
Instituto de Engenharia de Sistemas e Computadores

Departamento de Informática da U.Minho
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Abstract

This report describes the process of using the SETS calculus to formally derive the hash table implementation
of a finite collection of data.

This exercise is a suggestive illustration about handling so-called “ad hoc” data type invariants, that is, invari-
ants not implied by the reification process which are enforced into an implementation to obtain extra advantages
(typically, efficiency).

The report shows, in a formal way, that hash tables are an instance of a class of implementation where concern
for efficiency precedes that of data representativeness. The reasoning carried out in the report provides a final
generalization of the “hashing construction”.
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1 Introduction
The purpose of this report is to describe the process of “calculating” the hash table [Wir76, HS19] implementation
of an abstract database, as an example of handling so-called “ad hoc” data type invariants in the SETS calculus
[Oli90, Oli92]. For economy of presentation, acquaintance with these references is assumed and only a synopsis
of SETS is presented.

This work is part of a research plan aimed at building a “reification cook-book”, i.e. a repository of (re-usable)
standard software solutions taken from the literature but formally analysed, classified and justified by using the
SETS calculus, eventually available in machine readable form.

1.1 Hashing
Hash tables are well known data structures [Wir76, HS19] whose purpose is to efficiently combine the advantages
of both static and dynamic storage of data. Static structures such as arrays provide random access to data but have
the disadvantage of filling too much primary storage. Dynamic, pointer-based structures (e.g. search lists, search
trees etc.) are more versatile with respect to storage requirements but access to data is not as immediate.

The idea of hashing is suggested by the informal meaning of the term itself: a large database is “hashed” into
as many “pieces” as possible, each of which is randomly accessed. Since each sub-database is smaller than the
original, the time spent on accessing data is shortened by some order of magnitude. Random access is normally
achieved by a so-called hash function,

H : Date −→ Location

which computes, for each data item, its location in the hash table. Standard terminology regards as synonyms all
data competing for the same location. A set of synonyms is called a bucket.

There are several ways in which data collision is handled, e.g. linear probing [Wir76] or overflow handling
[HS19]. In this report we will only address the latter.

2 A Synopsis of SETS
This section summarizes the SETS notation for constructive set-theory-based data-type specification, adopted in
this report. SETS should not be regarded as a competitor to META-IV [Jon86] or Z [Spi89], but rather as a
framework to write and reason about specifications in a simple, “pure” mathematical notation, the one arising from
the constructs of the (cartesian closed) category of sets — product (A × B), exponentiation (AB) and co-product
(A+B) [Oli90].

2.1 The Notation
Product and exponentiation are defined in the usual manner,

A×B def
= {〈a, b〉 | a ∈ A ∧ b ∈ B}

AB
def
= {f | f : B → A}

Co-product (disjoint union) is handled explicitly by using integer tags, i.e.

A+B = ({1} ×A) ∪ ({2} ×B)

= {〈1, a〉 | a ∈ A} ∪ {〈2, b〉 | b ∈ B}

instead of using is-A or is-B predicates hiding such tags 1. Table 1 presents an analogy between conventional
programming language data-structuring notation and SETS basic constructs’ notation.

On top of product, co-product and exponentiation, in SETS one can build data models using the following
derived constructs:

• subsets of a finite set A (cf. set of A in VDM):
2A

1As in the VDM style notation [Jon80], for instance.
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Table 1: SETS versus Programming Language Data-structuring Notation.
SETS PASCAL C/C++ Descrição informal

A×B
record

P: A;
S: B

end;

struct {
A first;
B second;

};
’Records’

A+B

record
case
tag: integer

of x =
1: (P:A);
2: (S:B)

end;

struct {
int tag; /* 1,2 */
union {

A ifA;
B ifB;

} data;
};

’Records’ variantes

BA array[A] of B B ...[A] ’Arrays’
1 +A ˆA A *... ’Pointers’

• binary relations over finite sets A and B (cf. set of (A×B) in VDM):

2A×B

• partial maps from finite A to B (cf. map A to B in VDM):

A ⇀ B =
⋃
K⊆A

BK

• finite sequences on a set A (cf. seq of A in VDM):

A∗ =
⋃
n≥0

An

where each exponent n denotes the initial segment of IN whose cardinality is n. For simplicity, we will write
n instead of n, and therefore 0 instead of the empty set ∅ 2.

• union types 3 (cf. [A] in VDM):
A+ 1

where 1 stands for any singleton set.

In order to save SETS-expressions from too many parenteses, the following operator priorities are assumed:

∗

×
⇀
+

For instance, expression
X ⇀ A2 ×B∗+ C

2In SETS all sets with the same cardinality are isomorphic and therefore indistinguishable from a specification point of view. Initial segments
of IN provide an abstract mechanism for specifying enumerated types, which retains their cardinality only. For instance, instead of enumerating

Weekday = {Sunday,Monday, Tuesday,Wednsday, Thursday, Friday, Saturday}

one simply writes
Weekday ∼= 7

(note the isomorphism sign ∼=) or even
Weekday ∼= 7

Particularly common enumerated data types are 0 (the empty set), 1 (any singleton set) and 2 (the Booleans). Should the specification style
become too terse, the specifier may adopt “cannonical” standards among each cardinality class, e.g. 2 = {TRUE,FALSE} and 1 = {NIL}
(NIL is a particular good choice concerning union types and the analogy of table 1).

3Or “pointers”, see analogy of table 1 below.
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will abbreviate
(X ⇀ ((A2)× (B∗))) + C

etc.
Properties of these constructs are listed in the appendices. A last (“meta”) construct is recursive definition,

X ∼= F(X)

whereX is the name of a data sort and F is a SETS-expression (“functor”) involving the above primitive or derived
constructs 4.

Recursive definitions are a powerful mechanism for specifying arbitrarily elaborate data structures. For exam-
ple, the following concrete syntax in C for fairly unsophisticated decision trees where decisions are modelled by
tree nodes with no answers,

typedef struct decTree{
char *What; /* Question or Decision */
subTrees *R;
} ;

typedef struct subTrees {
node *first;
struct subTrees *next;
} ;

typedef struct node {
char *Answer;
decTree *SubTree;
} ;

could have been specified in the SETS notation simply as follows:

DecTree ∼= What× (Answer ⇀ DecTree)

that is, DecTree ∼= F(DecTree) for

F(X) ∼= What× (Answer ⇀ X)

A more direct illustration is the following C syntax fragment for genealogical diagrams (the “pedigree view” of
family relationship):

typedef struct GenDia {
Ind individual; /* data about an individual */
struct GenDia *father; /* genealogy of his/her father

(if known) */
struct GenDia *mother; /* genealogy of his/her mother

(if known) */
} ;

which — on the basis of the analogy of table 1 — is easily “reversed” into SETS notation as follows,

GenDia ∼= Ind× (GenDia+ 1)× (GenDia+ 1)

and even shortened to 5

GenDia ∼= Ind× (GenDia+ 1)2

In the opposite direction, table 1 can also be used for coding purposes. Consider, for instance, the following
SETS specification of a linked list of objects A,

L ∼= 1 +Node

Node ∼= A× L
4Not every F can participate in the definition of a recursive data domain. See [Oli90] for a discussion on this topic.
5See section 2.2.
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Table 2: Sets vs Model Specification.
Sets VDM [Jon80] Z [Spi89] ME-TOO [Hen84] Description
A × B A B A × B tup(A,B) Tuples
A + B A | B Unions
A + 1 [ A ] Omissions
BA “Arrays”
2A A-set P A set(A) Finite sets
A ⇀ B A

m→ B A 6→ B ff(A,B) Mappings
A∗ A-list seq A seq(A) Finite lists

that is, the following “linear equation”:

L ∼= 1 +A× L

From table 1 one draws that, in the C programming language, every x ∈ L will be declared as

Node *x;

since L = 1 +Node. Thus a datatype definition is required for Node, which is immediate from table 1 again:

typedef struct Node {
A first;
struct Node *next;
} ;

Table 2 presents a comparison between SETS and other model-oriented specification notations. Based on the
above notation for specifying data domain, SETS adopts a notation for specifying operations on such domains (i.e.
recursive functions) which is classical in mathematics, e.g.

x! =

{
x = 0 ⇒ 1
¬(x = 0) ⇒ x× (x− 1)!

instead of usual if-then-else notation, e.g.

x! = if x = 0
then 1
else x× (x− 1)!

In general, conditional expressions such as

if p(x) then g(x) else h(x)

are written thus: {
p(x) ⇒ g(x)
¬p(x) ⇒ h(x)

Partial expressions are special cases of conditional expressions,{
p(x) ⇒ g(x)

meaning {
p(x) ⇒ g(x)
¬p(x) ⇒ ⊥

i.e., p(x) is a pre-condition for the computation of g(x).
SETS’s kernel functional notation includes all set-theoretical operators typical of constructive specification

languages (such as e.g. VDM [Jon86] or Z [Spi89]) dealing with lists (A∗), sets (2A), mappings (A ⇀ B) and so
on. Finite mappings are enumerated by writing e.g.(

1 2 3
a b c

)
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instead of (cf. VDM)
[1 7→ a, 2 7→ b, 3 7→ c]

or
{1 7→ a, 2 7→ b, 3 7→ c}.

2.2 The Calculus
SETS [Oli90, Oli92] is an (inequational) calculus of (functional) abstraction invariants. Each law of Set is an
inequation of the form

A�
φ
f B (1)

meaning:

• there is an abstraction surjection f from B to A;

• whereverf is a partial function, φ is the characteristic predicate defining its domain — the so-called con-
crete invariant induced in B;

• in the terminology of [MG90], equation (1) states that the following abstraction invariant holds between the
abstract variables a ∈ A and the concrete variables b ∈ B:

(a = f(b)) ∧ φ(b)

As in [Oli90, Oli92],
A �f B (2)

is accepted as a shorthand of (1) wherever f is a total function, that is, φ(b) = TRUE.
It can be shown that � is a pre-ordering on SETS data structures and that set-theoretical isomorphism is the

symmetric closure of �:

A�f B ∧B �f−1 A ⇒ A ∼= B

for f a bijection (again φ = λb.TRUE may be omitted).
The transitivity of � means that one can chain �-steps and synthesize overall abstraction maps and invariants.

For a chain of n �-steps,

�i

{
fi
φi

the overall abstraction map and invariant are given by:

�

{
f

def
= ©n

i=1fi

φ
def
= λx.

∧1
i=n φi((©n

j=i+1fj)(x))

cf. [Oli92].
The appendices contain a reasonably comprehensive account of the SETS calculus, organized as follows:

• the equational (∼=) sub-calculus, chiefly involving primitive constructs, is presented first, in appendix A;

• the inequational sub-calculus, chiefly involving derived constructs, follows in appendix B; shorthand (2) will
indicate laws which do not induce concrete invariants;

• in many reasoning situations, both f and φ in (1) can be left out until explicitly demanded by algorithm
synthesis [Oli92]; all laws used along the report are provided with the relevant abstraction map f and invari-
ant φ, listed respectively in appendix C.2 and appendix C.3 6. Equation numbers are used consistently in
the identification of such functions and predicates: f(n) and φ(n) are respectively the abstraction map and
invariant associated with law (n).

6Other less obvious fs and φs are also given in this appendix, which is a subset of a similar appendix in [Oli91].
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3 Handling ‘Ad Hoc’ Invariants in the SETS Calculus
The process of data refinement normally entails the introduction of datatype invariants required for the implemen-
tation to be faithful to the specification. As described above, the SETS calculus is based on a so-called redundancy
ordering which guarantees data representation whilst saving as many datatype invariants as technically possible.

This strategy has the advantage of preventing from implementations “stronger” than necessary, but ignores
other aspects of data refinement which are relevant in practice, namely,

• the proper starting specification of a design normally involves datatypes affected by ‘ad hoc’ invariants 7

which formalize real-life conventions, rules, norms or natural constraints. For instance, even a primitive
datatype such as Date,

Date ∼= 31× 12× IN
requires a nontrivial ‘ad hoc’ invariant:

dateOk : Date −→ 2

dateOk(d,m, a)
def
=



m ∈ {1, 3, 5, 7, 8, 10, 12} ⇒ d ≤ 31 ∧
(¬(a = 1582 ∧m = 10)
∨(d < 5) ∨ (14 < d))

m ∈ {4, 6, 9, 11} ⇒ d ≤ 30
m = 2 ∧ leapY ear(a) ⇒ d ≤ 29
m = 2 ∧ ¬leapY ear(a) ⇒ d ≤ 28

(3)

where
leapY ear : IN −→ 2

leapY ear(a)
def
= rem(a,

{
1700 ≤ a ∧ rem(a, 100) = 0 ⇒ 400
1700 > a ∨ rem(a, 100) 6= 0 ⇒ 4

) = 0

This invariant is a good illustration of the ad hoc character of most constraints formally imposed to speci-
fications. It arises from a natural, cosmological fact — the number of days of the year is a real number —
and from several historical attempts to devise a norm able to finitely approximate such a number 8.

• some rules of SETS are “context-sensitive” in the sense that they can be applied to a datatype only if this is
affected by some invariant [Oli90];

• ‘ad hoc’ invariants may be introduced throughout refinement which have not to do with representation faith-
fulness (representativeness), but rather with other facets of refinement such as e.g. seeking efficiency.

For instance, a basic reification fact in SETS is (70), for A a finite set, meaning that finite lists implement
finite sets. However, for efficiency we may be interested in implementing 2A by lists inA∗which are ordered
by some total order on A, which is irrelevant wrt. the abstraction function elems (81).

How can such informal design constraints be tackled in the SETS’s calculus? In general, for A,B two finite
sets such that A�f B, it may be the case that

A�f |φ Bφ

holds, where φ : B −→ 2 is an invariant on B defining the subset Bφ = {b ∈ B | φ(b)} and f |φ means the
restiction of f to Bφ:

f |φ : Bφ −→ A

b ; f(b)

φ can be as strong as we wish provided that the cardinality of Bφ is greater or equal to the cardinality of A, since
f |φ should still be surjective. In the “limit” one has:

A ∼= Bφ (4)

Such is the case of

2A ∼=elems|linear (A∗)linear (5)

7The term “ad hoc” (as opposed to “formal”) will be made precise in the sequel.
8The situation is actually more complicated, for the 1582 discontinuity (10 days omitted in October of that year) of the Gregorian calendar

was adopted much later in a few countries — e.g. Poland (1586), Hungary (1587), Germany (1700), England (1752) etc. [Gof84].
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Table 3: Summary of Functorial Calculus.
FX F f Fφ

X f φ

C 1C λc.TRUE

2X 2f = λs.{f x | x ∈ s} 2φ = λs.∀b ∈ s : φ b

X∗ f∗ = λl.[f x | x← l ] φ∗ = λl.∀1 ≤ i ≤ length l : φ(l i)

XC
fC = λσ.f ◦ σ

= λσ.

(
c

f(σ c)

)
c∈C

φC = λσ.∀c ∈ C : φ(σ c)

C ⇀ X

C ⇀ f = λσ.f ◦ σ

= λσ.

(
c

f(σ c)

)
c∈domσ

C ⇀ φ = λσ.∀x ∈ rng σ : φx

GX × HX G f × H f λ(x, y).(Gφ)x ∧ (Hφ)y

GX + HX G f + H f λx.

{
x = i1 a ⇒ (Gφ)a
x = i2 b ⇒ (Hφ)b

GX + 1 λx.

{
x = i2 NIL ⇒ x
x = i1 a ⇒ i1〈(G f)a〉 λx.

{
x = i2 NIL ⇒ TRUE
x = i1 a ⇒ (Gφ)a

where linear forces every sequence s ∈ A∗ to be strictly ordered by a given linear order < ∈ A×A:

linear(s)
def
= ∀1 ≤ i < j ≤ length(s) : s(i) < s(j)

We recall from [Oli92] that, following [MA86], datatype constructors in the SETS calculus are regarded as co-
continuous (endo)functors in the SETS category of finite sets. A result central to the calculus is then a functorial
approach to the calculation of abstraction invariants expressed by the following theorem:

Theorem 1 Let F be a polynomial (endo)functor in SETS. If

A�
φ
f B (6)

then
F(A) �

F(φ)
F(f) F(B) (7)

Proof: See [Oli92]. 2

This theorem provides an elegant strategy for computing complex abstraction invariants throughout reification.
Although F(X) = 2X is not polynomial [MA86], (7) still holds for this functor, for finite A and B [Jou92]. Table
3 presents a summary of this “functorial calculus” for the most common SETS constructs.

The aim of this report is to consider the impact of ‘ad hoc’ invariants on these results. First of all, we need to
decorate every data domain A with its invariant φ,

Aφ

because the invariant which affects A at some stage in refinement may now be stronger than the one entailed by
the application of the involved �-rules. In fact, extra ad hoc invariants may have been arbitrarily introduced by the
implementor. Subscript φ in Aφ will be omitted only if it is the “everywhere TRUE” predicate λa.TRUE.

Jourdan’s work on the foundations of SETS [Jou92] puts forward the following rule for “pushing” an arbitrary
invariant α downto lower refinement levels: should (1) hold, then

Aα �
φ
f Bφ∧α◦f

holds, where φ ∧ α ◦ f is a shorthand of predicate λb.φ(b) ∧ α(f(b)).
Putting everything together, we state the following theorems concerning arbitrary datatype invariant handling:

Theorem 2 Let A�f B hold and φ : B −→ 2 be a predicate such that the restriction of f by φ,

f |φ : Bφ −→ A

is still a surjection. Then
A�f |φ Bφ

Proof: Obvious, from the definition of the �-order [Oli90]. 2
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Theorem 3 If A�
φ
f Bφ holds and α : A −→ 2 is an invariant on A, then α is “pushed” into B as follows:

Aα �
φ
f Bφ∧α◦f

Proof: See [Jou92]. 2

Finally, the following theorem will help in reasoning about subscripted data domains.

Theorem 4 For F a polynomial (endo)functor in SETS or the powerset functor, A a finite set and φ : A −→ 2 an
invariant on A, one has

F(Aφ) ∼= F(A)F(φ)

Proof: Concerning products we have:

Aφ ×Bϕ = {〈a, b〉 | a ∈ Aφ ∧ b ∈ Bϕ}
= {〈a, b〉 | a ∈ A ∧ b ∈ B ∧ φ(a) ∧ ϕ(b)}
= {〈a, b〉 | 〈a, b〉 ∈ A×B ∧ (φ× ϕ)(a, b)}
= (A×B)φ×ϕ

Concerning co-products we have:

Aφ +Bϕ = {〈1, a〉 | a ∈ A ∧ φ(a)} ∪ {〈2, b〉 | b ∈ B ∧ φ(b)}
= {x | x = 〈1, a〉 ∧ a ∈ A ∧ φ(a) ∨ x = 〈2, b〉 ∧ b ∈ B ∧ φ(b)}

= {x |
{

x = 〈1, a〉 ∧ a ∈ A ⇒ φ(a)
x = 〈2, b〉 ∧ b ∈ B ⇒ φ(b)

}

= (A+B)φ+ϕ

Concerning finite exponentiation we have:

(Aφ)C = {f : C → A | ∀c ∈ C : φ(f(a))}
= {f : C → A | φC(f)}
= (AC)φC

Finaly, concerning powersets we have:

2Aφ = {S | S ⊆ Aφ}
= {S ⊆ A | ∀a ∈ S : φ(a)}
= (2A)2φ

2

On the functionality side, we have the following theorem guaranteeing that if an operation preserves an ad hoc
invariant then any of its valid implementations will preserve the same invariant too, at low level.

Theorem 5 Let σ : A → A be the specification of a function transforming data of sort A while preserving some
ad hoc invariant α on A, that is 9,

∀a ∈ A : α(a)⇒ α(σ(a)) (8)

Then the reification σ′ of σ implied by reification step (1),

Bφ

A A

-
σ′

-σ

6

f

A

Bφ

6

f

9This theorem is stated for unary σ with no loss in generality: the result will be valid still for any extension of the arity of σ:

σ : . . .×A× . . .→ A

11



will still preserve α at B-level.
Proof: σ′ is any function satisfying

∀b ∈ Bφ : f(σ′(b)) = σ(f(b)) (9)

σ′ will preserve α at B-level iff
∀b ∈ Bφ : α(f(b))⇒ α(f(σ′(b)))

By contradiction, α will not be preserved if

∃b ∈ Bφ : α(f(b)) ∧ ¬α(f(σ′(b)))

that is,
∃b ∈ Bφ : α(f(b)) ∧ ¬α(σ(f(b)))

via (9). Because f is surjective, f(b) = a for some a ∈ A. Thus we will have

∃a ∈ A : α(a) ∧ ¬α(σ(a))

thus contradicting our hypothesis (8). 2

4 From a Simple Abstract Database Model to a Hash Table
Let A be an unbounded but finite domain of data which we want to record and maintain in a database file. We will
regard

Database ∼= 2A (10)

as a convenient (however very primitive!) model for the database itself 10. That is, our notion of an abstract
database “re-uses” the algebra of finite sets:

initialDb : −→ Database

initialDb
def
= ∅

insert : A×Database −→ Database

insert(a, σ)
def
= σ ∪ {a}

find : A×Database −→ 2

find(a, σ)
def
= (a ∈ σ) (11)

remove : A×Database −→ Database

remove(a, σ)
def
= σ − {a}

We start by calculating the hash-table implementation of (10). Then we will proceed to the deduction of the
corresponding operators above.

4.1 Data-level Calculation
Let n ∈ IN be the number of entries of our intended hash table, and

H : A −→ n

be the selected hash function. Recall from section 2.1 the use of n to denote the initial segment of IN of size n,
that is the set {1, 2, . . . , n}. Usually, n is much smaller than the cardinal of A, that is, H is clearly non-injective.

Our target is to use �-reasoning in order to convert

2A � . . .

10See section 5 for a standard elaboration of this model.
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into something we can identify as an acceptable model of a hash table. Our reasoning starts from the basic result
(69), expressing the fact that a data domain can always be refined by adding extra information to it. From an
instance of fact (69),

A�π2
n×A (12)

we proceed by imposing the following ad hoc invariant on n×A:

φ(i, a)
def
= i = H(a) (13)

forcing every datum a ∈ A to be coupled with its hash-index H(a). Since the restriction of π2 to (n × A)φ is
surjective on A, that is,

π2[{(i, a) ∈ n×A | i = H(a)}] = A

we have
A�π2|φ (n×A)φ (14)

by theorem 2. By applying the powerset functor λX.2X to (14) we obtain (cf. table 3 above)

2A �f1
(2n×A)Φ1 (15)

where
Φ1 = 2φ

= λs.(∀x ∈ s : φ(x))
= λs.(∀(i, a) ∈ s : i = H(a))

and
f1 = 2(π2|φ)

= λs.{π2(x) | x ∈ s}
= λs.{a ∈ A | (i, a) ∈ s}

We now resort to the “currying” law of exponentiation, (56), established by the uncurry bijection (89). For A = 2
we obtain the following version of uncurry,

uncurry(t)
def
= {〈b, c〉 | b ∈ B ∧ c ∈ t(b)}

The instance of (56) which interests us is — cf. the righthand side of (15) —

2n×A ∼= (2A)n (16)

By handling datatype invariants according to theorem 3 we obtain

(2n×A)Φ1
∼=f2

((2A)n)Φ2
(17)

where
f2 = λt.uncurry(t)

= λt.{〈i, a〉 | i ∈ n ∧ a ∈ t(i)}
and

Φ2 = Φ1 ◦ uncurry
= λt.Φ1({(i, a) | i ∈ n ∧ a ∈ t(i)})
= λt.∀i ∈ n : (∀a ∈ t(i) : i = H(a)) (18)

It is easy to show that ((2A)n)Φ2
above — i.e. the “array” structure (n→ 2A)Φ2

— is in fact a model of hash
tables. According to Φ2 (18), every set in the range of such “arrays” contains synonyms [HS19]. All such sets are
mutually disjoint, cf. the following lemma:

Lemma 1 For every hash table t ∈ (n→ 2A)Φ2
we have

∀i 6= j ∈ n : t(i) ∩ t(j) = ∅

Proof: By contradition, suppose that, for particular i 6= j and a ∈ A, we have

a ∈ t(i) ∧ a ∈ t(j)

Then, by Φ2 (18) one has
i = H(a) ∧ j = H(a)

that is, i = j thus contradicting the starting assumption i 6= j. 2
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Therefore, every db ∈ 2A is partitioned into n-many, disjoint “collision segments”, each one addressed by the
relevant hash index computed by H 11. We have thus achieved the intended “hashing effect”. However, the task
of reifying 2A “recurs” in the co-domain of n → 2A, a problem identified in the literature under the headings
overflow handling or collision handling [HS19].

4.1.1 Collision Handling

Let us see how instructive it is to deal with this problem in a formal way. Since refinement steps in SETS are
compositional, and bearing in mind that we have been just trying to refine sets into hash tables, what about doing
the same for each collision set?

This solution is known as rehashing and leads to something like

n→ (m→ 2A) (19)

under a more elaborate invariant involving n possibly different sub-hashing functions Hi (i = 1, . . . , n):

Φ3 = λt.∀i ∈ n : (∀j ∈ m : (∀a ∈ t(i)(j) : i = H(a) ∧ j = Hi(a))) (20)

But, strictly speaking, rehashing is nothing but mutiplying the address space of a given hashing table by some
factor (m), since

((2A)m)n ∼= (2A)n×m

— cf. law (56) — where the hash function is

H ′(a) = 〈H(a), HH(a)(a)〉

Typically m < n, and collision sets get smaller, but 2A still recurs in the co-domain of (19).
For a more effective solution to the problem we need to analyse the reification theory of 2A, and many options

are available. The most immediate is perhaps given by law (70) in appendix B, turning hash tables into arrays of
sequences of collisions,

(n→ A∗)Φ3

The corresponding invariant Φ3 is obtained via theorem 1, whereby

2A �elems A∗ ⇒ (2A)n �elemsn (A∗)n

for
elemsn(t) = λi.elems(t(i))

cf. table 3. By theorem 3 one has,

(2A)n �elemsn (A∗)n ⇒ ((2A)n)Φ2
�elemsn ((A∗)n)Φ2 ◦ elemsn︸ ︷︷ ︸

Φ3

(21)

that is,
Φ3 = Φ2 ◦ elemsn

= λt.∀i ∈ n : (∀a ∈ elems(t(i)) : i = H(a))

A∗ is not readily available in programming languages like C or PASCAL. Its reification towards such programming
environments has been studied in detail elsewhere (e.g. [Oli90, Jou92, Oli92]) as a particular case of refining
recursive data types. We sketch here only the outline of the reasoning. First, recursion is introduced by realizing
that A∗ is a well-known fixpoint solution of functor

X ∼= 1 +A×X /*finite lists on A */ (22)
11In fact, such collision segments are but the equivalence classes of the kernel relation KH induced by the restriction of H to db:

a KH a′ ⇔ H(a) = H(a′)

14



Then recursion is removed by reifying the recursive pattern of (22) in terms of references or pointers (K+1) which
are either NIL or point to a location in a heap or object store (addressed by K),

A∗� (K ⇀ A× (K + 1))× (K + 1) (23)

where

f(23)(σ, k)
def
=


k = NIL ⇒ []
¬(k = NIL) ⇒ let a = π1(σ(k))

k′ = π2(σ(k))
in cons(a, f(σ, k′))

and where
φ(23)(σ, k)

def
= φaux(k, σ, ∅)

for

φaux(k, σ, C)
def
= TRUE ⇐ k = NIL

FALSE ⇐ (k 6= NIL ∧ k 6∈ dom(σ)) ∨ k ∈ C
φaux(k′, σ, C ∪ {k}) ⇐ k ∈ dom(σ) ∧ σ(k) = 〈a, k′〉

(24)

Back to (23) we have, via theorem 1:

(A∗)n �
φ(23)

n

f(23)
n ((K ⇀ A× (K + 1))× (K + 1))n (25)

∼=f(55)
(K ⇀ A× (K + 1))n︸ ︷︷ ︸

Z

×(K + 1)n (26)

But there is no need for every linked list having its “own” or “private” heap. In fact, no programming language
compiler providing for pointer management would “reuse” the same heap address k ∈ K for different lists acces-
sible via (K + 1)n. That is, for σ ∈ Z of equation (26),

∀i 6= j ∈ n : domσ(i) ∩ domσ(j) = ∅

holds. This can be exploited in the following “amalgamation” of all such heaps,

Z ∼= K × n ⇀ A× (K + 1)

permitted via law (62), in which the disjointness property above is re-written thus:

α(σ)
def
= ∀i 6= j ∈ n : {k ∈ K | 〈k, i〉 ∈ domσ} ∩ {k ∈ K | 〈k, j〉 ∈ domσ} = ∅

i.e.

α(σ)
def
= ∀i 6= j ∈ n : 〈k, i〉 ∈ domσ ⇒ 〈k, j〉 6∈ domσ
⇔ fdp(domσ) (27)

cf. (82). If we can rely on this property α, which can be regarded as another ad hoc invariant now guaranteed by
the implementation device (e.g. C compiler), the “reverse” 12 application of law (75) is enabled:

K × n ⇀ A× (K + 1)α ∼=f−1
(75)

K ⇀ n︸︷︷︸
(∗)

×(A× (K + 1)) (28)

removing the invariant and using the inverse of f(75) (see appendix C). It is useful to calculate the abstraction map
encompassing all the steps ever since linked lists were introduced, that is, from (25) to (28):

f4 = f(23)
n ◦ f(55) ◦ (f(62) × id) ◦ (f−1

(75) × id)

= f(23)
n ◦ f(55) ◦ ((f(62) ◦ f−1

(75))× id)

= f(23)
n ◦ f(55) ◦ ((f(62) ◦ f−1

(75))× id)︸ ︷︷ ︸
g

= λ〈σ, t〉.

 i

f(23)(

(
k

π2(σ(k))

)
k∈domσ

, t(i))


i∈n

12That is, from right to left.
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It is immediate to see that this map altogether ignores every i = π1(σ(k)). That is to say, the n factor marked (∗)
in (28) became redundant after the introduction of ad hoc invariant α (27) and can be scrapped reducing Z to

K ⇀ A× (K + 1)

and abstraction map f4 to:

f4(σ, t)
def
=

 i

f(23)(

(
k

σ(k)

)
k∈domσ

, t(i))


i∈n

=

(
i

f(23)(σ, t(i))

)
i∈n

Putting everything together we reach a final data structure

((K ⇀ A× (K + 1))× (K + 1)n)Φ4
(29)

— a table of pointers to linked-lists sharing the same heap structure — whose overall invariant can be systemati-
cally calculated:

Φ4 = φ(23)
n ◦ g ∧ Φ3 ◦ f4

= (λ〈σ, t〉.∀i ∈ n : φ(23)(σ, t(i)) ∧ Φ3 ◦ f4

that is,

Φ4(σ, t) = (∀i ∈ n : φaux(t(i), σ, ∅)) ∧ (∀i ∈ n : (∀a ∈ faux(t(i), σ) : i = H(a))

= ∀i ∈ n : φaux(t(i), σ, ∅) ∧ (∀a ∈ faux(t(i), σ) : i = H(a))

recalling (24) and compressing elems ◦ fσ into an auxiliary function:

faux(k, σ)
def
=


k = NIL ⇒ {}
¬(k = NIL) ⇒ let a = π1(σ(k))

k′ = π2(σ(k))
in {a} ∪ faux(k′, σ)

In the end, this corresponds in fact to a classical strategy, cf. (quoting [HS19]):

Many of the comparisons being made could be saved if we maintained lists of identifiers, one list per bucket, each
list containing all the synonyms for that bucket (...) Since the size of these lists is not known in advance, the best
way to maintain them is as linked chains.

The final step would be to encode (29) (with some extra “syntactic sugar”) in a commercial programming
language, e.g. C

typedef Database4 *Collision[n]; /* hash table */
typedef struct Collision {

A Synonym;
struct Collision *Next;
} ;

(30)

or PASCAL

type Database4 = array[1..n] of Bucket; (* hash table *)
Bucket = ˆ Collision;
Collision = record

Synonym: A;
Next: ˆ Collision

end;

(31)
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The following diagram provides a summary of the reasoning carried out in this section:

Database

Abstract
model

�1 Database1

‘Ad hoc’
invariant

introduced

�2 Database2

The
“hashing”

step

�3 Database3

Collision
handling

�4 Database4

Pointer-based
collision-lists

and
final code

(32)

4.2 Operation Level Calculation
The steps of (32) which interest us are the “hashing ones”, that is from Database to Database2. The correspond-
ing abstraction map retrieves the abstract database by re-assembling all disjoint collision sets:

f1(f2(t)) = {a ∈ A | (i, a) ∈ {(i, a) | i ∈ n ∧ a ∈ t(i)}}
= {a ∈ A | i ∈ n ∧ a ∈ t(i)}
= {a ∈ A | ∃i ∈ n : a ∈ t(i)}
=

⋃
i∈n
{a ∈ A | a ∈ t(i)}

=
⋃
i∈n

t(i) (33)

This map will now be relevant for composing refinement diagrams which will enable calculation of the operations
— initialDb, insert, find, remove — as they should be implemented at Database2-level.

4.2.1 The find Operation

The refinement diagram for find is:

2

A× 2A 2

-
find2

-find

6

1A × f1 ◦ f2

A× 2A

A× ((2A)n)Φ2

6

12

leading to the refinement equation:
find2(a, t) = find(a, f1(f2(t)))

The reasoning is as follows:

find2(a, t) = find(a, f1(f2(t)))

= a ∈ f1(f2(t))

= a ∈
⋃
i∈n

t(i)

=
∨
i∈n

a ∈ t(i)

= ∃i ∈ n : a ∈ t(i)

Now, taking ad hoc invariant Φ2 into account, one has:∨
i∈n

a ∈ t(i) = a ∈ t(H(a)) ∨
∨

i∈n∧i 6=H(a)

a ∈ t(i)

= (a ∈ t(H(a)) ∨
∨

i∈n∧i6=H(a)

FALSE

= a ∈ t(H(a))

= find(a, t(H(a)))
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In summary,

find2(a, t) = find(a, t(H(a)))

It can be easily observed that find2 is nothing but find tuned to the relevant collision bucket. Since the cardinality
of t(H(a)) is smaller than that of

⋃
i∈n t(i)

13, the efficiency gain is obvious.

4.2.2 The insert Operation

Refinement diagram:

((2A)n)Φ2

A× 2A 2A

-
insert2

-insert

6

1A × f1 ◦ f2

A× 2A

A× ((2A)n)Φ2

6

f1 ◦ f2

Refinement equation:
f1(f2(insert2(a, t))) = insert(a, f1(f2(t)))

Reasoning:

f1(f2(insert2(a, t))) = insert(a, f1(f2(t)))

= {a} ∪ f1(f2(t))

= {a} ∪
⋃
i∈n

t(i)

= {a} ∪ t(H(a)) ∪
⋃

i∈n−{H(a)}

t(i)

= t′(H(a)) ∪
⋃

i∈n−{H(a)}

t(i)

where t′ is the one-entry mapping

t′ =

(
H(a)

{a} ∪ t(H(a))

)
Then,

t′(H(a)) ∪
⋃

i∈n−{H(a)}

t(i) =
⋃
i∈n

{
i = H(a) ⇒ t′(i)
¬(i = H(a)) ⇒ t(i)

=
⋃
i∈n

{
i ∈ domt′ ⇒ t′(i)
¬(i ∈ domt′) ⇒ t(i)

=
⋃
i∈n

(t † t′)(i)

= f1(f2(t † t′))

In summary,

f1(f2(insert2(a, t))) = f1(f2(t †
(

H(a)
{a} ∪ t(H(a))

)
))

or, by removing f1 ◦ f2 from both sides of the equality,

insert2(a, t) = t †
(

H(a)
insert(a, t(H(a))

)
It can be observed that insert2 is nothing but insert confined to the relevant collision bucket, taking advantage of
its smaller cardinality in subsequent refinements such as depicted in (32).

13Provided that H is not a constant function, an obvious “bad” hash function.
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4.2.3 The initialDb Operation

Refinement diagram:

((2A)n)Φ2

2A

-
initialDb2

-initialDb

6

f1 ◦ f2

Refinement equation:
f1(f2(initialDb2)) = initialDb

Reasoning: since ⋃
i∈n

initialDb2(i) = ∅

one straightforwardly draws

initialDb2 =

(
i
∅

)
i∈n

We obtain the conventional “for loop” (i = 1, n) initialization of the hash table setting every bucket to the empty
set.

4.2.4 The remove Operation

Refinement diagram:

((2A)n)Φ2

A× 2A 2A

-
remove2

-remove

6

1A × f1 ◦ f2

A× 2A

A× ((2A)n)Φ2

6

f1 ◦ f2

Refinement equation:
f1(f2(remove2(a, t))) = remove(a, f1(f2(t)))

Reasoning:

f1(f2(remove2(a, t))) = remove(a, f1(f2(t)))

= f1(f2(t))− {a}
=

⋃
i∈n

t(i)− {a}

= (
⋃
i∈n

t(i)) ∩ {a}

=
⋃
i∈n

(t(i) ∩ {a})

=
⋃
i∈n

(t(i)− {a})

= (t(H(a))− {a}) ∪
⋃

i∈n−{H(a)}

(t(i)− {a})

= t′(H(a)) ∪
⋃

i∈n−{H(a)}

t(i)− {a}︸ ︷︷ ︸
(∗)
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where t′ is the one-entry mapping

t′ =

(
H(a)

t(H(a))− {a}

)
At this point one resorts to invariant Φ2 (18), from which we infer

∀i ∈ n : (∀a ∈ t(i) : i = H(a))

l
∀i ∈ n, a ∈ A : a ∈ t(i)⇒ i = H(a)

l
∀i ∈ n, a ∈ A : i 6= H(a)⇒ a 6∈ t(i)

l
∀i ∈ n, a ∈ A : i 6= H(a)⇒ t(i)− {a} = t(i)

which is enough to reduce (∗) above to t(i). The reasoning hereupon is similar to that carried out for insert,
leading to

f1(f2(remove2(a, t))) = f1(f2(t †
(

H(a)
t(H(a))− {a} ∪ t(H(a))

)
))

i.e. (by removing f1 ◦ f2 from both sides of the equality)

remove2(a, t) = t †
(

H(a)
remove(a, t(H(a))

)
Similarly to insert2, it can be observed that remove2 is nothing but remove confined to the relevant collision
bucket. But, unlike insert2, remove2 resorted to the low-level ad hoc invariant in its refinement process.

5 A Standard Elaboration
The algebra of finite subsets of A, 2A (10), is far too simple a model for database files. A model closer to reality is

Database′ = A ⇀ B (34)

where A plays the rôle of a domain of keys and B is the data of interest 14.
Note that 2A ∼=dom A ⇀ 1 (58). So it seems that the new model amounts to generalizing 1 in functor

λX.X ⇀ 1 to any finite B. And indeed each operation σ over (10) can be generalized to some σ′ over (34)
provided σ′ “preserves σ along the dom morphism”, that is, if σ is such that

domσ′(x, . . .) = σ(domx, . . .)

We obtain the classical “dictionary functionality” 15:

initialDb′ : −→ Database′

initialDb′
def
=

( )
insert′ : A×B ×Database′ −→ Database′

insert′(a, b, σ)
def
=

 a ∈ domσ ⇒ σ

¬(a ∈ domσ) ⇒ σ ∪
(
a
b

)
14This “mapping” model of dictionary tables or database files specified by (34) is well-known from the literature, see e.g. [Fie80].
15We assume NIL 6∈ B in find′ for the sake of simplicity, otherwise B + 1 should replace B ∪ {NIL} in the signature. NIL is the

counterpart of a ∈ domσ = FALSE in (11) and a ∈ domσ = TRUE is generalized to any value of B. This follows a technique based on
SETS for elaborating or sophisticating specification models which is discussed elsewhere [Oli95].
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find′ : A×Database′ −→ B ∪ {NIL}

find′(a, σ)
def
=

{
a ∈ domσ ⇒ σ(a)
¬(a ∈ domσ) ⇒ NIL

remove′ : A×Database′ −→ Database′

remove′(a, σ)
def
= σ \ {a}

With respect to data refinement, this generalization is not immediate since functor λX.X ⇀ B is not so
well-behaved as λX.2X or any other in table 3: only for f : A→ C an isomorphism will

f ⇀ B : (A ⇀ B) −→ (C ⇀ B)

be well-defined 16:

(f ⇀ B)(σ) =

(
f(a)
σ(a)

)
a∈domσ

(35)

Clearly, theorem 4 holds also for λX.X ⇀ B:

(Aφ) ⇀ B = {f ∈ A ⇀ B | domf ⊆ Aφ}
= {f ∈ A ⇀ B | ∀a ∈ domf : φ(a)}
= (A ⇀ B)φ⇀B

Now revisit (14), our starting point in section 4.1:

A �
φ
π2|φ n×A

In fact, π2|φ is an isomorphism, for a fixed H . So

A ⇀ B �
φ⇀B
(π2|φ)⇀B (n×A) ⇀ B

Now

(n×A) ⇀ B ∼= (A ⇀ B)
n (36)

cf. law (62). So we have obtained the “hash effect” again, in step which generalizes (17):

((n×A) ⇀ B)φ⇀B
∼=f(62)

−1 (A ⇀ B)
n
Φ2

(37)

where

Φ2 = (φ ⇀ B) ◦ f(62)
−1

= λσ.∀x ∈ domf(62)
−1(σ) : φ(x)

= λσ.∀i ∈ n : (∀a ∈ domσ(i) : i = H(a))

Collision handling may proceed now by resorting to the implementation theory of A ⇀ B, e.g. [Fie80]. But
law (76) provides an easy way of re-using our earlier results by implementing abstract mappings as sets of pairs
satisfying a functional dependency (fdp). So we are back to n-dimensional arrays of sets,

(2A×B)
n

Φ3

satisfying not only the ad hoc hash-constraint (Φ2) but also the extra functional dependency requirement:

Φ3 = fdpn ∧ Φ2 ◦mkfn

= λσ.∀i ∈ n : fdp(σ(i)) ∧ (∀a ∈ π1[σ(i)] : i = H(a))

In the end we will obtain data structure (30) — or (31) — where the struct — or record — constructs are
enriched with an extra B-field. The operations will be reified much in the same way as in section 4.2.

16Ill-definedness will arise wherever ∃a, a′ ∈ domσ : σ(a) 6= σ(a′) ∧ f(a) = f(a′) in (35). This situation is discarded wherever f is
injective (ruling out f(a) = f(a′)) or B is a singleton set (ruling out σ(a) 6= σ(a′)). The latter condition explains why A ⇀ 1 (i.e. 2A) is
well-behaved.
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6 Conclusions
For programmers and program users it is important to know not only which properties hold for the programs they
deal with, but also why, when and where they hold.

Particularly relevant properties of programs are those which hold forever along programs lifetime — these are
called invariant properties. Other such “eternal” properties may hold as consequences of the underlying invariants.

Data invariants are a burden for the software developer because formal arguments have to be produced that
they are preserved by all the operations which create the corresponding data. So, in terms of design effort, it is
important to have as weak overall data invariants as possible.

Traditional engineering pragmatics dealing with continuous domains (e.g. space, time, temperature, voltage)
normally impose so-called “safety overheads” (e.g. “10% stronger than calculated”) in order to guarantee design
implementation, in face of instrumental inaccuracy, for instance. The same “culture” aplied to informal software
design tends to overstrengthen presumed properties (invariants) of software artifacts. But a contrast can be found
here: discreteness of data (supported by inductive arguments) should make software (theoretically) 100% accurate!

The aim of this report has been to provide evidence that invariants can not only be kept accurately under
control but also that a classification can be given for every implementation-level invariant component, according
to its origin in design:

invariant

formal entailed by refinement process

ad hoc
purely semantic

for algorithmic efficiency

as commented next:

• formal invariants entailed by the refinement process — the SETS calculus ensures these as weak as necessary
in order to guarantee faithful data representation.

• purely semantic ad hoc invariants — arbitrarily stated at the highest specification level, these invariants
mirror real-life conventions, rules, norms or natural constraints 17

• ad hoc invariants for algorithmic efficiency — arbitrarily stated at intermediate or final reification levels,
these invariants exploit the target machine architecture for efficiency.

The process of formally calculating the hash table implementation of a database file, undertaken in this report, has
shown how early in design ad hoc invariants of the last kind above can be introduced in software development, cf.
step 1 in (32) and (13).

The SETS calculus [Oli90, Oli92] has been extended in this report in order to handle such invariants in a
systematic way, via a result (theorem 3) which “pushes” such invariants down the refinement process, and another
result (theorem 5) which ensures that ad hoc invariant preservation arguments need to be produced only once.

The chosen case study (hash tables) — which is part of an on-going research plan aiming at producing a
reification cook-book of software problem solutions [Oli99] — has provided evidence, once again, of the benefits
of addressing traditional algorithmic “culture” from a formal perspective. In [Oli99] the full spectrum of hashing
reification is systematically expounded, namely in respect of collision handling. For instance, one may organize
synomyms as binary serarch collision trees rather that linear collision lists, etc..

7 Future Work
Future research will proceed in several directions. First, it seems that the hash-table paradigm is more general then
it appears as first sight. The “hash effect” is not a privilege of “tabular” data structures, and a general criterion
for deciding which data-structures can be “optimized” by “hashing them” arises from generalizing “hashing steps”
(16) and (36) in the following way: let G(X) be a data-structure parameterized by X , that is, a SETS endofunctor.
A condition necessary for applying the “hashing step” to G certainly is

G(n×A) ∼= (G(A))n (38)
17The invariant of Date — recal (3) — is a telling example of this class of invariants.
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for n > 0 and H : A −→ n a given hash function. While instances G(X) = 2X and G(X) = X ⇀ B (for some
B) were studied in this report, other interesting Gs such as G(X) = B ⇀ X or G(X) = X∗ do not satisfy (38).
However, (38) is too strong and may be relaxed to

G(n×A) � (G(A))n (39)

as can be easily checked. This opens the hashing optimization to many other data-structures. For instance, let

Book ⇀ Publisher

be a database file assigning books to publishers. One may hash this data-structure on Book, as we have seen (let
G(X) = X ⇀ Publisher). But if we are searching for books by publishers, a “hash-on-publisher” structue would
be perhaps more effective, that is, one would like to hash for G(X) = Book ⇀ X . This in fact makes sense with
respect to (39), since

B ⇀ n×A � (B ⇀ A)n

holds as a generalization of law (74) 18 entailing an invariant enforcing mutually disjoint domains of the n map-
pings obtained on the left. G(X) = X∗ remains as an example of an “un-hashable” data-structure, for

(n×A)∗ � (A∗)
n (40)

does not hold in general 19.
Another direction for generalizing the hash-effect has to do with distribution and concurrency. From (49) we

draw

(G(A))n ∼= G(A)× . . .G(A)︸ ︷︷ ︸
n

which means that a hashed structure, regarded as a monolithic structure, can be at compile-time factored into a
collection of n similar (sub-)structures. From another prespective, this can be viewed as a step in the horizontal
refinement [Gog86] of a state-based software component [Oli91, OC93] into n “smaller” components, which can
be regarded as concurrent, communicating processes. On-going research [OM95] is providing evidence that the
“amount of concurrency” gained in a horizontal refinement step, expressed in SETS, can be calculated and reasoned
about. This is particularly relevant concerning hashed structures, whose “gain in concurrency” is the fact that
operations on disjoint collision sub-structures are independent and can overlap in time (e.g. the operation of adding
a synonym of hash index i can proceed in parallel with another one which is removing a synomym of hash index
j for i 6= j). In summary, regarding the hash-effect as mere data optimization is a limited view of hashing. Instead
of “data hashing” one should talk about “process hashing”, a topic also addressed in [OM95].

Finally, one may regard hash effect on operations (recall section 4.2) as a special kind of promotion as under-
stood in the Z literature [Woo92] or of sophistication as understood in [Oli95]. This is worthwhile studying in
more detail.
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The symmetric of (40) holds under the following surjection:

λl.

(
i

[〈i, π2(x)〉 | x← l ∧ π1(x) = i ]

)
i∈n
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A SETS—Equational Calculus
It is not the aim of this and the following appendices to present the collection of all SETS results developed so far
in works such as [Oli90, Oli92, Jou92, Rod93, OC93]. The idea is to present a minimally representative superset of
the results actually used in the main body of this paper. Some laws may be regarded as instances or consequences
of others, as can be easily checked 20.

A, B, C, . . . will denote SETS objects, i.e. data domains. n, m, . . . will denote initial segments of IN , the set
of natural numbers. Subscripted f and φ denote abstraction functions and concrete invariants, respectively. If the
subscript is an equation number, this indicates the law where the given map or predicate arise.

A×B ∼= B ×A (41)
A× (B × C) ∼= (A×B)× C (42)

A ∼= A× 1 (43)
A+B ∼= B +A (44)

A+ (B + C) ∼= (A+B) + C (45)
A+ 0 ∼= A (46)
A× 0 ∼= 0 (47)

A× (B + C) ∼= (A×B) + (A× C) (48)

A× . . .×A︸ ︷︷ ︸
n

∼= An (49)

A+ . . .+A︸ ︷︷ ︸
n

∼= n×A (50)

A0 ∼= 1 (51)
A1 ∼= A (52)
1A ∼= 1 (53)

A(B+C) ∼= AB ×AC (54)
(B × C)A ∼= BA × CA (55)

AB×C ∼= (AC)
B

(56)
A ⇀ B ∼= (B + 1)A (57)

2A ∼= A ⇀ 1 (58)
(B + C) ⇀ A ∼= (B ⇀ A)× (C ⇀ A) (59)

0 ⇀ A ∼= 1 (60)
1 ⇀ A ∼= A+ 1 (61)

(A ⇀ B)C ∼= (C ×A) ⇀ B (62)

A 6= B ⇒ XA ∩XB = ∅ (63)
A ∩B = ∅ ⇒ A ∪B ∼= A+B (64)

AB ∼= AX ×AB−X ⇐ X ⊆ B (65)
An ∼= A×An−1 (66)

n 6= m ⇒ Xn ∩Xm = ∅ (67)
20For instance, laws (66,67) are instances of (65,63), respectively; law (76) is obtained from law (75) by making C = 1, etc.
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B SETS—Inequational Calculus
In this appendix (as in the main text), A � B is a shorthand of A � B wherever the abstraction map is a total
function, that is, the concrete invariant is the everywhere TRUE predicate.

A � A×B (68)
B � A×B (69)

2A � A∗ (70)
A ⇀ (B × C) � (A ⇀ B)× (A ⇀ C) (71)
(A×B) ⇀ C � A ⇀ (B ⇀ C) (72)

A ⇀ D × (B ⇀ C) � (A ⇀ D)× ((A×B) ⇀ C) (73)
A ⇀ (B + C) � (A ⇀ B)× (A ⇀ C) (74)
A ⇀ B × C � (A×B) ⇀ C (75)

A ⇀ B � 2A×B (76)

C Abstraction Invariants

C.1 Basic Functions and Predicates

+
1 (σ, τ)

def
= i1 ◦ σ ∪ i2 ◦ τ (77)

djd(σ, τ)
def
= domσ ∩ domτ = ∅ (78)

dpi(σ, τ)
def
= π1[dom(τ)] ⊆ dom(σ) (79)

eqd(〈σ, τ〉) def
= domσ = domτ (80)

elems(b)
def
= {b(i) | i ∈ length(b)} (81)

fdp(r)
def
= ∀t, t′ ∈ r : π1(t) = π1(t′)⇒ π2(t) = π2(t′) (82)

i1(a)
def
= 〈1, a〉 (83)

i2(a)
def
= 〈2, a〉 (84)

σ 1 τ
def
=

(
a

〈σ(a), τ(a)〉

)
a∈domσ

(85)

mkf(ρ)
def
=

(
a

the({b ∈ B | aρb})

)
a∈π1[ρ]

(86)

1n (σ, τ)
def
=

 a

〈σ(a),

(
b

τ(a, b)

)
〈a,b〉∈sel(a,τ)

〉


a∈dom(σ)

(87)

sel(a, τ)
def
= {〈a′, b〉 ∈ dom(τ) | a′ = a} (88)

uncurry(t)
def
= λ(b, c).t(b)(c) (89)

C.2 Abstraction Maps

f(49) = λσ.〈σ(1), . . . , σ(n)〉 (90)
f(50) = λx.x (91)
f(43) = π1 (92)
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f(55) = λ〈x, y〉.
(

a
〈x(a), y(a)〉

)
a∈A

(93)

f(56) = uncurry (94)
f(58) = dom (95)

f(62) = λσ.

 c(
a

σ(a, c)

)
〈a,c〉∈domσ


c∈C

(96)

f(62)
−1 = λσ.

⋃
c∈C

(
〈c, a〉
σ(c)(a)

)
a∈domσ(c)

(97)

f(75) = λσ.

(
a

〈b, σ(〈a, b〉)〉

)
〈a,b〉∈domσ

(98)

f−1
(75) = λσ.

(
〈a, π1(σ(a))〉
π2(σ(a))

)
a∈domσ

(99)

f(68) = π1 (100)
f(69) = π2 (101)
f(70) = elems (102)
f(71) = 1 (103)
f(76) = mkf (104)

f(72) = λσ.

(
〈a, b〉

(σ(a))(b)

)
a∈domσ∧. b∈domσ(a)

(105)

f(73) = 1n (106)

f(74) =
+
1 (107)

C.3 Concrete Invariants

φ(71) = eqd (108)
φ(75) = fdp ◦ dom (109)
φ(76) = fdp (110)

φ(72) = λσ.
( )

6∈ rng(σ) (111)
φ(73) = dpi (112)
φ(74) = djd (113)
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