year	Color	Sale		t' _{Model}	1	2	3	4	5	6
	7 5					cf	Chevy	1	1	0	0	1	0
	э	Chevy	1991	Red	8		Ford	0	0	1	1	0	1

Linear algebra

Cube

Properties of data cubing

 $f_X >> |$

× ₹ → □ C... >> kron(tau¥ One just has to compute the "delta" projection, ans = $\delta_{Model} = t'_{Model} - t_{Model} = \begin{tabular}{c|c} 1 & 2 & 3 & 4 & 5 \ \hline Chevy & 0 & 0 & 0 & 0 & 1 \ Ford & 0 & 0 & 0 & 0 & -1 \ \hline Ford & 0 & 0 & 0 & 0 & -1 \ \hline \end{array}$ 0 then the "delta cube". $d = (\tau_{\text{Year}} \otimes (\tau_{\text{Color}} \otimes \tau_{\text{Model}})) \cdot v'$ where $v' = (t_{Year} \circ (t_{Color} \circ \delta_{Model})) \cdot (t^{Sale})^{\circ}$ 0 8 -8 and finally **add** the "delta cube" to the original cube: c' = c + d. 808-808

— see the simulation aside (MATLab).

HASLab

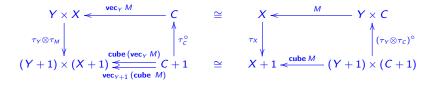
Properties of data cubing

Theorem (Cube commutes with vectorization) Let $X \stackrel{M}{\leftarrow} Y \times C$ and $Y \times X \stackrel{\text{vec } M}{\leftarrow} C$ be its *Y*-vectorization. Then

$$\mathbf{vec} (\mathbf{cube} \ M) = \mathbf{cube} \ (\mathbf{vec} \ M) \tag{16}$$

holds.

The proof (in the paper) relies on the type diagrams:



Properties of data cubing

HASLab

The following theorem shows that changing the dimensions of a data cube does not change its totals.

Theorem (Free theorem)

Let $B \stackrel{M}{\leftarrow} A$ be cubed into $B + 1 \stackrel{\text{cube } M}{\leftarrow} A + 1$, and $r : C \rightarrow A$ and $s : D \rightarrow B$ be arbitrary functions. Then

 $\begin{array}{ll} \mathbf{cube} \ (s^{\circ} \cdot M \cdot r) &=& (s^{\circ} \oplus id) \cdot (\mathbf{cube} \ M) \cdot (r \oplus id) & (17) \\ \ holds, \ where \ M \oplus N = \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} \ is \ matrix \ \mathbf{direct \ sum}. \end{array}$

The proof given in the paper resorts to the **free theorem** of polymorphic operators popularized by Wadler (1989) under the heading *Theorems for free!*.

Cube universality — slicing

Slicing is a specialized filter for a particular value in a dimension.

Suppose that from our starting cube

 $c: 1 \rightarrow (Year + 1) \times ((Color + 1) \times (Model + 1))$

one is only interested in the data concerning year 1991.

It suffices to regard data values as (categorial) **points**: given $p \in A$, constant function $\underline{p}: 1 \to A$ is said to be a *point* of A, for instance

$$\underline{1991}: 1 \rightarrow Year + 1$$
$$\underline{1991} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Linear algebra

Cube

Properties

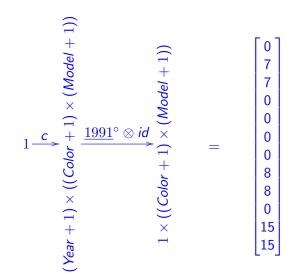
<ロト <回ト < 注ト < 注ト

HASLab

æ

Cube universality — slicing

Example:



Cube universality — rolling-up

Gray et al. (1997) say that going up the levels [of aggregated data] is called rolling-up.

In this sense, a **roll-up** operation over dimensions A, B and C could be the following form of (increasing) summarization:

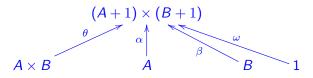
```
A \times (B \times C)A \times BA1
```

How does this work over a data cube? We take the simpler case of two dimensions A, B as example.

Cube universality — rolling-up

HASLab

The dimension powerset for *A*, *B* is captured by the corresponding matrix **injections** onto the cube target type $(A + 1) \times (B + 1)$:



where

$$\begin{aligned} \theta &= i_1 \otimes i_1 \\ \alpha &= i_1 \lor i_2 \cdot ! \\ \beta &= i_1 \cdot ! \lor i_2 \\ \omega &= i_2 \lor i_2 \end{aligned}$$

NB: the injections i_1 and i_2 are such that $[i_1|i_2] = id$, where [M|N] denotes the horizonal gluing of two matrices.

Properties

HASLab

One can build compound injections, for instance

 $\rho: (A+1) \times (B+1) \leftarrow A \times B + (A+1)$ $\rho = [\theta | [\alpha | \omega]]$

Then, for $M : C \rightarrow A \times B$:

$$\rho^{\circ} \cdot (\mathbf{cube} \ M) = \left[\frac{M}{\left[\frac{fst \cdot M}{1 \cdot M}\right]}\right] \cdot \tau_{C}^{\circ}$$

extracts from **cube** *M* the corresponding **roll-up**.

The next slides give a concrete example.

Let M be the (generalized) data cube

	1990	1991	ALL
Chevy	87	0	87
Blue Ford	99	7	106
ALL	186	7	193
Chevy	0	0	0
Green Ford	64	0	64
ALL	64	0	64
Chevy	5	0	5
Red Ford	0	8	8
ALL	5	8	13
Chevy	92	0	92
ALL Ford	163	15	178
ALL	255	15	270

Cube universality — rolling-up

Building the injection matrix $\rho = [\theta | [\alpha | \omega]]$ for types $Color \times Model + Color + 1 \rightarrow (Color + 1) \times (Model + 1)$ we get the following matrix (already transposed):

			Blue		0	Green			Red			ALL	
		Chevy	Ford	ALL	Chevy	Ford	ALL	Chevy	Ford	ALL	Chevy	Ford	ALL
Blue	Chevy	1	0	0	0	0	0	0	0	0	0	0	0
Diue	Ford	0	1	0	0	0	0	0	0	0	0	0	0
Green	Chevy	0	0	0	1	0	0	0	0	0	0	0	0
Green	Ford	0	0	0	0	1	0	0	0	0	0	0	0
Red	Chevy	0	0	0	0	0	0	1	0	0	0	0	0
Rea	Ford	0	0	0	0	0	0	0	1	0	0	0	0
	Blue	0	0	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	1	0	0	0	0	0	0
	Red	0	0	0	0	0	0	0	0	1	0	0	0
	ALL	0	0	0	0	0	0	0	0	0	0	0	1

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Cube universality — rolling-up

Then

			1990	1991	ALL
	Blue	Chevy	87	0	87
	Diue	Ford	99	7	106
	Green	Chevy	0	0	0
	Green	Ford	64	0	64
$\rho^{\circ} \cdot \mathbf{cube} \ M =$	Red	Chevy	5	0	5
	Neu	Ford	0	8	8
		Blue	186	7	193
		Green	64	0	64
		Red	5	8	13
		ALL	255	15	270

Note how a roll-up is a particular "subset" of a cube.

Matrix ρ° performs the (quantitative) selection of such a subset.

Properties

Summing up

Data science seems to be ignoring the role of **types** and **type parametricity** in software — one of the most significant advances in CS.

Nice theory called **parametric polymorphism** (John Reynolds, CMU).

So nice that you can derive **properties** of your operations **solely** by looking at their **types**

As Kurt Lewin (1890-1947) once write it: *"There is nothing more practical than a good theory"*.

J.C. Reynolds (1935-2013)

Summing up

Abadir and Magnus (2005) stress on the need for a **standardized** notation for **linear algebra** in the field of econometrics and **statistics**.

This talk suggests such a notation should be **polymorphically typed**.

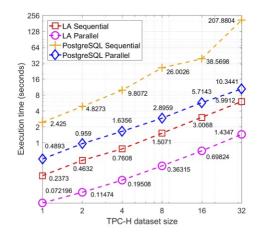
Since (Macedo and Oliveira, 2013) the author has invested in **typing** linear algebra in a way that makes it closer to modern **typed** languages.

This extends previous efforts on applying LA to **OLAP** (Macedo and Oliveira, 2015)

(Still not convinced? Peek the next slide.)

(For those who care mostly about efficiency)

Aside: Plot taken from a recent MSc report on TPC-H benchmarking LA approach to analytical querying (on-going work).



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Motivation	Linear algebra	Cube	Properties	References
				HASLab

References

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

K.M. Abadir and J.R. Magnus. *Matrix algebra. Econometric exercises 1.* C.U.P., 2005.

- J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. J. Data Mining and Knowledge Discovery, 1(1):29-53, 1997. URL citeseer.nj.nec.com/article/gray95data.html.
- H.D. Macedo and J.N. Oliveira. Typing linear algebra: A biproduct-oriented approach. SCP, 78(11):2160–2191, 2013.
- H.D. Macedo and J.N. Oliveira. A linear algebra approach to OLAP. *FAoC*, 27(2):283–307, 2015.
- J. N. Oliveira and H. D. Macedo. The data cube as a typed linear algebra operator. In *Proc. of the 16th Int. Symposium on Database Programming Languages*, DBPL '17, pages 6:1–6:11, New York, NY, USA, 2017. ACM.
- P.L. Wadler. Theorems for free! In 4th International Symposium on Functional Programming Languages and Computer Architecture, pages 347–359, London, Sep. 1989. ACM.